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SMALL BALL PROBLEMS
FOR NON-CENTERED GAUSSIAN MEASURES

BY

WENBO V. LI (NEWARK, DELAWARE) AND WERNER LINDE (JENA)

Abstract. Let X be a centered Gaussian random variable with
values in a Hilbert space H. If ae H, then we determine the asymptotic
behaviour of P {|| X —al| < &} as ¢ = 0. This extends former results of
G. N. Sytaya and V. M. Zolotarev in the centered case, ie., for a = 0.
More general, we describe the behaviour of P {|| X —f(f)af < R(t)} as
t = oo for some R"-valued functions f and R. Basic tools are the
Laplace transform and a modified saddle point method.

" 1. Introduction. Let X be a centered Gaussian random variable with
values in a separable real Hilbert space H. Then one may ask for the
probability that X attains small values, i.e., one asks for the behaviour of
P{|IX| <&} as ¢ > 0. This so-called “Small Ball Problem” has been inves-
tigated by different methods. For example, in [6] the random variable X was
approximated by X, with range in an n-dimensional subspace, where n was
chosen in a delicate way and depended on ¢ > 0. A completely different
approach was used in [12] and [14]. Here the inversion formula for the
Laplace transform of | X||? has been applied, together with some modified
saddle point method. Recently it turned out that this technique leads also to
solutions in related questions. For example, in [8] and [9] the behaviour of
P{|X—ta| < R(t)} as t - o0 (acH, R is some function either decreasing or
increasing not too fast) could be determined by similar ideas. Results of this
type have been used in many different problems.

The aim of this paper is to prove a general theorem which includes the
results of [12] and [8] as special cases. More precisely, we determine the
behaviour of

(1.1 P{IX-f®)*al><R{®} ast—ow

for ae H and some functions fand R. If f(t) = t* we are in the situation of [8]
and for f =0 and R(t)=1"% we rediscover the “Small Ball Problem”
mentioned above. But even in these cases our main result (Theorem 3.1) gives
some new insight. Namely, in both cases the asymptotic behaviour was
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formerly described by exactly one function y = y(t) defined by the random
variable X (and by a and by R (t), respectively) in a rather difficult way. Here we
show that one may also use different functions provided they are not too far
from the original y. So changing y a little bit, sometimes it simplifies the
concrete calculations considerably.

On the other hand, (1.1) contains at least one case of interest not treated
before in this way. Namely, if f =1 and R(¢) = t~2, then (1.1) describes the
behaviour of

(1.2) P{|X—a| <&} ase—0,

where a is an arbitrary element of H. Observe that the behaviour of (1.2) is
known when a is in the reproducing kernel Hilbert space (RKHS) of X. Indeed,
a result of Borell (cf. [3]) asserts that

_ P{|X—al <4}
lim
eo PLIXI < ¢}

= exp(— [al%/2),

where | a| y means the norm of a in the RKHS of X. Hence in this case (1.2)
reduces to the investigation of balls centered at zero. So our results give new
information about the behaviour of Gaussian random variables near points not
belonging to the RKHS.

The organization of the paper is as follows: Section 2 includes all technical
lemmas needed for the proof of Theorem 3.1 in Section 3. Also some
improvements of the main result in [8] are given in Section 3. Section 4
contains applications of Theorem 3.1 to problem (1.2), and Section 5 is devoted
to some concrete examples.

Let us fix the notation: If f, g are functions on (t,, ), we write as usual
f~ g provided that ‘

lim f(z)/g(t) =1

t— o0
and f=g¢ means that
0 < liminf f(£)/g (t) < limsup f(t)/g (t) < co.
t— o ' t—+
Finally, we recall some well-known facts about Hilbert space valued
Gaussian random variables. A random variable X with values in H is Gaussian
centered if (X, y>, the inner product in H, is a real centered Gaussian random

variable for each ye H. And there are 4, > 1, > ... >0, Z;;l /lj < 00, and an
orthonormal basis {e;; j > 1} < H such that

X<y I2ge,

=1

where {¢;;j > 1} is a sequence of independent standard Gaussian random
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variables. Furthermore, for a = Zc.n_ o.e; we have ae#y (RKHS of X) iff
j=1"J"J
© 42 © L2\1/2
Y L<ow and Ilallx=(2—]) .
= =14

