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Abstract. Consider an ordered sample that is selected from 
a finite population successively without replacement and with proba- 
bility proportional to some measure of size. In this paper, we study the 
asymptotic behavior of linear statistics from such a sampling scheme. 
Unlike previous results in the literature which consider only order- 
-invariant statistics, we study the asymptotic distribution of linear 
statistics that depend on the order in which the sample is observed. 
Such statistics arise in the course of studying the nonparametric 
maximum likelihood estimators of the finite population and or the 
unknown population sine. The asymptotic behavior is studied under 
conditions that are weaker than those assumed previously, and we also 
obtain simpler proofs of some existing results. 

I. htroduction. Let U,, . . . , UN denote a finite population of N units, and 
let wj > 0 be a size measure associated with Uj, j = 1, . .. , N. We obtain an 
ordered sample of n units from the finite population as folfows. The first unit is 
selected randomly according to the selection probabilities where 

N 
$1 j = wj/Ck = I w,. The selected unit, say Ukl,  is removed from the-population, 
and the next. unit is selected from the remaining part of the popu- 
lation according to the selection probabilities fizj's, where GZj 

N 
= wj/IC,=l w,- wk,). The procedure is repeated until the n units have been 
selected. The probability of observing the ordered sample (U,,, . . . , Ukn) is thus 

(1.1) l ? N  
Wki 

i- , where wko = 0. 
i = l  G=l W ~ - C , , ~ W ~ ,  
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  his scheme is well known in survey sampling where it has been called 
variously as ppswor (probability proportional to size without replacement) 
sampling and successive sampling with unequal probabilities. In survey sampling, 
the w, is an auxiliary variable associated with the population units, and the values 
of the wjYs are all known a priori. When the auxiliary variable is correlated with 
the underIying variable of interest, it is advantageous to use the auxiliary infor- 
mation to sample the units with unequal probabilities (see, e.g., [7], Chapter 5). 
Holst [8] considered a generalization of this scheme where,.in addition, there is 
a fixed cost of sampling associated with each unit. The sampling scheme is to 
select units successively and stop as soon as the cost exceeds a fixed budget. 
Gordon [5] called this a VCSS (vmiabb cost successive sampling) scheme. 

More recently, the scheme in (1.1) has been used a model for 
incorporating size-biases inherent in discovery data. In petroleum resource 
estimation, for example, it is well known that measures of size of a pool, such as 
area, impact its chance of discovery. Typically, the 'larger" pools tend to be 
discovered earlier. To account for such bias, Kaufman and his colleagues have 
proposed modeling the discovery process as sampling successively from a finite 
population without replacement and with probability proportional to some 
measure of size. Barouch and Kaufman [2] considered the case where the size 
measure is the area of the oil and gas pools. Others have extended this to the 
case where wj is area raised to some power 0. The parameter 0 is called the 
coefficient of discoverability in the petroleum estimation literature, with a larger 
value of 8 indicating a more efficient discovery process. Nair and Wang [9] 

K considered a more general setup where wj = n,=, y$, where the ykjYs are 
different attributes, such as area, mean formation depth and net pay thickness, 
that are likely to impact chance of discovery. 

Note that, in the above case, the size measures are not known a priori and 
that the (N - n) .wj's associated with the unobserved units remain unknown even 
after the sample is observed. Often, the size measures are the variables of study. 
Therefore, methods of estimation must rely on only the attributes based on the 
observed sample. In some applications, the population size N is also unknown. 

Many authors have studied estimation issues related to the ppswor scheme 
in survey sampling. See Hedayat and Sinha [73 and references therein. 
Inference in situations where,the wj's are not known a priori and the estimation 
has to be based solely on the observed sample has also been studied by several 
authors. Most of these results were obtained under the assumption that 
a population characteristic such as the popuIation size N or the population 
total of the characteristic of interest is known. See Nair and Wang [9] and the 
references therein for estimation under a superpopulation framework where the 
finite population itself is assumed to be an iid sample from some underlying 
population. Gordon [ 5 ]  and Andreatta and Kaufman [I] discussed inference 
procedures for the finite populatipn itself and considered, among other things, 
Horvitz-Thompson type estimators. Gordon [5] also provided a moment-type 
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estimator of the population size using a split-sample technique. Bickel et al. [3] 
studied the nonparametric maximum likelihood estimator (NPMLE) of the 
finite population, including that of the popdation size N. In 131, the 
asymptotic behavior of the NPMLE was studied under the assumption that the 
population has only a finite number of distinct values. In this article, we 
develop asymptotic theory that would allow us to relax this assumption and 
extend the results in [3] to more general situations. 

