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Currently in the period of dynamic indeterminism in 
science, there is hardly a serious piece of research which, if 
treated realistically, does not involve operations on sto- 
chastic processes. m e  time has arrived for the theory of 
stochastic processes to become an item of usual equipment 
of every applied statistician. 

J. Neyman [I61 

Abstract. In a 1975'paper Professor J. Neyman posed a problem 
concerning the average travel time of the effects of cloud seeding. That 
problem is here discussed in the context of stochastic point processes. 
An analysis and solution is provided for the data that motivated the 
problem. There is a review of some of the available work concerning 
velocity estimation for travelling disturbances. 

1. Introduction. Professor Neyman was concerned with problems of 
weather modification throughout much of his career (see Neyman [18]). One of 
his Iast papers was on the topic and appeared in this journal (Neyman [19j). In 
Neyman and Scott [20] and Neyman [I71 an interesting problem is posed. 
This work discusses some aspects of that problem. 

A weather modification experiment to reduce hail, Grossversuch 111, was 
carried out at Ticino, Switzerland. Each day a decision was made whether 
conditions were suitable to define an experimental day. If suitable, randomly, 
seeding was or was not carried out the following day. Seeding, if any, lasted 
from 730 to 2130 hours. Rainfall measurements were made in Ziirich, about 
120 km away from Ticino. Fig. 1 provides graphs of average hourly rainfall 
totals smoothed by a running mean of three, for the experimental days when 
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Fig. 1. Three-hour moving averages of hourly rainfall totals recorded a t  Zfirich. The winds were 
from the south and there was a stability layer. The precipitation is in mm. The solid curve refers to 

seeded days, the dashed to unseeded. The seeding period is indicated by the arrow 

a stability layer and southerly winds were present. The solid curve refers to 
days with seeding, and the dashed curve - to days without seeding. There were 
53 experimental days with seeding and 38 without seeding. What Professor 
Neyman focussed on, in the Figure, was an apparent effect of seeding, starting 
at perhaps 1400 hours. 

Neyman and Scott [20] write as follows: 
.. . the curves . . . represent averages of a number of independent realizations of certain 
stochastic processes. The 'seeded' curves are a sample from a population of one kind of 
processes and the 'not seeded' curve a sample from another. For  an initial period of a number 
of hours . . . the two kinds of processes coincide. Thereafter, at some unknown time T, the two 
processes may become different. Presumably, all the experimental days differ from each other, 
possibly depending on the direction and velocity of prevailing winds. Therefore, the time 
Tmust be considered as a random variable with some unknown distribution. The theoretical 
problem is to deduce the confidence interval for the expectation of T, . .. 

Dr. M. Schiiepp (see Neyman [18]) speculates on the cause of the extra 
rainfall at Ziirich as being Mediterranean moisture affected by seeding and 
brought north by southerly winds. 

In Neyman [I71 the problem is further described as: 
Now I come to the formulation of what I belive to be a novel theoretical statistical problem: 
to produce a confidence interval (subject to some inteliigible property of optimality) for the 
average time, say at which the eficts of seeding over the target begin to be felt at a given 
locality for which the hourly precipitation amounts are available. 

The problem is addressed in this work by constructing an estimate of the 
distribution of travel times of individual effects moving from Ticino to Ziirich. 

The layout of the paper is the following: initially there is a review of some 
techniques that have been employed for velocity and delay estimation, next 
a description of the Grossversuch 111 Experiment, then some comments on 
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the use of conceptual models, and finally an analysis and discussion. The 
principal analysis is by nonlinear least squares with the regression function 
given by expressions (6) and (7) below. The data employed in the analysis had 
to be read from Fig. 1 of [20]. 

2. Velocity estimation. The problem of velocity estimation, and the directly 
related one of delay estimation, has been much studied in science and 
technology. A broad variety of techniques have been proposed. The fact that 
the operation of motion is-a translation is seized on in various of the methods. 
Carter [%I provides a collection of papers, mainly from an engineering 
viewpoint, addressing the topic. 