2. Basic estimates. If (1)2, and («)jZ, are sequences of real numbers
with

00 e}
AM=hz...20, Y i< and Y o} <o,
=1 j=1

then the functions

oz 12

1 = L ==Y log(1+2
@) wEi= Y ed @) 2}; og(1+24;2)
are well-defined and analytic on C*:= {zeC; Re(z) > 0} and we easily get

i a? 4ot i,

22 /4 = 7 r = j J

22) VO =T s VO~ X i
’ _ - )i'_i " — - 2'3‘:12

2.3) X (Z)—j§11+2;{,-z’ 7@ = L2

Throughout this paper f and R are fixed R"-valued functions defined on
(ty, o0) for some t, > 0. Now we introduce the complex-valued function
B = B(t, v, 6} which will play an important role later on:

(24) B(t,7, 0):= iR (e) o —f ()) {Y ( +i0) — ¥ ()} |
~{x(r+i0)—x 0} —log (1 +iafy),

where t > t,, y > 0 and oeR. Furthermore, let § = B(¢, y) and 1 =5 (¢, y) be ;
defined by

2 1 2.0 - JZA'] -})2 - 2/1]2 Vz
J ]

j=1

and

RO-XG)-/OV.0) _ 7RO/ OV 6)
N Re) B, )

Lemma 2.1, If y = 9, for some y, >0 and t > t,, then

26 @ty =

| ePr gl < cye b
lol >y/vZ

for some ¢ > 0 depending only on y, and on A,.
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Proof Note that
20} ; a?
-/ 2 (20,77 + 413 2 (L4 2,7)

42} o? ?
—~ Y log{1+———— |—=log| 1+— ).
4,.§1 Og( (1+2zjv)2) 2°g< vZ)

For |o] > y//2 it follows that
20} A;0° > oaf A;p? 51 1 a?dy?
(A+22,9 +43 o> (1+20;7) 7 (L4249 +247 72 (14+24;9) 7 2(1+249)*

@7  ReB(,7, ¢

hence the first term of (2.7) can be estimated by

FOY2¢" ()
-

Furthermore, using log(1+x) > x/2 for 0 <x < 1 and |o| = y/\/ 2 we obtain

oa(14 48 W\, A2
e\ i) 7 1+2/1 y)z Z U207

Thus

ENT

2 452 o* A3 y? 1 43 o>
1 s A L1t
2 °g< 0+24,7 ) Z 0+ 24,77 4°g( 121,97

ji=1
1 A2y 1 403 o
2.0 1 —1 1
\sy Ot 24, 4 Og( (1+2/11y)2)
Summing up, it follows that

exp(ReB(t, y, 0))do

lotZ V2

4/{ 1/4 0_2 —-1/2
é —-p/8 ,1/16 1 o 1 - d < —ﬁ/S’
e e J ( (1+2/1 )> ( +)22> g < cye

o] = V2
as claimed above. =

LemMA 2.2. For t >t,, 7 >0 and geR the following estimates hold:
(2.8) —4(o/y*(B+1) < ReB(t, v, 0) < —3(a/y)*(1—(a/y)) B
Especially, if |o| < y/\/f, then

2.9) ReB(t, 7, 0) < —é(%)z.



Small ball problems 235

Proof. Using the inequality log(l1+x) < x, x > 0, we obtain
ReB(t, 7, 0) = —3(0/)) [—f Oy ¥ B)—y* 1" () +1]
= =3 (B+1).
On the other hand, by the relation x—x?/2 <log(x+1) we have

12 4)2g? 1 @ 4)267 212 g
— Y log(1+—217 )< - (1= .
4.~ (1+24,7) 2 {+24,9) (1+27,7)

R

[\ & 207 A;y
v/ j=1(0+24;9P° +42F 0 (1+24;7)

1/a\? 2. qn 42 2
= (2 v+ 3 4o ay
j=1

Y

Moreover,

1 1
x[u+2/1jy)3+4/1}a2(1+2/1jy)—(1+2,1jy)3j'}
1/c\? . a\*> & 4afld;y 422 y*
- _E(y) { —PY )~ ( ) Zl(1+2/1 7 (142277 +442 2}

; (%) 2 (1 - (%)2)(— v o),

Re B(t, 7, 0) < —%(a/3)? (1—(a/7)?) B,

VAN
!
i

and hence

as asserted. m
LEMMA 2.3. Let n = n(t, 'y) be as in (2.6). Then

(2.10) lImB(t ¥, 0 )l l ‘

for all t >t,,y>0 and ceR.
Proof. Note that

12 22,
ImB(t, y, 0) = R(t)a—arctan(%)—z Y arctan(l_l_é;z?)

