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Abstract. If M and Mi are independent subsets of the positive 
half-line, then the function ~ ( t )  = P {M n (M, t t )  = 0) is said to be 
a shgt function of M with respect to M,. In the paper both sets M and 
Mi are supposed to be strong Markuv (or regenerative). It is shown 
that the shift function is a harmonic function with respect to the kernel 
determined by the transition probabilities of the corresponding semi- 
linear forward recurrence processes. Conditions far the uniqueness of 
such a harmonic function with given boundary values are presenled. 

1. Introduction. A random closed set is a random element with values in the 
family of all closed subsets of a given space (see [6], [15]). This immediately 
suggests the study of typical set-theoretic operations (union, Minkowski 
addition, intersection, convex hull, etc.) in relation to distribution of random 
closed sets. Whereas unions, convex hulls and Minkowski sums of random 
closed sets have been already systematically investigated (cf. [I], [18], [22]), 
the study of other operations (intersection and some morphological operations 
[3], [19]) causes difficulties. Mostly, it is impossible to calculate the dis- 
tribution of the result in terms of the distributions of the components. 

In this paper* we shall consider intersections of random closed subsets of 
the positive half-line. Even in this (relatively simple) case it is impossible to 
express the distribution of the intersection of two independent random sets 
M and M, by the distributions of M and MI. In general, it is very difficult to 
evaIuate even the probability that two independent identically distributed 
random sets have a non-empty intersection. However, sometimes it is impor- 
tant to know such probabilities, since they can, e.g., be interpreted as 
simultaneous failure times of several devices. 

The probability P ( M  n MI # 0) is, evidently, equal to the probability 
that the set M @ M ,  = {x - y :  x E M, Y E  MI} contains the origin. For a deter- 

* Supported by the Alexander von Humboldt-Stiftung, Bonn, Gennany. The paper was 
written on the author's leave from Kiev Technological Institute of Food Industry. 
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ministic set F, it is known that its central symmetrization F @ P contains 
a certain neighborhood of the origin if F has positive Lebesgue measure. 
A random analogue of this fact should deal with the distribution of the set 
M @ dl. The simplest characteristic of a random set distribution is its 
covering probability, i.e., the probability that a point belongs to the set in 
question. In our case the event { t  E M @ is equivalent to the existence of 
two points at the distance t: one from M and the other one from M I .  Thus 

In the present paper these probabilities are derived for so-called strong 
Markov random sets. These sets arise as levels (homecomings) of strong 
Markov random processes (see [4], [lo], [llj). The starting point of this 
research was Feller's work [2], where so-called recurrent events were inves- 
tigated. Extending this notion to the continuous case, Kingman [7] introduced 
the regenerative phenomenon and examined its structure in different cases (see 
[g], [ZO]). Kendall [5] considered regenerative phenomena from the point of 
view of random sets theory. 

A series d restrictions, inherent in the theory of regenerative phenomena, 
is dropped in the theory of strong Markov sets. This theory is in turn imbedded 
in the general theory of regenerative systems (see [13]). KryIov and Jushkevich 
[l l] introduced the notion of Markov random sets, which later was extensively 
investigated under the name of regenerative sets or strong Markov sets (see, 
e.g., [41, [17], [12]-[14], [21]). We use here the term "strong Markov set" to 
stress the strong Makov property of the corresponding sets. 

The paper is organized as follows. Section 2 presents some notation and 
definitions. In Section 3 it is shown that the function x (t) = P ( M  n MI + t # 0) 
(the so-called shgt function) is a harmonic function with respect to the kernel 
given by transition probabilities of the forward semilinear process generated 
by M. Section 4 presents uniqueness conditions of such a harmonic function 
with given boundary values. If the corresponding integral equation admits 
many solutions, then the shift function can be found as the pointwise limit of 
unique solutions of appropriately modified equations. Shift functions for 
truncated random sets are considered in Section 5. In Section 6 a method of 
computation of the distribution of the random set A4 n MI is proposed. 