In the simplest case one assumes constant velocity, inputs a pulse to the 
system of interest at a given time, and then measures the time at which the 
travelling pulse arrives. Naive forms of radar and sonar proceed in this fashion. 
In the case of an earthquake, the pulse may be viewed as the motion at the 
hypocenter of the earthquake. One estimates the origin time of the earthquake 
and then the arrival time at the observatory, and hence the travel time. Because 
of the presence of noise, difficulties often arise in measuring the actual arrival 
time (see Freedman [10]). 

To handle the presence of noise, and the changing shape of the signal, 
researchers sometimes crosscorrelate the input and output and look for the lag 
at which the correlation is largest. The pulse may be a chirp, or a random 
sequence in some cases, e.g. in seismic exploration or in spread spectrum radar.. 
Sometimes cross-spectral analysis is employed. An interesting application of 
that technique to the alignment of tree ring records is given in Foutz [9] .  

Turning to another field, a basic experiment of neuroscience involves 
applying a stimulus and recording a consequent response. A characteristic of 
the response is its latency, that is the time elapsing after stimulation application 
until a response is evident. Typically the stimulus has to be applied many times. 
Formal procedures of latency estimation are considered in Woody [27], 
Brillinger [4], Pharn et al. [22]. 

Counts and point processes are other data types. The case of-the times at 
which unlabelled vehicles of random velocities pass two measuring points may 
be studied via cross-spectral analysis (see Brillinger (31). Lindley [13] develops 
estimates of the mean speed of particles from data consisting of total counts, at 
successive times, of the number of particles in a specified region. The idea is 
that if the particles are moving slowly, the counts will change slowly, whereas if 
the particles are moving quickly, the counts will change quickly. McDunnough 
{14] extends the problem to the case of counts available for several regions. 

In an important class of circumstances, an array of sensors is employed 
and both velocity and direction are to be estimated. Briggs [2]  was concerned 
with ionospheric movements and measurements made with an array of 
antennae. The spatial cross-correlation function was estimated at two times. The 
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direction and velocity could then be estimated from the coordinates of the 
maximum cross-correlation. Arking et aI. [I] estimated the cross-spectrum of 
two images in order to study speed and direction of cloud motion. Various 
statistical aspects of working with array data are developed in Cameron and 
Hannan [7], Thomson [24]. 

Brillinger [53 was concerned with estimating the joint distributions of several 
successive motions given locations of particles. 

Difliculties that can arise in estimating velocity and delay include: the velocity 
may depend on time or frequency, a Doppler effect may be present due to relative 
motion, there may be signal-generated noise. Higher-order spectra can sometimes 
handle additive Gaussian noise effectively (see Nikias and Mendel [21]). 

3. The data. The Grossversuch 111 Experiment ran from 1957 through 
1963. It involved seeding thunder stom clouds in an attempt to reduce hail. 

Histogram - seeded days Periodograrn 
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Fig. 2. Histograms and periodograms of the seeded and unseeded data graphed in Fig. 1 
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Seeding was by silver iodide dispersed from 20 hilltop-based generators. The 
idea was that silver iodide was a nucleating agent of ice crystals, which then 
may coalesce to form droplets. The burners were 5 minutes on, followed by 10 
or 15 minutes off throughout a 14-hour period. There were 292 experimental 
days over the seven experimental years. 

The measured data employed by Professor Neyrnm were Ziirich hourly 
rainfall totals, q(t) with t = 7, . . . , 30 indexing time in hours and with I = 1, . . : 
indexing experimental days with seeding. There were similar data for unseeded 
experimental days. These last, control data are basic for assessing the presence 
of a seeding effect. 