The asymptotic theory of ppswor sampling has been studied by several 
authors. Most of them (Rssbn [lo], Holst 181, Sen [Ill, Hijek C63, and 
Gordon [dl) developed their results under the stringent assumption that the 
size measures are bounded away from zero. This was relaxed by Gordon [ 5 ]  
who assumed only a moment condition. However, all of these authors- studied 
only linear statistics of the form zy=I bje,, where e,- is the indicator of the 
event that U j  is selected in a sample of size n. These statistics are order 
invariant, i.e., they do not depend on the order in which the sample is observed. 
In studying the properties of the NPMLE, one has to deal with statistics that 
depend, in general, on the order information (see 131). To consider such 
statistics, define, for I g i g n, 

(1.2) etl = l(4 is selected in ordered sample of size i), 

where I(A)  denotes the indicator of the event A. Then the statistics of interest 
are of the form 

where gij( . )  is known, 
We consider only linear statistics in this paper and derive their limiting 

distributions in Sections 2 and 3. We obtain the results under conditions that 
are weaker than those considered previously. Our results also simphfy the 
proofs of some of the existing rksu~ts in Gordon [5]. These results will be used 
elsewhere to establish the asymptotic properties of some nonpararnetric 
estimators under ppswor sampling for more general situations than those 
considered in [3]. 

2. Limit theorems for Lnear statistics. We first consider linear statistics of 
the form 

In the sequel, a, bj, eij, w j  all depend on n and N but we will suppress the 
dependence for notational simplicity. We make the following assumptions. 
Here E ,  6, M and so on denote constants independent-of n. 
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Al:  If N Nnandf ,=n/N,  then for s o m e ~ > O  we havee<f ,< 1-6 

for all n. 
N A2: If wj  > 0 is the size measure of Uj, then N- zj=I w;+" < MI for all 

n for some 6 > 0 and M ,  < a. 
A3: For every s z 0, there exists 6 > 0 such that N - ' ~ ~ = ,  l(wj < 6) 6 e 

for all n. 
A4: For all n, 

N N 

- - (i) b = 0 ( )  b = 1; (iii) max lbjl + 0. 
j= 1 j =  1 I d j d N  

Ad: Either 
(i) a ,  = . . . = aldnl = 0 for some 6 > 0, for all n 

or 
(ii) z;= lbjI w j  = O ( N ~ / ~ )  and zy= =, bjw; = o(I). 
Note that A6 (ii) is satisfied if A2 holds and max lbjl = O(lV-'/"). 
Throughout, let n(t) = 1 -e-' and E(t) 1 - x ( t )  = e-'. Define Ai as the 

unique solution of 

and 1, = 0. Further, let 

Define 

~ 7 .  bjwj5(Aiwj) 
bij = bj-hi, where hi = xj= wj"(bwj) ' 

and 

where 
n n 

Bij= Ca,bkj and B,.= C Bij[E(Ai-,wj)-E(Afi)] 
k = i  i =  l 

THEOREM 1. Under A1-A5: 
(i) If for some 6 > 0, a: 2 6 for all n, then (T,,-&)/an tends in law to 

N O ,  1). . .  . 
(ii) If an = o(l), then T, -p, = o,(l). . :  



Asymptotic theory of linear statistics 89 

Note  1. Conditions A4 (i) and (ii) are not real restrictions. Given {bj), 
define 

Then {Ej} satisfy A4 (i), (ii) and 

where 6: is 'given by (2.4) with bj replaced by Ej in the definition of Bj's. 

