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Abstract. Of a11 the characterizations of Ule normal distribution, 
three landmarks are the theorems of Bernstein and Skitovitch wncern- 
ing independence of linear forms and the theorem of Geary concerning 
independence of sample mean and variance. In this note, ideas from 
several proofs of these theorems are distilled to give unified proofs 
which depend mostly on simple probability and characteristic function 
concepts. 

I. Introduction. In this note we present proofs of three characterization 
theorems: those of Bernstein and of Skitovitch concerning independence of 
linear forms and Geary's Theorem which concerns independence of sample 
mean and variance. Part of the motivation for this work was the realization 
that these three important theorems seem not to be very well known amongst 
statisticians, perhaps because of the rather patchy coverage in probability 
textbooks. Feller [3] seems to provide the best coverage with a proof of 
Bernstein's Theorem and careful statements of the Theorems of Skitovitch and 
Geary. Other probability textbooks I have examined give (if they mention the 
topic at all) versions of Bernstein's Theorem or Geary's Theorem, often with 
restrictive moment conditions imposed. 

Early proofs of these results involved such restrictive moment assumptions 
or used cumbersome finite difference methods (see, e.g., Feller [3], especially 
p. 79). Zinger [I51 and Lancaster [XI proved the same results by showing that 
the independence of certain functions of independent variables implies the 
existence of moments of all orders and then using cumuIant arguments. The 
proofs presented here are unified, in that they all involve first adapting 
Lancaster's argument to establish finite second (or higher) moments, and then 
adapting a characteristic function (cf) argument of Lukacs [lo], and elementary 
in that mostly only simple probability and cf concepts are used. It is hoped that 
this approach will make the theory accessible to a wider audience. 

2. Bernstein's Theorem. The following result was first proved under the 
assumption of equal (and finite) variances by Bernstein [I]. 
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THFOREM 1. Suppose X ,  and X ,  are independent random variables (rv's). Put 
Y, = Xl + X, and Y, = X I  -X,. !f YY, and Y2 are independent, than XI and X, 
are normally distributed with the same variance. 

P r o  of. We prove this theorem using two lemmas, which are proved at the 
end d this section. We put pi = E (X,) for i = 1, 2. 

LEMMA 1. The assumptio~as of Theorem 1 imply that X, and X, have-finite 
variances. 

LEMMA 2. Under the assumptions of Theorem 1, XI - p, and X ,  - p, have 
the same distribution. 

By Lemma 2 we may suppose without loss of generality that p, = p, = 0 
and write t$ for the common cf of X, and X,. Let Y3 = Y; = X:+X; 
- 2 X ,  X ,  and let y be the joint cf of Yl and Y,: 

Y (s , t )  = E (exp [is Y, + it Y,]) . 
We have 

from Lemma 1, so that, using dominated convergence, 

h - I  Iy Is, t + h) - y (s, t)l = IE (exp [isY, + itY,]) (exp [ihY3] - l)/hl 

+ iE Y, exp [is Yl + it Y,] as h + 0. 

Thus the partial derivative ay/dt exists. Therefore, using independence and 
Lemma 2, we have on the one hand " = 2iE ( X :  crp [is X i ] )  E (exp [is&]) - 2iE2 ( X ,  exp [isXJ) 

at ,=, 

= - 2i4" (s) 4 (3) + 2i (4' (s)),, 

and on the other hand 

a 
= E (enp [is Y,]) - at E (exp [it Y3])It = = 2ic2 (4 (s))', 

where rr2 is the common variance of X i  and X,. Equating these two 
expressions gives 

which is easily solved to give # (s) = exp [- c2 s2/2] and the theorem follows. 

We complete this section with proofs of the lemmas. 

P r o o f  of Lemma 1. Take any E < 1/2 and choose AE(O, c ~ )  SO that 

P ( I X i l > A ) < &  and P ( I Y J > A ) < E  for i = 1 , 2 .  
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Using independence and the inequalities ( 2 lXl 1 - IXzl for i = 1 ,2,  we 
obtain 

(l-&IP(IXlI > 3A) G f (1x11 > 3A, lXzl G A) 

It  follows that P(IX,I > 3A) < 2 ~ '  for i = 1; the inequality can be proved in the 
a same way for i = 2. Iterating this result leads to 

Now 

Proof  of Lemma 2. Let the joint cf of Yl and Y2 be 

$ (s , t) = E (exp [is Yl + it YJ) . 
The partial derivative exists for the same kind of reasons that ay/at does, 
and 

1 = E (iXl exp LisX,]) E (exp [isX2])- E (a2 erp PsX,]) E (exp [isx,]) 
at ,=, 

where q!~~ is the cf of Xi for i = l , 2 .  But we also have 

a 1 = E CXP [by,]) -E(erp Cit%l)l.=o = $1 (s) 42 (s) (PI -P2). 
at ,=, at 

Thus 

w41- #Y#2  = i (PI --P2)? 
from which it follows that 

41 (4 = 4 2  (4 exp Cis (PI - ~ 2 1 1 ,  
which impIies Lemma 2. H 
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3. Skitovitch's Theorem. In this section we show how to extend the 
methods of Section 2 to prove a generalisation of Bernstein's Theorem due to 
Skitovitch [I31 (see also [14]). We work with cfs again and avoid cumulants 
and Marcinkiewicz's Theorem (see [I 11).  

