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A NOTE ON THE ESTIMATION OF DEGREE OF DIFFERENCING 
IN LONG MEMORY TIME SERIES ANALYSIS 

M. S. PEIRIS AND J. R. COURT (SYDNEY) 

Abstract. In this paper we investigate the properties of the 
estimator of degree of differencing the fractional d in long memory 
time series analysis via consistent spectral density estimation. It is 
shown that the proposed estimator is more eficient than some of the 
others in practice. 

I. Tntrredoctiors. The interest in fractional differencing and its applications 
to long memory time series modelling have become important to theoretical 
and applied time series analysis after the pioneering work by [ 5 ]  and 161. Since 
then a large number of authors have reported some interesting and math- 
ematically elegant results on the modelling of long memory processes. This 
class of models is motivated by 

(i) unbounded spectral densities at the frequency o = 0, 
(ii) hyperbolic decay of the autocorrelation function (acf), and 

(iii) the Hurst effect. 
When modelling long memory time series, it is convenient to use the 

following two filters in tandem: 
(a) transform the original long memory {X,) to a short memory ( q )  via 

(1.1) = (1 - B ) ~  X,, d E(-%, $), 

where B is the backshift operator such that B ~ X ,  = X,-, ,  j 2 0; 
(b) transform the short memory (TI to white noise { Z , ]  via 

where @(B)= 1-@,B- . . . -  @,BP and O(B)=l -O,B-  . . . -  O,B4 are 
stationary autogressive (AR) and invertible moving average (MA) operators, 
respectively. 

The resulting process is generated by 
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where V = f -B,  and is said to constitute a family of fractionally integrated 
ARMA(p, g )  or ARIMA(p, d, q)  processes, d E(-i, 4). This family has a wide 
variety of applications in almost every area in scientific endeavour (e.g., stream 
flow, rainfall, temperature, economic). The problem of estimation of parameters 
has received a considerable attention in the last decade, and among others [4] 
suggests to estimate d (first) independent of the other parameters using the 
periodogram of the data near frequency zero. Once the d is confidently 
estimated from the observed series, the unique whitening filter for a short 
memory {I.;) may be obtained following [I]. Several other methods have also 
been proposed to estimate the degree of differencing (fractional), d, in the 
literature. However, the aim of this note is to improve the efficiency of 
estimation of d over [4] in the mean square sense when the estimate is obtained 
through a lag-window estimator of the spectral density of {X,}. With that view 
in mind, in the next section we review some of the available methods of 
estimation of d. 

2. Some available methods of estimating d. In this section, we review some 
existing methods of estimating d. 

a. Janacek [7] proposes an estimator dm based on the log spectrum. 
That is 

where 

n-1 

kk = n - l  C logIN(p, x) cos (kw,) + (24-l [log I, (0, x)- 6, log I, (n, $1, 
p =  1 

n = ( N -  1)/2, 6 ,  = 1 when N is even and zero otherwise. IN@, x) is the 
periodogram and o, = p/n, M is the truncation point chosen large enough for 
c, to be negligible. 

b. Parzen 181 constructed the estimator (2, with the help of the non- 
parametric kernel density estimator 

where 

6 It3, 4 < 0.5, 
k(tf = 2(1 - l t ~ ) ~ ,  0.5 G t G 1, 

otherwise, 

is the Parzen window, and Q, (v) is an estimator of the autocorrelation function 
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at lag o. Then the resulting estimator for d, is 

(2.2) 8, = 0.5 [ k - I  2 log f (0. + m)/N) - log ((k + 1 + m)/N)] 
j =  1 

c. A more popular method was suggested by [4] based on the regression 
analysis using the periodogram. Assume that (x) has the spectrum f,(o). Then 
{XI) does not strictly have a spectrum for all w, but can be expressed as (by 
filtering considerations as in [ 5 ] )  

where 

a2 (O(e-i0)12 
f (4 = , 1qe-i .)~2 and Var (Zr)  = u2. 

Note. 1, f,(o) exists for all w when d < 0. 
2. f,(m) does not exist for all w when d > 0 (specifically, f,(o) 4 m as 

o + 0 for d > 0). 

Arguing as in [4] one can simplify the equality (2.3) as the simple linear 
regression equation 

where 

a = In f (01, b = -d, and rn is a function of n such that m/n -, 0 as n + oo. This 
gives the estimator 

12-51 

with 

The main reason for the popularity of this regression method is that it 
permits the estimation of d without any prior knowledge of p and q. However, 
the choice of pn completely determines the accuracy of the estimate J, It is 
obvious that the accuracy of d may be further improved by using a consistent 
spectral density estimator 6(wj) in place of the periodogram 1, (mj). The next 
section discusses the various properties of this proposed estimator for d. 
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3. Estimation of d using a lag-window spectral densi$y estimate. It is well 
known that, for d < 0, I,(oj)'s arc (asymptotically) independently distributed 
$f, (wj) X; variates when oj # 0, n. This tells us that I, (wj) is an unbiased but 
inconsistent estimator for fx(wj) for wj # 0, n. Hence we 'use the lag-window 
spectral density estimator in place of I,(wj) in (2.4) in order to improve the 
quality of 2. Furthermore, we show that the resulting new estimator is more 
efficient (in the mean square sense) than that of (2.5). 