Initial data analyses suggested considering separately the days with 
a stability layer (as revealed by a radiosonde at Milan) and southerly 
winds. There were 58 such experimental days that were seeded and 38 that 
were not. Fig. 1 graphs the three-hour running mean in both the seeded 
and the unseeded cases. The running mean and averaging operations were 
important because plots for a single day were highly variable. The data of 
the Figure are what were employed in the analysis of Section 5 below. 
Fig. 2 presents histograms and periodograrns of the data. There are clear 
dgerences between the seeded and unseeded cases, as were apparent in 
Fig. 1. The periodograms provide an indication of the extent of serial 
correlation in the data. This is necessary to determine uncertainties of 
estimates. There is no suggestion of strong dependence in the unseeded 
case. 

4. Conceptual models. Professor Neyman often emphasized the impor- 
tance of constructing conceptual stochastic models to develop statistical 
analyses and to address scientific questions. Starting with LeCam 1121, 
conceptual models, based on point processes and their smoothings, have proved 
useful in modelling rainfall (see, e.g., Wayrnire et al. [26] and Phelan 1233). 
A naive model, pertinent to the problem at hand, is the following. 

Consider particles at Ticino that move off with a possibility of lead- 
ing to a rain particle at Zurich. The particles could be cells that be- 
come rain cells. Suppose that the particles are born at ~ ic ino  at the 
times aj of a point process M of rate p,(t). Suppose that the velocities 
with which the particles move to Zurich have a distribution and are 
independent of the process M. If the j-th particle has velocity vj  and the 
distance to be travelled is A, then its travel time is uj  = d/v j .  Let N de- 
note the point process of arrival times zj = cj+erj of the particles at 
Ziirich. (N is a Neyman-Scott process with clusters of size 1.) One can 
write, symbolically, 



where a(.) is the Dirac delta. If the travel times have density f (-), following from 
( I ) ,  the rate of the process N will be 

(2) p,(t) = Sp,(t-u)f (u)du. 

Also, if M is a Poisson process, then so will be N (see Vere-Jones C251). 
In 1121, [26], and [23], the rainfall intensity is a smoothing of a point 

process, say of M or N. Suppose that a time zj of N is associated with a mark 
R1 giving a corresponding amount of rain that falls. One can write 

with X( t )  = So dX(v)  representing the cumulative amount of rain collected from 
time 0 to time t. If the R, are independent of N and have mean pR, then, 
following (21, the intensity of rainfall at time t is 

The expected amount of rain from time 0 to t  is given by 
I 

E{X(t ) l  = j p,tv)dv. 
0 

These formulae will be employed to develop a regression function for analysis. 
The running mean of order 3 of the hourly totals may be written in the 

form 
+(X(t  + 1) -X( t  -2))  

and its expected value equals 

One wishes to estimate f (.) of (5) given information on the processes M and N. 

5. Results. To proceed, the seeding rate p,(t) wiIl be taken to be constant 
on the time interval from 730 to 2130 hours and to be 0 otherwise. It will be 
assumed that the velocities of travel of the particles are independent gamma 
variables with shape parameter s. Write the travel time U as B/W with 
Wgamma, having scale 1 and shape s. Let F,(.) denote the distribution function 
of U. It will be assumed that the hourly rate of rainfall, unrelated to seeding, 
is a. 

With p,(t) = C for A < t < B, where A = 7.5 and B = 21.5, one has the 
regression function 



A weather rnodijlcation problem 121 

in the case of seeding and E{Y(t)} = ar in the case of no seeding. With the 
assumed velocity distribution, (6) may be evaluated in terms of G,(.), the 
distribution function of the gamma, making use of the expression 

Estimates of the unknowns p = B/(s-1) (the average travel time), s, a, 
/3 = CpR are-determined by ordinary least squares, weighting the seeded terms 
by 53 and the unseeded by 38, the respective numbers of cases averaged. Fig. 3 

-- 
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Fig. 3. The top panel provides the original data (solid line), and the fitted curve (dashed line) 
corresponding to velocities from a gamma distribution. The bottom panel is the fitted curve plus 

the adjusted unseeded fluctuations 



presents the data (solid curve) and the fitted (dashed) curve. The estimates 
obtained are: 

ji=5.50hr, s^=7.24, &=0.23, b = 5 . 8 5 .  