THEOREM 2. Suppose that XI, . . ., X, are independent rv's, where n 2 2, and 
that Y, = a, X, + . . . + a , X ,  and Y, = b,  XI 4- . . . +b,X, are also independent, 
where al,  . . . , a, and b , ,  . . . , b, are nun-zeru cunstants. Then each Xi is normally 
distributed. 

Proof.  It is easy to see that we can assume a, ,  .. ., a, all equal 1. Lem- 
ma 1 can be extended in a straightforward way to establish the finiteness of the 
variances of XI, . . . , X, as follows. Let a = mini lbil and P = maxi Ibil. Choose 
e < 1 -2-l1("-') and choose A so that 

P(IYII > nA) < E, P(IY,] > nPA) < E 

and . . 

P(IXiI > A ) < &  for i =  1, ..., n. 

Put y = (2n - 1) (2 3). Then it follows as in Section 2 (see also (13) below) 
that for i = 1 ,  ..., n 

and E(X?) < cn holds as in the proof of Lemma 1. 
Extending the notation of the last section in an obvious way we have 

= E (2 ibj Xjexp [is C X,]) = bj #$ (s) n 4, (s) 
i k j k# j 

and 

Combining these equations and integrating we obtain 

( 5 )  n ( # j  (s) exp [ - ispj])'' = I. 
j  

Using the fact that zj b j o ;  = 0, which follows from cov(Yl, Y2) = 0, we can 
write (5) as 

(6) n (sj(s) exp [- ispi+ s2 oaf /2])" = 1. 
j 

In fact, this equation also holds with bj replaced by bj2. To see this, put 

Then with y as in Section 2 we get 



Characterizations of the normal disrribution 

k# j j + k  I #  j ,k 

and 

where x = x j b i  0; +Ej bjd? Therefore, (7) and (8) lead to the equation 

(it is clear from (5) that no 4j (s)  vanishes). We define K j  (s) = log 4 j  (s), in terms 
of which (9) together with (6) give 

which integrates to give 

(11) n (4  is) exp [ - ispj + s2 g;/2DJ = I. 
i 

If the bj3s are integers, then each 4;; is a cf, and so the normality of the Xis 
follows from CramCr7s Theorem which states that the only independent 
decomposition of a normal IT is into norma1 components (see, e.g., Linnik [9], 
who establishes the equivalence of this special case of Theorem 2 and Cramkr's 
Theorem). 

However, it is not difficult to adapt Cramkr's proof ([2], pp. 55-56) to 
prove Theorem 2 in general. Choose 1 < j < n. It folIows from (4) that 
E (exp [AX,?]) < oo for any A > 0 (cf. (3)). This guarantees that # j  (s) is an entire 
function for all complex values of s. Also, it follows from (11) that 

so that each 4:; is of order $2. Since no has a zero, it follows from 
Hadamard's factorization theorem (see, e.g., [3], p. 525) that b!10g+~(s) is 
a quadratic polynomial so that Xj is normally distributed. FS 

4. Geary's Theorem. Geary [4] proved the following result assuming all 
moments are finite. 

THEOREM 3.  Let XI, . . . , X, be independent and identically distributed rv's 
and put 

n 

- i xi C ( x i - X I 2  
x - ' = I  s 2  = i = l  

5 n n - 1  

If X and S2 are independent, then XI is normally distributed. 
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Proof. Our proof follows Lukacs's in showing that the cf 4 of X, satisfies 
the differential equation (I), by differentiating with respect to F and setting t = 0 
in the identity 

(12) E exp [isX + its2] = q ! ~ ~  (s/n) x ( t ) ,  

where is the cf of S2; we omit details of this step, whch may also be 
found on p. 363 of [7]. Use is made of the interesting identity (in terms of our 
unbiased S2) 

n 

(n-1) C Xf-CC X i X j  
i ~2 = 

i = l  i# j 

n(n- 1) 

The validity of this differentiation of (12) depends of course on the 
finiteness of var{X,), which Lukacs assumed, but which is actually a con- 
sequence of independence and can be verified along the lines of Lemma 1: 

LEMMA 3. Under the conditions of Theorem 3, E(x:) < m. 

Proof.  Take E as in the last section and choose A such that 
P (IXiI > A) < E for i = 1 ,  . . . , n and P (S2 2 4(n - 113 A2/n2) < r. Then. 

where in the second inequality we use in particular 

It follows that P(IX,I > (2n- 1) A) < 2~~ and the rest of the proof is similar to 
that of Lemma 1. H 
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