Jj=1

OCZ

e Z(1+2/1 W +4iZa

Bt n+att, 7, o),
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S rctan( +1§:[ 2440 arctan( 240 ]
y L? 2,5 1+24;y 1+24;y

d 1
+f(t){§ “ "[(1+2,1 P +24,9)7 + 472 2]}
Ix?/3 and 1/x2—1/(x*+y% < y*/x*, we have the es-

where

| Q

g(t,v,0)=

Since |x—arctan x| <

timate
al 1la? 1lol® & 24y 3 2 dof i}y
\<‘ a 1lo 116 I I S
|g(ta Y> G)l Y +3 'Y +6 y Z (1+2/1 ) (1+2l ’)))
0' ,, "
<l 2 f(t)vw(v}—H

and this completes the proof. B

Next we choose y = (t) dependent on ¢ > 0. If y is clearly understood, we
shall write for simplicity B(t, o), B(z) and 7 (z) instead of B(t, y (1), o), B(t, 7 (1))
and 7(t, y(£)), respectively. Let us suppose now that y(¢) has the following
properties:

(2.11) liminfy() >0 and lim B(2) = lim B(t, y (£)) = .

t—* o0 t—+® t—+ o

LemMa 24. If y(t) satisf ies (2.11), then

{\/_ P00 dg—  /2nexp(—n (0% 2)} =

hl® o]

t— o0

Proof. First note that
(2.12) «/Bly) [ €“ds—0 ast—ow
foZ V2
by (2.11) and Lemma 2.1. Next we choose a function & = d(1) such that
limé(@)=c0 and lim @)/ /BE)=0.
t—=> w0 t— oo
Observe that this is possible in view of (2.11). Applying (2.9) we get
B &Pdo|< | exp(—u?/4)du;
WNZZ\a|Zévp1/2 lul =8
thus by (2.12) and by the choice of § we obtain
im(/Bfy) | €PeVdo=0.
t—r oo |la|=é8yp—1/2

On the other hand, the equalities

\/ﬁexp(—n(t)z/Z) = _Ojo exp (iun (£)—u?/2) du
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and
lim | exp(iun()—u?/2)du=0

t— oo |u| Z8(1)

imply that it suffices to prove

(2.13) lim f l:exp (B (y, %)) —exp (iun () — u2/2)} du=0.

jul <8

From (2.10) we derive

uy [l 1P +p) &
2.14) ‘ImB(t, —)—u O <€E—F=+z-—s55—"<c——
( j \/E n(t) \/B 2 B \/E
for ¢ large enough and |u| < 6. Moreover, from (2.8) we also have
6?2 ( uy ) uw? &
2.15) ——<ReB{t,—=|++—<=—
( 25 NIAERY

for ju| < 4. Thus

exp (Re B (t, %) +ilm B (,t, %)) —exp (iun (t)——u"‘/2)~

exp (i Im B (t, HT],)B)) —exp (iun (t))

exp (—u?/2) —exp (Re B (t , %))'
u

< exp(—u?/2) {llm B (t, —ﬁ) —un(t)|+11—exp (Re B (t, {;%) + u2/2>).}

combined with (2.14) and (2.15) proves (2.13) since §%/p¥%2 0. =

< exp(—u?/2)

+

+

3. Main result. Let X be a centered Gaussian random variable with values
in a separable Hilbert space H. As mentioned above

X é .Zl /1}/2 é:j ej
j=

with A, >4, > ... >0, 2;;1 A; < o0, and (g;){Z, is an orthonormal basis in H.
If a=Y " ae;, then we have

31 P{X—f@®)'"a|* <R()} = P{i A2 &=f (O af* < R(9)}. |
j=1

Recall that &, &,, ... are independent"/V (0, 1)-distributed. Our objective is to

6 — PAMS 142
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determine the behaviour of (3.1) as t— o0. To do so let us introduce the
following definition:
A function y = y(t) is admissible (for X, a, f and R) provided that

(3.2) lim B(z, (1)) = im —y* (f ()Y () +1" () =

| Sad=0] = a0

and
R —_ ! — ’
o0 oo /=L OV )~ 1" ()
THEOREM 3.1. Let y = y(t) be admissible with liminf, , y(t) > 0. Then

1 _exp(PREO-OY () —10)
V2n \//—3 ®
as t — o, Conversely, if for some y = y(t) with liminf, ,  y(t) > 0 we have (3.2)
as well as (3.4), then necessarily y satisfies (3.3), i.e., y is admissible.