2. Definition of strong Markov random sets. Let us recall several defini- 
tions and notation. Some of them are inspired by the theory of random closed 
sets 1151; others come from the theory of regenerative phenomena and Markov 
sets (see [13], [17]). 

Let R+ be the set of non-negative real numbers, and let Z, = R+ u (a) 
be the compactified half-line. Furthermore, &I (resp. 9) denotes the family of all 
Bore1 (resp. closed) subsets of R, .  

Let CT, be the c-algebra generated by the families ( F  E F: F n K + 01, 
where K runs through the class X of compacts in R+ (see [15]). A probability 
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measure P on sf determines the distribution of the corresponding rundarn 
closed set M .  It  follows from the Choquet theorem [I51 that P is uniquely 
determined by the corresponding capacity functional T(K) = P { M  n K  # MI, 
where K runs through X. 

For every F from F and t 2 0 let us define the first point of F after t as 

and the forward semihear process as xt+ (F) = z: (F)- t. If F is a closed set, 
then the values of either z: or x;f for aU t 2 0 determine F. Furthermore, we 
use the notation FI, = F n [O, t ] ,  Flf = P n  [ t ,  w) for truncations and 
F i - t = ( t f x :  X E F )  for a shift of P. 

A point x from F is said to belung to F' if x is an isolated point of F or x is 
a limit of a strong decreasing sequence of points of F. Thus, F' is the set of 
isolated or right-limit points of F.  

A measurable map M of a complete probability space (a, F ,  P) into 
(@, uf) is said to be a rwdum closed subset of R,. Let F,, I 2 0, be the 
P-completion of the minimal a-algebra, generated by the truncated random 
set MI,. In other words, F,  is the minimal u-algebra which contains all sets 
{O E a: MI, (w) n K # 0) for K running through .f. 

DEFINI~ON 2.1 (see 1171). A random dosed subset M of R,, such that 
OEM a.s., is said to be strong Markov if for every (FA-stopping time t belonging 
to M' a.s. on {z < GO) and for every K,, K, from X the following conditions 
are valid: 

(Al) The events ( M I L T  n K, # 0) and {MI, n K ,  # 0) are independent 
under the condition {z < m}. 

(A21 P { M I G - z n K , # D I z <  c o ) = P { M n K , # 0 } .  
It  is easy to verify that M is a strong Markov set if and only if the 

corresponding set M' is a regenerative set considered in [4] and [13j. 
An important example of a strong Markov set is the closure of a level set 

of a right-continuous strong Markov process (see [lo], [4]). On the other hand, 
M is a strong Markov set if and only if M coincides with the closure of the 
range {c,: t 2 0) of a process [, with independent increments and increasing 
trajectories (subordinator); see [12], 1131. The distribution of 16,: t 3 0) is 
determined by the corresponding cearnealant 

where E 2 0 is a shift coejjjcient, p is a measure on (0, oo] called the Lkvy 
measure, and 1 = p((oa))  2 0. The LCvy measure p satisfies the condition 
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(Hereafter integrals from 0 to c~ are supposed to be taken over the domain 
(0, m).) Sometimes k(0) is said to be also the cumulant of M .  

The following classification of strong Markov sets follows [9] and [lo]. It 
is based on the properties of the main parameters E ,  p, A of the cumulant (2.1). 

1. Standard and light sets: classification based on the value of s. 

e If E > 0, then M is said to be standard. Then the function 
p It) = B ( t  E M ) ,  t 2 0, satisfies the condition p(t) -, 1 for t + 0. This function 
p is called the p-function of M. It determines uniquely the distribution of 
a standard strong Markov set through the corresponding cumulant, namely 

e If E = 0, then M is a so-called light set, i.e., p(t) = 0 almost everywhere 
with respect to the Lebesgue measure. In this case the Lebesgue measure of 
M is equal to zero with probability one. A typical example is the set of zeros for 
the Wiener process. 