COROLLARY 1 (Gordon [S]). Suppose a, = . . . = a, - 1 = 0, an = 1 .so that 

where enj = 1 (Uj included in sample of size n). Suppose that Al-A3 hold, and 
further that 

for all n, some y > 0, M ,  < m. Then the conclusion of Theorem 1 holds with 

N N 
p,, = C bjn(Lnwj) and G: = C ( b j - ~ n ) 2 ~ ( ~ n w j ) ~ ( ~ n ~ j ) -  

j= 1 j= 1 

Corollary 1 follows readily from Theorem 1 since 

Note  2. Gordon states his result (Theorem 2.2d) without the nor- 
malization on the bj's. But it is not hard to see that, for the psswor sampling 
setup considered in this paper, his statistics and ours can be identified with 
a suitable definition of the bj's. Gordon in fact develops his result for Hoist's 
[8] generalization of ppswor sampling. We do not consider Holst's generaliza- 
tion here, but it is also not hard to see that our result can be extended to cover 
Gordon's result also in that situation. 

We now extend Theorem 1 slightly to handle an important situation that 
arises in a statistical problem of interest. Consider 

Let Xj,'s be the attributes associated with the finite population units UjNYs, and 
suppose the XjNYs belong to a common Euclidean space X. Assume: 
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30:  f ,  4 f,, 0 < f, < 1. 
B1: If F,  is the empirical distribution function of the X j s ,  suppose Fn - F 

with F (0) = 0. 
B2: There exist continuous functions w,c) and w t ) :  % + R+ such that 

(i) w#[xjN) = wj7 
(ii) wn(x) + w(x) uniformly on compacts, and 

(iii) j W ~ + ~ ' ( X ) ~ F , ( X )  G M < cc for all n and some S > 0. 
Evidently, BGB2 imply A1-A3. Define 1,: LO, 11 + R+ by 

and define I analogously with F, replaced by F.  From B1 and B2 we obtain 

uniformly on R'. Hence 

and, by the analyticity of A, 

uniformly in s for E < s ,< 1-8 for E > 0. 
B3: There exist continuous functions ak: LO, 11 -, R,  1 < k < K, 

bk: X -) R, 0 < k < K, such that 

(i) Cijn = xf= adYN)bkn(Xji~), bj = b ~ n ( X j ~ ) ,  and 
(ii) ak,(s) -, ak(s) uniformly on LO, I] for 1 ,< k < K, and bjn(x) -+ bj(x) 

uniformly on compacts, 0 ,< j ,< K. 
B4: (i) lbj,(x)dF,(x) = 0 for all n and 0 < j < K, 

(ii) E 6 x:= J b j ; ' ( x ) d ~ ~ ( x )  < O(1) for some 6, E > 0, and 

(iii) supx x:=, lbjn(x)l = 0 ( N 1 / 4 .  

B5: Either 
(i) ajk(s) = 0 for 0 < s < 6 ,  for some Sk > 0, 1 < k < K and all n, 

or 
(ii) 5 lbjn(x)l w;(x)dF,(x) = U(1) for 0 < j d K. 
Let 
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and 

+ CB(x) + C(x)12  Z(J (folw ( X I ) )  dF(x) .  

THEOREM 2. If B&B5 hold, then given by (2.7) converges weakly to 
N(0, a2)). 

M 

COROLLARY 2. If zj, 1 < j G J ,  are of the form (2.7) and satisfy BCB5, then 
(XI ,  . .., ZJ)  converges weakly to  a multiuariate N(0 ,  X) distribution where 

C,, C,, etc. are defined suitably and v,  is the measure on X x [0, 11 with density 
w(x)ff(A(s)w(x))A'(s) with respect to the product of F and the Lebesgue measure, 
and v, is the measure on X with density dv2/dF = ~(A(f,)w(x)) .  

Note  3. Theorems 1 and 2 and the lemmas which imply them (see Sec- 
tion 3) parallel Propositions 1-4 and Corollary I of [3]. In fact, Corollary 1 
generalizes Proposition 2 in [3] and Theorem 2 generalizes in part Proposi- 
tion 4 and Corollary 1 in [3] .  