Proof Given zeC*, the Laplace transform of |X—f()'?a|?* at z is
equal to

34  P{X-f®"a|* < RO}~

E[exp (—z | X —f ()" al?)] = exp(=f (O ¥ () —x(2))-
By the inversion formula (cf. [4], Chapter II.1, Theorem 1),

y+ico

1
P{IX—f@®)'"al* <R®} = 5 J 269 g
y—im

where
®(t, 2) = R(O)z—log (2)—f () ¥ (2) — x (2).
Defining A(t, y) by
(3.5) A(t, 7):=R@)y—logy—x()—f )Y ()
we obtain
&(t, y+io) = A(t, )+ Bt 7, 0)
with B(t, y, 6) defined as in (2.4). Consequently,

1
(3.6) P{IX—f @2 al < R} = "7 J 5 dg

and this holds for any t > ¢, and any y > 0. Choosing y = 7 (t) satisfying (3.2)
and (3.3), from Lemma 2.4 and (3.3) we have

lim iﬁ ePt do = L
N J2n

— 00

2
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1e.,

P{IX—f®"a] < R} ~ ﬁlﬁe”‘(”m)

_ 1 exp(R@y—x0)—/O¥ ()
Ve N/

as t— oo and this proves (3.4).
Next suppose that y = y(t) satisfies (3.2) as well as (3.4). Then (3.4)(3.6)
yield . :

t—=w

lim @ J P10 dg = /2m

for this y = y(¢) and, consequently, by Lemma 2.4 we conclude that
lim exp(—n/{t, y(t))2/2) =1,

t— o

which clearly implies (3.3) and completes the proof. =
Remark 3.1. Suppose we have

3.7) ROSSOY B+ Y e

i=1 i=1
for some ¢ > 0 and for ¢ large enough. Then we may define the function y = y (¢)
as unique solution of the equation

(3.8) R =70¢'»+210)
for large t. Of course, this y satisfies (3.3) by definition and, moreover,
liminfy() > 0.
t—

Hence the following is true:
CorOLLARY 3.2. Suppose that (3.7) holds and define y by (3.8). If for this y

(3.9) lim —y? (£ ()" () + " () = 0,

o0

then
1 exp(FRO—~/ ¥ ) —16)

J2n B (o)

Remark 3.2. Let us mention two cases where (3.7) holds and y defined by
(3.8) satisfies condition (3.9) as well:

(3.10) limR(#)=0 and card{j; 4; > 0} = co.

t— o

P{IX—f(®"*al* < RO} ~

as t— oo.
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Indeed, in this case we have lim,, _7(f) = oo and lim,_,  —u?y"(4) = o0
(3.11) lim f(f)=oc and limsup R()/f(¢) Z = ||a|%.
t— 00 t— o0 =

Here we have liminf,, y(f) >0 and lim,, ,—y@*f(®)y" (y(1)) = .

CoOROLLARY 3.3. Suppose that either (3.10) or (3.11) holds. Then

1 exp(yRO—fOY 1) -2 )
V2 B0

as t — oo, where vy is defined by (3.8).

P{IX—f(®)'*al* < R@®)} ~

We want to state now three special cases of Theorem 3.1 explicitly. Let us
begin with the “Small Ball Problem” for non-centered balls.

COROLLARY 34. If acH and card {j; 4; > 0} = co, then
1 exp(ye® =y (»)—x0)

3.12) P{|X—a| <t

( X —al < e} ~ S22 =V )=y 1 )
iff

(3.13) li EVa)-r0 _

, 010
Especially, (3.12) holds for y = y(¢) defined by &* = ' (y)+x (y).

Remark 3.3. For a = 0, i.e., ¢y = 0, the second part of Corollary 3.4 was
proved in [12].

