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Abstract. Multiple Stratonovich integrals (MSI) with respect to
the Wiener process and the Brownian bridge are defined for a class of
kernels having k-th order z-traces which are, in general, different from
the traces investigated in earlier work. Asymptotic distributions of
V-statistics are derived and the limiting distribution expressed in terms
of appropriate MSI. Another application yields an alternative proof of
Filippova’s theorem on the limiting distribution of von Mises sta-
tistical functions.

1. Introduction. The study of Hilbert space valued traces and their
connection with multiple Stratonovich integrals (MSI) originated, at least to
our knowledge, in a paper of Hu and Meyer [4] in which a2 new approach to
Feynman integrals was presented. In making this approach rigorous, Johnson
and Kallianpur [7] introduced several different definitions of traces of which
the limiting trace turned out to be the most appropriate one for the proof of the
formulae in [4]. The MSI of [7] (the term “Stratonovich integral” was not used
in the paper) were defined by using the ideas of lifting. While interesting from
the point of view of furnishing formulae for certain types of Feynman integrals,
these Stratonovich integrals do not meet the requirements of statistical
applications since they are based essentially on Hilbert space techniques and
do not take into account the values on the diagonals. ‘

In the present paper, we take a fresh look at the problem. The z-traces
introduced in Section 2 are defined for a subclass (denoted by 1) of the
L*-space of p-th order symmetric kernels. &3 is made into a Hilbert space
under a new inner product in such a manner that each of the k-th order 1-traces
(k=0,1,...,[p/2]) is a continuous map from &} to L*[0, 1]7~ 2~
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Results relating MSI to multiple Wiener integrals similar to those
obtained in [7] are derived in Section 2. In Section 3, MSI are defined with
respect to the Brownian bridge and a Hu—Meyer type formula is proved. The
latter result is used in connecting the asymptotic distribution of a U-statistic
with that of a V-statistic. Sections 4 and 5 are devoted to statistical applications
of our results. In Theorem 4.3 the limiting distribution of a V-statistic is derived
in terms of MSIL It is natural that Stratonovich integrals are involved
since a V-statistic (in contrast to a U-statistic) allows repeated indices (see
Definition . 4.2). Hoeffding’s pioneering 1948 result [3] is mentioned as
a corollary to Theorem 4.3. An application to the asymptotic distribution of
von Mises differentiable statistical functionals is made in Section 5. An
alternative proof of Filippova’s result is given in Theorem 5.3 where the limit is
obtained as an MSI with respect to the Wiener process which is shown to be
equivalent to the MSI with respect to the Brownian bridge obtained in [2].

2. Hilbert space valued traces and multiple stochastic integrals. In this
section we will introduce the multiple Stratonovich integral. This integral, in
general, is different from that considered by Johnson and Kallianpur [7],
though the two integrals agree for step functions. The Stratonovich integral is
closely tied to certain Hilbert space valued traces. In this section we will
introduce these traces and discuss their connection with the “llmltmg traces” of
Johnson and Kallianpur.

" DEFINITION 2.1 (the class &, of step functions). A real valued symmetric
function f, on [0, 117 is in the class &, of step functions iff there exists
a partition {0=1¢; <...<t, <tm+y =1} of [0, 1] and constants {a;,, i
iys ey i, =10,1,2,..., m} such that

VAV folss sy =as, i, i (5q,...,5)€4; X...x 4y,

- where 4;, = (t;, tiy+1] if 1<i;<m and 4, = {0} if i;=0,j=1,2,...,p

Let (2, %, P) be a probabxhty space and {W,; 0 <t <1} be a Wiener
process on this space. We first define the multiple Stratonovich integral with
respect to the Wiener process for integrands in &,. This integral turns out to be
the same as the multiple Stratonovich integral of Johnson and Kallianpur
which will be denoted by d;(:).

DEeFINITION 2.2 (multiple Stratonovich integral for functions in ). Let
fp,€, be given by (2.1). Define the multiple Stratonovich integral (MSI) of f, as

m

22 8= X G (Wltis )= WiE). - (Witiy ) — W),

We will now briefly recall the limiting traces as introduced in [7] and then
give a representation for J,(f,) in terms of those traces.
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DEFNITION 2.3 (limiting traces). Let f, be a symmetric function in
L2[0, 17%. Fix k, 1 < k < [p/2]. Suppose that for every complete orthonormal

system (CONS) {¢,} for L2 [0, 1]

N N

@) X Y <

(el =1 254 150e0s ip=1
¢i|®¢f1 ree ¢ik®¢ik®¢izk+1 e ¢ip > ¢i2k+l e ¢ip Z

converges in L2 [0, 1]P' 2k 40 a limit which is independent of the choice of the

CONS {¢} ‘Then ‘we say that the k-th limiting trace for f, ex1sts, Wthh by

definition is the limit of the series in (2.3) and is denoted by Tr" 1o TrO f is
defined. to be the same as f,. .