Note  4. We can extend Theorem 1 and the corollary to the general case 
where cij = c,(i/n, j /N);  see Proposition 4 of 131. But the present form is as 
general as we need for our inference problem of interest. 

3. Proofs. Consider the following scheme. Let N,(t), . . . , N,(t), t > 0,  be 
independent homogeneous Poisson processes with rates w, ,  . . . , WN, respec- 
tively. Let z, be the first time such that one of the Nj( . )  jumps and let J, be the 
index j of the corresponding process. Correspondingly, let (z , ,  J,) be the time 
and index of the next process to jump etc. Let Cij ii I ( J ,  = j for some k < i). It 
is shown in [ 3 ] ,  following Roskn [ l o ] ,  that 

(3.1) , 1 < i < n, 1 < j , and { e i j ) ,  1 G i < n,  1 < j < N, 
have the same joint distribution. Define the random time-scale transforma- 
tion consisting of stopping times with respect to the filtration induced by 
(NIC), - * - 9 NN(.)), 
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and, similarly, 

If T, is given by (2.1) and we identify (G) and {eij), we can write 

. - 
Let 

Note that from (3.5) and the definition of .t, and 1, we obtain 

Let 

Note that EN(t) = t. Define 

and let A, place mass ai at i /n ,  1 < i 6 n. Then, since 

we get from (3.6H3.9) 
1 

(3.10) T.--pn = S(W,I(~,(S))+ K,(s))d~,(s). 
0 

We need some preIiminary lemmas. Let llgll = sup(lg(x)l: 0 6 x < M} for 
I M < a, fixed, and for processes U,, K on [0, A4-J write 

I 
I U,(t) = %(t)+ o,(l) if and only if 11 U,, - Kll = op(l). 
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We will use repeatedly the following elementary inequality: 

LEMMA 1. For all x, y >0,O < d <  1,  

Proof. Let A = x-y. Then (3.11) is equivalent to 

and we can take C = e/2. I f  A 3 1 ,  

(ed- l -d(  < ed < ex < s"AlfB, 

while if d < -1, 

and the result follows. 

LEMMA 2. Under Ai-A4 and A6 (ii), 

If A1-A4 and A6 (i) hold, then (3.12) and (3.13) are valid ifz,, A,, Wnl(z,J, Wn1 (A,) 
are replaced by ~ , 1 , ,  4 1 , ,  Wnl(z,lA(t)), Wnl(Anl,(t)), where A = { t :  E < t  
< M), E > 0. 

Note  5. Claim (3.12) is aready proved in [lo]. We include a proof here for 
completeness. In fact, we will prove a refined version of (3.12) in Lemma 3. 

P r o  of of Lemma. 2. We claim that the processes Wnj(t), j = 0,  1, are: 
(a) tight in D[O, MI,  and 
(b) have as possible limits only Gaussian processes with mean 0, the 

limiting covariance structure and continuous sample functions. 
We give the argument for Wnl and compute for s < t  < u 

(3.141 

where 

Vlj = bj(u)(l(Nj(u) > 0)-n(wju))-bj(t)(l (Nj( t )  > 0)-n(wjt)) 
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-- 

and VZj is defined similarly to WS2 in (3.9). A tedious computation gives 

EV; = ~ ~ ( ~ ) ~ ( W , ~ ) E ( W ~ E ) - ~ ~ ~ ( S ) ~ ~ ( ~ ) ~ ( W ~ ~ ) ~ ( W ~ S ) + ~ ~ ( S ) ~ ( W ~ S ) ~ ~ W ~ S ) ,  

NOW, for 0 s r G M, 

Since an(wjt)/at G wj,  if A6 (ii) holds, we can easily deduce that, for 
O < s < t d M ,  

Similarly, since 

we conclude that 

N 
Note that if we consider only 0 < E < s < t 4 M, we can replace N-' Xj=, Jbjl wf 
in (3.15) and (3.16) by N-'z:=, lbjl = O(N-'/') and wfb: and wjbf in (3.16), 
(3.17) by b;. If A6 (ii) holds or we consider Wnl(s) only on A,, we conclude that 
(3.14) is bounded by c(t-u)', and (a) follows by the BiIIingsley42entsov 
inequalities. Further, (b) follows from a similar but easier bound for 
E(W.l(s)-&l(t))2. A similar argument applies to KO(-). 