Next we apply Theorem 3.1 to f(t) =t¢2 and R(t) = R*/t* for some
R > 0. Observe that (3.10) applies in this case.

COROLLARY 3.5. As t — o0

1 exp(R*y/t* =y )/ =2 (»)

2 SOy )

P{|tX—a| <R}~

where R* =/ ()+22x' (7).

Finally, we want to improve Theorem 1 in [8]. There is an additional
(1/y)-term in the definition of y and it turns out that it is in fact not necessary.
Note that (3.11) applies here.

COROLLARY 3.6. If limsup,_  R(t)/t < |al|, then

1 exp(REO)y—2¢ ()—x )

N N O dC)

(3.14) P{|X—ta] < R(t)} ~
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lim R*()—t2y'(y)— X _
o /=Y )=y W)
Especially, (3.14) holds for y = y(t) defined by R*(t) = 2y (y)+ 1 (y).

Now let us treat the case R(f) = R for some R > 0. Since t — oo and
¥’ (y) = 0, one might expect that y defined by R? = 12y’ (y) would work as well.
Our next proposition shows that this is only so for ;s going to zero not too
slowly or, equivalently, if y’ tends to zero fast enough.

PrROPOSITION 3.7. Let y = y(t) be defined by

(3.15) R* =2y (y).
Then vy is admissible for (3.14) (with R(t) = R) iff
: Y
3.16 lim u) =0,
19 N Tt
Proof Observe that y defined by (3.15) is admissible iff
(3.17) lim X0

mo\/ —EY -1 ()
Using
Y] /12 @ A 2 2
G18)  —x"t) = 2(1+2/1 SEAS (; 1+2/1 y) =2(/ ),
we see that condition (3.17) holds iff
lim X )

But by (3.15) this is equivalent to

=0.

m Y@

Im Tyt W=

as asserted. =

Remark 34. Since —uf”(u) <2y'(u) we always have —i' (u)/y" (1)
= u/2. Hence, in order that (3.16) holds we have to have

(3.19) lim | /uy () =

It is not difficult to see that ) - 1} < oo implies (3.19). Conversely, if (3.19) is
valid, then lim,, , j*4; = 0. Recall that we assumed that the sequence of the
A;’s 1s decreasing. Thus, if the A;’s go to zero slower than j~2 then (3.16) never
holds and y defined by (3.15) is never admissible (for any ae H).
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4. Applications to the “Small Ball Problem”. Recall that for ae H we have

1 exp(e?y—y()—20)
V2 =) =7 )

4.1) P{|X—a| <&} ~
with y = y(¢) defined by

L el & A,
4.2) ¢ —lﬂ(V)H(?)—jgl[(1+2zjy)2+1+2m]'

Even if the behaviour of the right-hand side in (4.1) can be calculated explicitly,
this does not say very much about the dependence on ¢ because y is defined by
(4.2) in a very implicit way. Thus in general it is rather difficult to describe the
behaviour of (4.1) as a function of ¢ even in the easiest examples. We shall do so
in Section 5 only for one very special case. Much easier is to determine the
behaviour of the logarithm of (4.1). Here the following is valid:

ProvrosiTiON 4.1. We have

(4.3) logP{|X —al <&} ~ —_Lgfl(u)du,
where

, ray of 4
“4) c= 0= ¥ |t e

and K > 0 is some positive constant.
Proof. First note that

—3log (=¥ ) —y* 1" ) = o([yx @) —x ]+ Dy () — ¥ ()])-

This follows from

WO < =3 and ()< -2 ()
by using de I’Hdspital’s Rule. Hence the left-hand side of (4.3) behaves like
) b 2(0)
x @) —x O +Dn )=y ()] = fug' @Wdu= — | o™' w)du.
0 g2
This proves (4.3) as asserted. m

COROLLARY 4.2, Assume lim, ., ulg(u) = c for some qe(0, 1) and some
¢ > 0. Then

4.5) log P{|X —a| <&} ~ —l—q—qclmaﬂq—zvq.
Proof. Since ¢~ '(v) ~c'Mp~ 1 as v—0, (4.5) follows from (4.3) by
applying de L’Héspital’s Rule. =
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Our next objective is to ask for admissible y’s which are defined in a less
complicated way as in (4.2). There are two natural choices for y, namely, to
define y by