Now we write (2.3) at w j  = 2.njln~ (0, x) in the form of 

(3.1) lnJi(wj) = -dIn]l -exp(-imj)I2 -tlnf,(wj). 
Let 

G(w) = (2x1-I C n ( ~ ) R ( s ) e - ~ ~ ~  
Isl 

be the lag-window spectral density estimator of ( X , ) ,  where L(s) is the lag 
window, and ~ ( s )  is the estimated autocovariance at lag s. 

Adding 1n6(cilj) to both sides of (3.11, we obtain 

If wj is near zero, (3.2) may be well approximated by 

Let 
yj = In i(mj), xj  = In t l -exp(- i~~)1~,  

Then we have 

(3.4) yj=ol+/?xj+ej, j = 1 , 2  ,..., [ne],  O < B < l ,  

where [ne] denotes the integer part of ne. 
It is known that {K(wj)/fx (w,)) is not a sequence of independent random 

variables, but for most of the standard windows {6(wj)/fx (mi)) is approximate- 
ly uncorrelated under certain regularity conditions and for large n. Now we 
state the following lemma for later reference. 

LEMMA 1. For the regression model defined in (3.4) we have 
(i) pe = E (ej) = 0; 

(ii) n: = Var (ej) % n-I CIsl <. l2 (s) for all j # 0, n/2 (n euen). 

The proof of this lemma follows from the asymptotic distribution 

fro (v=-i2(s) 2n and a=- ) .  1 
fx (4 C v 
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However, the asymptotic distribution of ej is normal with mean 0 and variance 
ui ( [2] ,  p. 364). Now it can be seen that the least squares estimator of d in 
(3.4), i.e. 

. -  a is consistent for d, and more efficient than that of d in (2.5). 

4. Efficiency of 4. In this section we state and prove the following main 
theorem for the properties of the proposed estimator dc. 

THEOREM. The estimator dc deftned in (3.5) is consistent and more gfficient 
than that of a given in (2.5). 

Proof. From (3.4) and (3.5) we have (approximately) 

For many lag windows used in practice we have 

where k is a constant depending on the lag window. For example: 

Lag window k 

BartIett 
DanieIl 

2/3 
1 

Parzen 0.5393 
Tukey 2(1-4a+6a2) 
Tukey-Hanning 3/4 
Tukey-Hamming 0.7948 

Since the choice of m satisfies m/n + 0 as n + m, it follows that dc is consistent 
for d. Now 

and km/n < n2/6 for any m = [no],  0 < 0 < 1 .  The increase in eficiency of 4 
over d in (2.5) immediateIy follows. 

EXAMPLE. Consider the data {X,; t = 1 ,  2 ,  ..., 2001, which are given by 
[2],  p. 530 (Example 13.2.1). The series ( X , ]  was generated by VO.'Xt 
= Z,+0.8 Z,-l,  (2,) - W N ( 0 ,  0.483). 
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Brockwell and Davies [2] used the method C of [4] with m = 14 and 
obtained the value d = 0.37 1 with Var (6 )  = 0.00884. 

We use the Tukey Hanning window, 

and obtain the corresponding JC = 0.389 with var(&) = 0.0028. An approxi- 
mate 95% confidence interval for- d is (0.285, 0.493). 

I 
true value 

GlLG2: a 95% confidence interval for d by [3]. 
P1-P2: a 95% confidence interval for d by the proposed method. 

Remark  1. In general, the spectra1 estimates corresponding to a given 
lag-window for two neighbouring Fourier frequencies are correlated. However, 
two estimates may be uncorrelated if the separation between their frequencies 
is appreciably greater than the "bandwidth" of the spectral window ([I 11, 
p. 456). 

The above example shows that for large (but finite) n the assumption we 
made in the paper may not be "very" unrealistic. 

Remark  2. In searching for a good model it is not reasonable to estimate 
d independently of the other parameters, since for any moderate size data set 
the behaviour of the spectral density near frequency zero may be affected not 
only by d ,  but also by the values of the autoregressive and moving average 
parameters. The maximum likelihood procedure appears to be more promising 
to this problem, and will be discussed in detail in a future paper. 

Re mark  3. In some cases the proposed estimate Jc may be more biased 
than that of d. However, a large scale simulation by [3] recommended the use 
of 6, in practice. 
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