It is now clear that (3.13) follows from (3.12) and (a) and (b). For (3.12) note 
that 

Since 

N N 

N-I n(wj t )2N-lE(n(~t ) :  wj2&) and IimlirnN-I ~ l ( w j c s ) = O ,  
j= 1 j E+O n j= 1 
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we conclude that for 0 < t < 1 we have 0 < I ,@)  ,< M < m for some M and 
all n, Now, (3.17) implies that 

and (3.12) follows from (3.18) and the monotonicity of N -  ' zy= =, 1 ( N j ( t )  > 0) 
and N - ' E ~ = ~  ~ ( w ~ t ) .  The lemma is proved. 

LEMMA 3. Under A1-A4 and A6 (ii), 

If A1-A4 hold, then (3.19) holds for Wn2(l,(t)}. 

Proof of Lemma 3. We refine (3.19) to 

To see this, note 

by (3.12). 
On the other hand, 

by (3.12) again, and (3.20) follows. Now 

by Lemma 1. 
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The right-hand side of (3.23) is 

by A2 and (3.21). The lemma follows. 

Proof of Theorem 1. From (3.11H3.13) and (3.19) we obtain 

under Al-A4 and A6 {ii). Then, from (3.10) and A5 we get 

Evidently, (3.25) still holds if A6 (ii) is replaced by A6 (i). Theorem 1 now 
follows from the Lindeberg-Feller theorem. To see this note first that, by A3, 

n 

(3.26) max I a, bj(li)l = O (max ~b i ( A i ) l )  = O(max lbjl + max 16(;1,)j) 
j i=1  i.j 

= O(max Ibjl) = o(1) 

by A4 (iii). Further, 

and the theorem follows. 

P r o  of of T h e  orem 2. To simplify the notation, we take .. K = 1. If we let, 
for k = 0, 1, 

N 

= (bh - 6k)/~An, where z;,, = N - bk2, (Xi,), 
j= 1 

we see that 

where 
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and 

By the proof of Theorem 1, if {a,}, (bin), and (b,,) satisfy A4-A6, then 

where, with..an abuse of-notation, we define 

and 

To prove the theorem, we, therefore, need only check that {a,,}, (61,}, and {Lon) 
satisfy A4-A6 and that the variance of the leading term in (3.30) tends to a'. In 
view of B4 (i), the hkn satisfy A4 (i) and (ii). But 

by B4 (ii) and (iii). Hence A4 (iii) follows. A5 and A6 are immediate 
consequences of B3 (ii) and 35. 

Let 

Then Bb(i/n) = &,,(Ai). Let v, be the distribution that assigns mass 1/N to i /N,  
1 d i < N.  Define 

rn 

(3.33) cn(t, X) = J an(s)Cb,n(x)-Bln(s)Idvn(s), -. 

t 

rm - l/N 

and 

I 
7 - PAMS 15 
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Arguing as in (3.27), we can show 

N n 

.,' var C ( [N- %(i /EJ)  bTj(Ai) + bgjIAi)l 1 (%(ai) > 0)) 
j=1 i = 1  

+ Cs,(x) + Cr4 (xl12 E(A,  I f , )  w, (XI)] dF, (4. 
~ u t ,  by B1-I34 (uniform integrability, convergence of integrands, and weak 
convergence of F,), 

(3.37) Bkn(s) -+ Bk(s) ~ f o d y  on [U, 1). 

SimilarIy, BGB4 and (3.37) imply 

(3.3 8) C,(t,x)+C@,x) for all ( t , ~ ) .  

Further, using (2.9), we obtain 

(3.39) C" (4 + w 9 

and 

(3.40) B,(x)  + qx). 
Finally, B4 gives the uniform integrability needed to conclude that a: given by 
(3.36) converges to o2 given by (2.14), completing the proof. 
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