2. Recurrent and transient sets: classification based on the value of p ( R + ) .  
e If p@+)  is finite, then the set M is called recurrent. If, additionally, 

E > 0, then M is the union of non-overlapping exponentially distributed 
segments. In other words, M is given by an alternating renewal process with 
exponentially distributed 1-phase. If E = 0, then M is a renewal point process 
and M is said to be discrete. 

e If p(R+)  = aa, then the set M is called transient. 

3. Unbounded and bounded sets: classification based on the value of 1. 
e If 3L = 0, then the random set M is unbounded, i.e., sup M = co almost 

surely. 
ea I f  A > 0,  then sup M < oo as. In this case M is said to be bounded. 

Kingman [lo] proved that {x:: t 2 0 )  is a strong Markov homogeneous 
process and its transition probabilities are uniquely determined by the family of 
probability distributions 

Let us put P,({oo)) = n,. It follows from [lo] that 

(2.3) 

and 

(2.4) 

f S P, (dy)  e-"-'y dt = 
kCB)-k(u) 
(6-  01) k(8)l  



Strong A4arkou random closed sets 269 

3. Main integral equations for shift functions. Let us formulate our main 
definition. 

DEFINITION 3.1. Let M, M ,  be independent strong Markov sets. The 
function 

is called the shiftfunction of the random closed set M ,  with respect lo M. The 
dual function X, ( t )  = P ( M ,  n (M 4 t )  = 0) is defined similarly, If M and MI 
are identically distributed, then is called the shift function of M .  

It is easy to show that the event ( M  n (Mi + t) = 0) belongs to the basic 
a-algebra of, so that the definition is correct. Evidently, ~('0)  = ~ ~ ( 0 )  = 0. 

Let us give another interpretation of the shift function. For closed sets 
F and F ,  , their Minkowski sum is denoted by 

Furthermore, E = {- t :  t E F } .  

LEMMA 3.2. For every ~ E R +  we have 

By the way, Lemma 3.2 yields the Bore1 measurability of X. 

THEOREM 3.3. The sh@functions x and X, satisfy the following system of 
integral equations : 

where P , ( . )  and G , ( - )  are distributions of the random variables x:(M) and 
x: (M ,), respectively. 

P r o  of. For every non-negative t we put D, = inf { s  > t :  s E M ) .  This 
random variable is an IF,)-stopping time and the values of D, lie in M' u ( m )  
almost surely. Hence (Al) and (A2) are valid for z = D,. Furthermore, D, = z: 
on {x: > 01, whence for every compact K and a non-negative t 

as. on (0 < x: < a), and also 

8 - PAMS 14.2 
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= j P,(du)P(Mn(M,-u) = 0 ] + P { x :  = m). 
0 

The second equation of (3.1) is derived similarly. 

COROLLARY 3.4. The shvt function of M satisfies the equation 

Thus, the shift function x is a harmonicfinction on the extended half-line 
R+ with respect to the kernel P,(.), satisfying the boundary conditions ;I (0) = O 
and x(m) = 1. A solution of (3.2) or (3.1) always exists if the kernels P , ( - )  and 
G , ( . )  correspond to strong Markov sets. 

If otherwise is not stated, we consider identically distributed random sets 
M and MI. 

4. Uniqueness of the solutions of the main integral equation. In general, the 
equation (3.2) may have infinitely many solutions. For example, if M = (t 2 0:  
w, = 0) is the set of zeros for the Wiener process w,, then (3.2) takes the form 

It is easily seen that each constant function is a solution of this equation. 
In the sequel, conditions for uniqueness of solutions of (3.2) will be given. 

It will be also shown that in the case of non-uniqueness the integral equation 
(3.2) can be modified to have a unique solution and the corresponding shift 
function is equal to the pointwise limit of solutions of these modified equations. 

THEOREM 4.1. Let M be a strong Markov set satisfying one of the following 
conditions: 

(31) M is standard and bounded, i.e., E > 0 and R > 0 in (2.1). 
(B2) M is discrete and bounded, i.e., E = 0, i > 0 and p (R, )  < m. 
(B3) M is standard, i.e., E > 0, and also l: x,u(dx) < a. 
Then (3.2) admits a unique bounded Bore1 solution. 