The estimate ji is perhaps something like the value Professor Neyman was 
seeking. (The approximate standard error of @, ignoring serial dependence, is 
0.76 hr. The results of Hannan [Ill can be used to obtain an approximate 
standard error in the case of stationary errors.) By taking the distance travelled 
to be 120 km, the estimated average velocity is 25.33 km/hr. The fit does not 
appear to be closely reflecting the sharpness of the peak at 1800 hours. This 
may reflect the inappropriateness of assuming p ,  (.) to be constant throughout 
the seeding period or perhaps be a consequence of the inherent variability, To 
examine this last, the fluctuations of the unseeded days have been added to the 
fitted curve - see the lower panel of Fig. 3. The fit now appears plausible. 
Fig. 4 is the estimated inverse gamma density of the travel times, from which, 
e.g., means and intervals may be determined. 

Travel time density 
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Fig. 4. The estimated travel time density resulting from assuming a gamma distribution for 
velocities -. 

An alternate analysis can be based on the method of moments as follows. 
From (4) one sees that 

S~X(t)dt = P, j ~ M ( t ) d t ,  

J tp,(t)dt = P, r j  tp,(t)dt+ j p,(t)dtS uf (u)duI 7 

suggesting how to estimate the mean j u  f (u)du of the travel time distribution. 
With ol the mean of the control data, the next estimate is based on 
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where IY(t)J+ is 0 if Y(t )  is less than its standard error (estimated from the 
control data) and is Y(t)  otherwise. Since j tp,(t)dt (B+ A)/2 = 14.5, the 
estimated average travel time by this method is 19.87 - 14.50 = 5.37 hours. In 
a similar fashion the variance may be estimated by 12.07- 14712 = -4.26. 
This negative estimate could be due to a high level of uncertainty or evidence 
that the model is incorrect. 

A third analysis to consider involves deconvolving an empirical version of 
(4) to obtain an estimate off (-). Fig. 5 was prepared to consider this possibility. 

signal Periodogram - signal 

time (hr) frequency (cyclesbr) 

Fig. 5. The left-hand display is the signal, including the effects of aggregation and the running 
mean. The right-hand display is the corresponding periodogram 

The left-hand display provides the signal modified for the effects of aggregation 
and for the running mean. Most of the mass of its periodogram (given in the 
right-hand display) is close to 0 indicating that there is little hope in proceeding 
this way. It may be compared with the right-hand display of Fig. 2. The 
sampling interval is too large and the running mean has suppressed too much 
of the information. 

- 
6. Discussion. Two solutions have been put forward for Professor Neyman's 

problem. The first solution involved keeping careful track of the effects of 
aggregation and smoathing in developing a regression function. The machinery 
of stochastic processes generally and point processes particularly handles this 
quite effectively. It is assumed that the effects of seeding are additive and that the 
travel times have a random distribution. The second solution is via the method 
of moments. There are ditliculties in working with the data set that motivated 
the problem. Information was lost in forming the hourly totals and the running 
mean. This speaks against the use of more sophisticated deconvolution 
techniques or the use of nonparametric change-point techniques (e.g. Miiller 
[15]) that might have proved useful had the original data been available. 
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The importance of controls and randomization is stressed throughout 
Professor Neyman's work and in Brillinger et al. [6] .  Here it allows effective 
estimation of a in (6) and the assessment of uncertainty, as in Fig. 3. 

Asknowledgemen%. I have been fortunate to have spent parts of my career 
with some of the grand people of Statistics, Jerzy Neyman among them. He was 
the gentleman d statisticians. 
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