(45) 2 =7 ()
or by '
4.7) e =y'().
THEOREM 4.3. (a) If y is defined by (4.6), then it is admissible iff
Y W)’
4.8 I]m =
48 oo X (1)
(b) Let y be defined by (4.7). Then it is admissible iff
X w?
49 lim =0
@2 b
Proof. (a) Observe that (3.13) holds in this case iff
(4.10) lim V() =0

u=oo o/ =Y ()" (1)
Thus, (4.8) clearly implies (4.10). Now assume that (4.10) holds and (4.8) does
not. Then we find u, - co with

! 2
4 (u) Se>0
—X (un)
for some ¢ > 0. Since —u2y”(u,) = o0 as n— oo, in view of (4.11) we get
u,Y'(u,) > oo as well. Now (4.10) and (4.11) allow us to conclude that

L V()

4.12) lim ————— = 0.
( V)
But —y" (u,) < 2¢'(u,)/u,, so by (4.12) we have
lim ! = o0
a0 ul’l lp’ (u") ’

which contradicts u, ' (u,) - co. This completes the proof of part (a).
Part (b) follows easily from (3.18).

THEOREM 4.4. (a) Suppose (4.8) holds. Then
1 exp(x' () —x(0)—¥ )

J2n -0
(b) If (4.9) holds, then

L exp(y’' () =¥ () —x k)
Jmoo SR

4.11)

P{|X—a| <&} ~ where &2 = ¥'(y).

P{|X—a| <&} ~ where &% =/ (y).




244 W. V. Li and W. Linde

Proof. (a) In view of Theorem 3.1 and Theorem 4.3 it remains to prove

Y (W)
4.13) llr?O P
provided that (4.8) holds. Using —y" (u) < 2y (w)/u it follows that
A (l/f” (u)) "
— 1" (u) >3 4\ x" () W (=),

But u?(—y"(u)) > o, and hence (4.8) implies (4.13).
(b) By (3.18) we have

lim X ®)

umreo W' (1)

provided that (4.9) holds. This completes the proof. =m
Remark 4.1. The e-term in the case (a) equals

=0

(xz

1+2/1 Y

—= Z log(1+24;7)+y Z

23
and in the case (b) it may be written as follows:

© 2./1. 2
—= Z log(1+24;y)— Z /AL
25
COROLLARY 4.5. Suppose that (4.8) holds. Then
P{|X—al <& _,.
i S it L S h 2 — o .
PXT<g "¢ MeerTro

Remark 4.2. This easily generalizes to a = Z,— ,0;¢;and b = Z;il 1
as follows:

P{IX—a] <&} _ «?
P{IX—b <& <” 2 1+2,1 )

provided that the y’s defined by a as well as by b satisfy (4.8).

As a special case of Corollary 4.5 we obtain the following result of Borell
(cf. [3]):
COROLLARY 4.6. If ae #y, ie., Z;.”:loc,?//lj < oo, then
e—0 P{”X“ < 8}

Proof. Observe that uy’ () — 0 as u — o in this case. On the other hand,
—u? y" (u) » oo, thus (4.8) holds. Furthermore,

= exp(— llal%/2).
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tim y ) = lim Y —57 =L a3
P v—’mj=11+2’1j')) 2

which proves the corollary by Theorem 4.4 (a). =m

To discuss the preceding results let us introduce the following three
disjoint subsets of H. If ae H and y, is defined by

t,l/(z)'—i. aj 2 a= ) oe
A 14242 N iy

j=1

. {aeH lim Ve ) 0},
* w0 X (1)

then

’ 2

Sy = {aeH lim xlfu)

w0 Wa (1)

Recall that ae o7, iff y defined by (4.6) is admissible, a € o, iff y defined by (4.7)

is admissible, and, finally, a € <7, iff the y’s defined by (4.6) and by (4.7) are both

not admissible. The set 7, contams those ae H for which the a;’s tend to zero

fast. If b = Z . B;e; and Iﬁ I <lel,j=1,2,..., then ae s, 1mpheq be ., as

well. We have Hy < o, yet in general Hy # d The set .pl contains those

ae H for which the a’s go to zero slowly. If | 8| > > lee, j=1, 2 ,and ae o,

then Z  Be; belongs to o7, as well. Observc that ,ca?',,, may be cmpty Indeed,

since — ul,b” (u) — 0 as u — o0, we see that \/ uy' (u) > 0 is necessary for .=, # @.
Thus, for 4;’s with liminf;, j*4; > 0 it follows that o, = @.