We begin with the following lemma: 

LEMMA 4.2. Let M be a bounded strong Markov set. Then the function 
7ti = Pt({oo)) is non-decreasing and strictly positive for each t > 0. If M is a.s. 
discrete, then also x,, = lirnt4, n, > 0. 

Proof ,  The relation no+ > 0 for a discrete A4 and the monotonicity of n, 
are obvious. 
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Let xtl = 0 for some t ,  > 0 and t = at,, where 1/2 < ol < 1. It follows from 
the monotonicity that n, = 0, whence the stopping time D, = inf {s > t: s~ M )  
is almost surely finite. By (A2), M(Dt-DD, and M have the same distribution. 
Thus, 

Similarly, X(laprl = 0 for all n B 1. Hence T ,  vanishes for all t ,  contrary to the 
conjecture sup M < m a.s. 

P r o  of of The orem 4.1. Let y ( t )  be the difference between two bounded 
Borel solutions of (3.2). Then 

If M satisfies (Bl), then p( t )  + 1 as t10, and 

(4.1) sup (1-p(t)--n,) < 1 
0 4 t < w  

by Lemma 4.2. If M satisfies (B2), then (4.1) again follows from Lemma 4.2. 
Furthermore, (B3) yields lim,, , p ( t )  > 0, limtl, p ( t )  = 1, and also p (t)  > 0 for 
all t > 0. Moreover, in this case the function p is continuous (see [7]). 
Therefore, (4.1) is also valid. Thus, in any case, 

for 0 < 0 < 1, whence y ( t )  is identically equal to zero. rn 

Now consider the case where (3.2) admits many solutions. The further 
study is based on the following lemma: 

LEMMA 4.3. For every random compact set M ,  the shift function 31 of M can 
be found by 

where 31, is the shift function of the set M ( a )  = M O [0,  a]. 

P r o  of. Let T ( K )  = P {a n K # 0) be the capacity functional of the 
random closed set i@ = M @ M , ,  where M ,  is an independent copy of M. It 
follows from Lemma 3.2 that ~ ( t )  = T({t)). It is known [15] ,  [20] that T is 
upper semicontinuous on X .  Hence 

x(t) = lim(1-P{[t-a, t + a ]  nPi? # 0)). 
a1 0 

It is easy to show that 
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whence (4.2) easily follows. It should be noted also that the convergence in (4.2) 
is monotone. 

The value of xfl ( t )  is the probability that M and M ,  + t have two points at 
a distance less than a. Roughly speaking, X, is the sMt function in the case 
where time can be measured with the error a. 

THEOREM 4.4. The shiftfunction of u bounded strong Markov set M can be 
found by {4.2), where ~ , ( t ) ,  t > 0, is the unique bounded Borel solution o j  the 
integral equation 

(4.3) ~ a ( t )  = S ~ ~ ( ~ - a ) f ' t - , ( d v ) + ~ ~  t 2 a ,  
bl,-J) 

and ~ , ( t )  = 0 for t < a. 

P r o  of. Let x; = t - sup { s  < t :  s E M }  be the backward sendinear process 
associated with M. For every r, a 2 0 and AEB define 

P; (A) = P {x: E A, x; > a )  and RP = P; ((m)). 

Then 

and also (A) = P,-, (A -a), K: = nt-, . Here M I  is an independent copy of M. 
Similarly to the proof of Theorem 3.3, we obtain (4.3) for the function 

1 l , ( t ) = P ( M ( a ) n ( M , ( a ) + t ) = 0 ) .  

If y ( t )  is the difference between two bounded Borel solutions of (4.3) and 
r = SUPO < s < m IY ( ~ ) l ,  then 

T <  r(l-P{x; < a } - n ; )  = r x ( t ) ,  

where x ( t )  = 1 - T([t - a, t j )  - K: and T is the capacity functional of M. 
Lemma 4.2 yields sup,,,,, x(t) < 1 for each E > 0. Consider a sequence 

t J a  as n -, a. It folIows from [I31 that a strong Markov set is either as. 
perfect (contains no isolated points) or a.s. discrete (contains only isolated 
points). If M is as. perfect, then 

x(tJ < P { t t n - a ,  t , ] n M = 0 ] + 0  as n 4  m. 

If M is a.s. discrete, then x(tn) < 1 -no+ < 1 by Lemma 4.2. Thus, 
sup0 c t <  ~ ( t )  < 1, since x ( t )  = 0 for t < a. Therefore, r = 0, which implies 
that y {t)  vanishes. 

COROLLARY 4.5. The shift function of the bounded strong Markov set M is 
the minimum positive solution of the equation (3.2). 

Proof.  Let us show that each positive solution of (3.2) is greater than the 
solution of (4.3). Let y ( t )  = x (t) - X. (t) .  Hence 
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It is easy to show that ~ ( t j  is a non-negative function. Then y (t)  2 0, since, for 
every t 3 0, 

Let us suppose that the strong Markov set M is unbounded, that is A = 0 in 
(2.1). It follows from Theorem 4.1 that the function ~ ( t )  is identically equal to 
zero if e 3 0 and J," x p  (dx) is finite. If e = 0 and p (R ,) < m, then M is discrete 
and x depends on atoms of the distribution p(.)/,u(R+). If the latter is 
absolutely continuous, then ~ ( t )  = 1 for all t > 0. 

EXAMPLE 4.6. If E = 0, p is concentrated at (1) and A = 0, then M is the 
(non-random) set of all non-negative integers (M is also strong Markov in this 
case), and ~ ( t )  is equal to 0 if t is integer and to 1 otherwise. 

In the sequel, a general method for the evaluation of shift functions of 
unbounded sets is proposed. For this, M will be replaced by its truncation. 

THEOREM 4.7. Let M be an unbounded strong Markov set with cumuiant 
k(O), and let x be the shgt function of M .  Then x is given by 

x ( t )  = lim lim X: (t) ,  
XI0 a10 

where a ,  A > 0 and X: is the unique bounded solution of the integral equation 

The measure P , ( - ;  A) a d  the function x,(l) are determined by their Laplace 
transforms 

Proof.  Let I ,  be a subordinator of M and let 5 be a random variable 
uniformly distributed on [0 ,  11 and independent of 5,. Put z (A) = AX1 log (A/(). 
For every h > 0 define M@) to be the closure of the range of the following 
subordinator: 

t < 7 (4, 
+ co , otherwise. 
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Let 2' be the shift function of the random set M(". It is easy to show that 
~ ( t )  = lirnAlo zvtt). The function X' can be found by means of Theorem 4.4. 
Therefore, (4.5) follows from (4.3) and the equations (4.6) and (4.7) follow from 

I (4.8), (2.3) and (2.41, since the cumulant of c'" is k ( 0 ) f  A. EJ 

Remark. If the unbounded strong Markov set M is either standard or 
discrete, then we can put a = 0 in (4.5). 

COROLLARY 4.8. Let M be a strong Markov set and let x,(.) be the shift 
function of the set M (a) = M @ [ O ,  a]. Then X, ( *  ) is the maximum solution 
of (4.3). 

P r o  of. Let y (t) be the difference xi(t)  -x (t), where x(t) is an arbitrary 
solution of (4.3). Then 

where 

4 9  = j x@-alp,-,(dv; 2) -  j x(u-~)P,-,(dv)+n~-~(A). 
(Q,OO) (0,mI 

If < = sup M(Q, then 

and 

2 - P ( 5  < t-a) +x,-,(, I)  = 0. 

Thus, ~ ( t )  is positive, whence y (t) 2 0 for all positive t. 

In the course of evaluations, inverting the Laplace transforms (4.6) and 
(4.7) for different A > 0 may cause difficuIties. However, (4.5) can be modified to 
avoid this. 