5. Examples. We investigate now the case

0} and  of,:= H\(, U o).

a;=j"% and i;j=jF
with a, f > 1. If ¢ is defined by (4.4), then

o] j2ﬁ —a 1 i
Q (u) h jgl |:(]ﬂ + 211)2 +]ﬂ =+ 2u:| ‘

in this case and

(%Z;:ljzﬂ'“)u_z+Kﬂu1”"1, o>2p+1,

(5.1) o(u) ~ (1/4[})14_210g(u)+Kﬂu1/”_1, a=28+1,
Copt! PP+ Kpu' /1, a<2f+1,

where

52 K, =2u-1 P

©2 T Sy

(5.3) Cop = 2P P BT (22— + 1)/B) I ((a— 1)/B)
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(cf. [8]). Observe that
f 21/5—,,//3 TC(ﬁ-l' 1 _cx)/ﬂ2
sin (n (B+1—a)/B)’

Ctz/‘l=4 (Zﬁ)—l, d=ﬁ+1,
21/B~alp n/la—1—f)
L sin (m(a— B —1)/8)°
Especially, we have

Cop=B+1-u)Kpp/B, 1<a<pf+1,

where K,; is defined by (5.5) below and, moreover,

cpp = Kpp/B = Kp/B.

l<a<fp+1,

f+1<a<2B+1.

From (5.1) it follows that

Kpullﬁ_l, o> B:
o) ~ < (I+1/PKu'?~t,  a=p,
Cap ul//f—‘zfﬁ’ o < ﬁ’

as u — o0, Then (4.5) implies the following:

PrOPOSITION 5.1. Let A;=j* and o;=j %> Then

- -
-1 T BIB—1)
_5 ( ) PE R VN §

2 \PBsin(n/f)
_ﬁ—l( n(f+1) )ﬂ/(ﬁ_l)g—z/w—l) e
(54) logP{IX—a] <g}~<{ 2 \F*sin(/h) ’ ’

a—1 T Bia—1)
2 (ﬁz sin (n(8+1 —oc)/ﬁ))

X((B+1—a)e 2Ty g,

~

as g - 0.

COROLLARY 5.2. Let o; and A; be as above. Then

1, o> f,
((B+1)/pyre—n, x=p,

ce2Pe-PIB-DE=D o B

logP{||X—a| <&}
log P {| X|| < &}

where ¢ > 0 is the quotient of the coefficients in (54) for « > B and o < B,
respectively.
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Our next aim is to characterize those o > 1 for which a = ij: J e
belongs to 7, o, or <4, respectively. To do so, observe that
1 W)= w2
and
u3, o>26+1,

—y"(w)=< ulogu), oa=20+1,
w1 0B

Combining this with the asymptotic of Y/ and y' we obtain

o [ur, 2> 2841,
—IPZ(’?EM)X u 2" YPlog(u), a=2B+1,
yllptalf—1 a<2f+1,
and
u?b+1 o>28+1,
L’,’f)zz u*logw) ™', a=28+1,
R yt/Brelb=1 a<2Bf+1.

This implies

ProposITION 53. If a =37  j~*?

(i) ac#y iff o > p+1,

(i} aess, iff a > f+1/2,

(i) ae s, iff f—1 <a < f+1/2,

(iv) aesd, iff a < f—1.

Let us discuss these results:

(i) f ae o/, ie, f~1 < o < f+1/2, then neither &2 = y'(y) nor &2 = ' (y)
can be used to describe the behaviour of P {||X —a| < &}. But observe that

1im%%=0for e>pf and mE® _0for 4 <p.

o W (1)
Hence, for example, if f < a < f+41/2, then

e; and A;=j~F, then

1 exp(e2y—y(y)—
2n =771 )
with &% =y’ () +x' (7).
(ii) As already mentioned, &, may be empty. Here this happens for

1<B<2in view of a > 1.
(i) To our opinion, the most interesting case is ac A \Hy, ie.,
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B+% <a< f+1. Then y may be defined by & = ¥’ (y) and
P{|X—al <&} ~e VP P{|X| <e&}.

We want to investigate this case now more thoroughly. To do so let us
introduce the following notation:

. ~1/f—a /B
erﬂ"—zm /ﬁsin(n(ﬁ+1—a)/ﬁ)’ a?éﬁ'i'l:
(5.5) Kyi= Kgy =210~ 1sm"(/f/ 5 6)
C.e {Z}il{l/f—(l—s)1[1/U+1)s-1—1/js—1]}, 0<s<1,
TolEn, (1—log(1+1/)}, s=1.

Observe that C,:= C is Euler’s constant and C,, 0 <5 <1, has been inves-
tigated by de la Vallée Poussin (cf. [13], p. 39).

THEOREM 5.4. Suppose that B+4 < a < B+1. Then
exp {— Ky K{f ~*+ DI~ 1) g=2(6—a+ /5~ 1)

+(28—20+2)"1—C,_p/2}, x<B+1,
Ky LB=2)9=12p g=C/2 /8= 1), o= f+1.

P{|X —al <s}~
P{|X]| <&}

Proof. We have to investigate the behaviour of e ¥ with &2 = 1 ().
Because of

[+

1
s—a —a,y © ! .
Y= Z 1+12 =7y flfzx_ﬂydx—jgl ny(x+])(1—x)dx
0

1

with
_ o x %y
509 = I+2x7#y

and by
a+f .
_Jﬁ 1’

Ify x4+l < 3

o> P,

Lebesgue’s D.C.T. applies and leads to

im (v )~ f o) = L

Moreover, if « = f+1, then

f f(x'i‘j)ﬁ_“_l(l—x)dx = Co_yf2.
= 0
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re]

x" %y 1
_— 2
J1+2x'ﬁyd —log(1+2y) =

2 log 2)+ L

'Blog (y)+o(1).

2B

1
For « < f+1 we have
1

. x %y -
lim JTZ—_B— dx = (Zﬁ 2(x+2)

b and

because of
142x7 %y ~ 2
Thus, in this case

g

I 2 SRS PPN, |
w(y)—fmx_,,ydx SB—at 1) +5 Caspto(D)

0
and

o

fﬁcz_z_ﬂ;dx_K yLoalB+Ip
) 1]
Combining these results we obtain
(56 —p0) = {—(I/Zﬁ)log(2)—(l/2ﬁ)log(v)—C/2+0(1), a=p+1,
— Ky T (2B —204+2) " —Cy—p/2+0(1), a<B+1.

Our next aim is to replace y by ¢ in (5.6). Using Euler-Maclaurin’s summation
formula, by similar arguments as above we get

(5.7) 70 = ,-;11_1.2;% - Kﬂyuﬁ_i_ﬂ(l)_
Using (5.7) we derive
~1 RBIB—1) .~ 2B/B-1) _ B AR
(58) P KT Ve —(1— i, +oly ))
-1
1+ﬁ_ﬁ_1_v4Kfﬁ+0(y—1/ﬁ)-

Let 6 > 0 be defined by
o:=1—a/f+1/B.
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Then (5.8) lets us conclude that
PP — (KB~ g 2816 1) — y“(l——(y‘l KA/®=1 g =261~ 1y
' = &P (1—y L KH/B- D g=2810-1) 4 o (6~ LIP

B ya 1/
“Op—1 4K,

Now, 6—1/8 =1—a/f <0, ie, we may replace y!~¥f*+1/f by
(KB/# =1 = 2810~ )L ~alp+ 11p

+o(y? 1A,

in (5.6), and this completes the proof. =
Remark 5.1. We have
K; 12610120 _ (sin(n/@)mw—n,
/B
ie., for « = f+1 we obtain
P{|X—al <¢} N (Sln(“/ﬁ)>1/2w Y e~ CI2 gLB—1)
P{|X] <&} /B
For example, if § =2, then
2
)
1 J
gexp (—mn?/8¢?)

2

s

— 373
J3/

P{ i . < 82} ~ (2/m)t/2 = CI2 SP{

=1l
4e—C/2

(cf. [1]). Thus, if

o= 3§ 220

and {B(t); 0 <t <1} is a Brownian bridge, then

1
P{[IB(®)—h(@)*dt < &’} ~4e™“?gexp(—1/8¢%) as ¢—0.

0
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