Let us ooasider the function 
m 

7; (0) = 6 J e-" ti (t)dt. 
0 

The evaluation of the Laplace transform of both sides of (4.5) yields the 
following result: 

THEOREM 4.9. Let M be an unbounded strong Markov set. Assume that the 
Ltvy measure p has the density f (. ), and that there exists a measure v (.) on R+ 
such that 
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Then, for every a ,  h 3 0, the function 7; (0) is the unique bounded BoreI solution 
of the equation 

0 

where k(0) is the cumuiant of M .  

Assume that M and MI have different distributidns. The following 
theorem can be obtained similarly to Theorem 4.1. 

, ,  
THEOREM 4.10. I f M  or M I  sutisfies one of the conditions (BIHB3), then the 

system (3.1) has the unique bounded BoreE solution X ,  xl. 
If (3.1) has many solutions, then the shift function can be found in the same 

way as in Theorem 4.9. 
Let us consider two examples of non-trivial shift functions. 

EXAMPLE 4.11. Let the cumulant of M be equal to 

i.e., in (2.1) we have p(dx) = e-"dx ,  E = 1 and 1 > 0. In this case, M is an I 

alternating bounded renewal process with both exponentially distributed j 
phases. If the measure v is concentrated at the point {l} and v ({I)) = 1, then 
S," e-""v (dv) = e-" (the density of p). It follows from Theorem 4.1 that in this 
case (4.9) has the unique solution (for a = 0) given by 

For example, if 3, = 1, then 7; (0) = (30/2 + 1)/(02 + 30+ I), whence 

X A  ( t )  = 1 -0.5e-0.38'-0.5e-2.65f 

EXAMPLE 4.12. Assume that M has the cumulant (4.10), and let MI be the 
set of zeros of the Wiener process. Then the Laplace transform of x is given by 

00 

1 e-B'x(t)dt = e-1(6~(;1)+~(8+~))/(82+(2+a)8+a), 
0 

where 
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5. Truncated shift functions. Further we shall consider shift functions of 
truncated strong Markov sets. Recall that MI, means M n 10, t ]  for all t > 0. 

DEFINITION 5.1. The truncated shift function of a strong Markov set 
M with respect to M ,  is defined by 

x k ;  u) = P ~ ~ l , + u ~ ( M , I , + ~ )  = 0). 

The function x ,  (q; u) = P {(MI, + 1s) n MI 1, +, = 0) is defined similarly. If 
M and M I  have the same distribution, then the function ~ ( q ;  u) is said to be 
the truncated shift function of M. 

It is easy to show that lim,,, ~ ( q ;  u) = ~ ( u ) ,  where x is the shift function 
of M (non-truncated) and 

(5.1) x ( O ; U ) = ~ - P ( U E M ) ,  ~ ( q ; 0 ) = 0 .  

The definition of truncated shift functions yields the following result: 

LEMMA 5.2. For euery non-negative t ,  s and u7 we have 

1 B{M(,n(M,(,+u) = 0) = ~(min{ t ,  s-u);  u), 

P{(M(,$u)n MI(, = 0) = xI(min{t, s-u); es). 
I 
I The following theorem is an analogue of Theorems 3.3 and 4.1 for 

truncated shift functions. 

I THEOREM 5.3. If M and M ,  are strong Markov sets, then the corresponding 
truncated shfi functions satisfy the following system of integral equations: 

where Pu (A) = P {x: (M)  E A} and G, (A)  = P {x: ( M I )  E A} for A E g. Further- 
more, 

f% = pU([q,  a]), Gz = G,([q, a]) and g(q) = P ( ~ E M ~ ) ,  p ( q )  = P ( ~ E M ) .  
I If one of the sets M ,  MI is either standard or discrete and for this set 

p(a, a ) + R  > 0 for every a > O7 where p and I are the elements of the 
corresponding cumulant, then (5.2) has the unique bounded BoreE solution 
satisfying (5.1). 

Proof.  It follows from Definition 5.1 and Lemma 5.2 that 

I ~ ( 4 ;  u) = E[lx:,,do,q)P {(MI": - z : ) ) ~ + ~ - ~ ~  n (MIJ ,+u- z : )  = @ ( x i  (M))]  
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whence the first equation of the system (5.2) is true. The second one can be 
obtained similarly. 

Let y (q; u) and y, ( q ;  u) be the differences between two Bore1 solutions of 
(5.2) satisfying (5.1). For each q 2 0 and s < q let us put 

r (s) = sup ( y  (s; u)(, T(s) = sup r (s) 
O<u<s  0 4 s G g  

(respectively, T, (s) and F,  (s) for y,). Without loss of generality suppose that 
M satisfies the condition of the second (uniqueness) part of Theorem 5.3, that 
is, f i  > 0 for all positive u and a. Then 

and 

I Y ~ ~ ~ ) I  d ~ ~ ( q - ~ ) P , ( d v ) < ~ , ( q ) ( l - p ( u ) - ~ ~ ) d ~ ( q ) ( l - p ( u ) - ~ ~ ) -  
(Qsq) 

If M is standard, then pick a point u, > 0 such that p(t) > 1/2 for all 
t < u,. Hence 

sup (1-F;)=l- inf P { [ u , u + q ] n M = 0 )  
u,,<u<g uo-=w<q 

I < 1 - P { [ u o , 2 q ) n M = 0 ) = 1 - ~ ~ = ~ ( q ) ~ 1 .  

Thus 
B(s) = sup 0 (q) < 1 -Pi," < 1 

o<q<s 

and f (q) < F(q) max (l/2, 8 (q)), whence f (q)  = 0. 
If M is a.s. discrete, then 

sup (l-P"$< 1 - P { ( O , 2 q ) n M = 0 )  = O , ( q ) <  1 
O < u d q  

and P(q) < F(q)  0, (q), whence F(q)  = 0 for all q. 

If the solution of (5.2) is not unique, then the methods familiar from 
Section 4 are applicable, i.e. truncated shift functions can be found as pointwise 
limits of unique solutions of modified integral equations. 

6. One Kingmads problem. If M, and M ,  are strong Markov sets, then 
their intersection M  = M I  n M ,  is also a strong Markov set. If both MI and 
M ,  are standard and pi(t) = P ( ~ E M J ,  i = 1 ,  2, are the corresponding 
p-functions, then M is also standard and p (t) = P ( t  E M) = p, ( t )  p ,  (t). In this 
case the distribution of the intersection is completely determined by its 
p-function. Thus, properties of intersections of standard sets can be investigated 
through products of p-functions (see [9]). 

Unfortunately, this approach does not work in the case where at least one 
of the sets M I ,  M ,  is light (see [9 ] ,  where the problem of developing methods 
for this case was posed). 
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Since the p-function does not serve any longer as the main characteristic of 
strong Markov sets in the light case, wd turn to another characteristic - the 
cumuIant of the corresponding subordinator. It determines the distribution of 
a strong Markov set uniquely. Furthermore, (2.3) yields a formula which relates 
this cumulant to the capacity functional of a strong Markov set M on the 
family of segments: 

(6.1) 6 (0, .) = I.-"-QS p ( i ,  3) dt ds = 
Bk (a) - ctk (0) 
(6 - a) Oak (0)' 

0 0 

where 4 ( t ,  s) = P { [ t ,  t +s) n M = 0). Thus, the cumulant of the subordinator 
can be found from (6.1) if the corresponding capacity functional is known. 

LEMMA 6.1. U p  to  a constant we have 

The evaluation of d ( t ,  s) can be reduced to the evaluation of the 
corresponding truncated shift functions X, and x,.  This can be done by the 
technique developed in Section 5. 

THEOREM 6.2. Ml and M ,  are strong Markov sets, x,, X, are the 
corresponding truncated shift functions, M = MI n M , ,  then, for all positive 
t and s, 

where P: (A) = P (x: (Mi)  E A), i = 1, 2, A E 9?, and 

= P {x: ( M I )  2 s or x: (M,) 2 s)  

= P,1 (Cs, al)+P? ( C S ,  aI)-P: (CS, aJ)PI2 (IS, ~01). 
The theorem follows from the strong Markov property of x:, Lemma 5.2 

and the relation 
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