The following proposition relates the MSI 6 w1th the multzple 1ntegral of
Johnson and Kallianpur, and therefore w1th multlple Wlener mtegrals through
the Hu-Meyer formula.

PROPOSITION 24 Let f,e¥,. Then Tr" 1, exists for all k 0 k< [p/2]
and we have

[p/2]
(2.4) - 5,(f,) =85(f,) = Z CpieIp— 2k (TT*f,).
Furthermore, :
2.5) E[5,()] c{ | ff;;(tl,...,tp)dtl...dt
[0.117
[p/21

4+ ff,(tl,tl,...,:tk,tk,t2k+_1,'...,vfp)dt_i_...dtk.dt;g+:1...dtp}, '

k=11[0,1]p~%
where

Pk (p—2k)!1 2°KY"

I; is the j-fold multiple Wiener mtegral and C 1s an appropnate constant.

Proof. Let f, be gwen by equation (2.1). Deﬁne a CONS {e,} for 12 [0 1]
so that the ﬁrst m elements of the CONS are glven as follows. For
i=1,2,.

. .
(26) [ o ei(t) IA I1/21(11t1+1](t)
where |4, = (t;+1—1;)- Then it is clear that

(2.7) D L= Y b,.l,,._,,.,e,.,@.-....®ei,,.;

9 — PAMS 15
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where b, i, = a;, i 14i |12 412 G =1,2,...,m j=1,2,..., p. The-

refore, by Proposition 3.2 of [7], T f, exists for all k=0,1,...,[p/2] and,
by Theorem 5.1 of [7], §3(f,) exists and is given by the following formulas:

[p/2]
(2.8a) 05 (fp = Z Coxlp- Zk(Trkfp)’
(28b) U = Y by () Iy(ey)
o iyennip=1 :
Hence from (2.6) and (2.7) we have
0p(fp) = i ai,...., 1,,(W(tu+1) Wit)-- (Wit +1)— W) = 3, (1)
ilyenip=1

Therefore (2.4) is proved. By the orthogonality of multlple Wiener integrals of
different orders it follows from (2.4) that

[p/2]

29) E[6,(f)1’P<CY [ [T, (tas1s s t)] 2 dtagsy ... dt,.

k=0 [0,1]P -2k

Finally, we obtain (2.5) from (2.9) and observing that

j f;;(tl’ tl’ v tk’ tk: )dtl dtk Z bh 115eesilesllesi2 + 150005ip lzk+1® ®elp()

[0,1)< i1yeensip=1

C=Ti*f,() forall k=1,...,[p/2],

the last step following from Theorem 3.1 of [7]. =

The inequality in (2.5) will enable us to extend the domain of definition of
the integral to a larger class by a denseness argument.
Let us first define the following inner product on %,:

- - [p/2)
(2'10) <fp3 gp)*.P:= Z <kfpi kgp>k! fp’ gpe 50
k=0

where (-, ), is the inner product in L?[0, 1]7~* and *f,: [0, 1]*"* - R for
k=1,2,...,[p/2] is defined as

(211) kfp(t1’ (KRN tp'k):éfp(tl’ tla LERY tk’ tks Let1s«oes tp—k)

with °f, = f,. Define *g, similarly.

Let &3 be the completion of &, in the above inner product. We denote
o o by I £,13.,- The multiple Stratonov1ch integral for elements in & is
defined as follows.

DEFINITION 2.5 (multiple Stratonovich integral for elements in &%), Let
f,€¥% and let {f,,} be a sequence in %, such that | f,,—f, .., converges
to 0 as n — co. From (2.5) we infer that d,(f,.») converges in L*(Q) as n — oo.
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Define the multiple Stratonovich integral of fp» denoted by J,(f,), as -
(2.12) 8,(f,):= L*(Q)- lim 5, Fo)- -

There is a useful identification of an element of &} with an equivalence
class of functions which we discuss below.

Let &} be the class of real-valued measurable symmetric functions f on
[0 177 such that

(2.13) I 1y, s tpop)dty...dt,y < 00 for all k (0 < k < [p/2]),
[0,11p=k . ‘ ,
where ¥, is defined as in (2.11). We will employ the convention that
S =S6=R and that ||, 0 is the usual Euclidean distance in R. -
We introduce an equivalence relation (denoted by ~) in &} as follows:
For f,, g,€%}, we say that f, ~ g, iff

K =g ae [0,117% for all k (0< < [p/2]).

Denote by [ fp] the equlvalence class generated by f, under the above
equivalence relation and let [%}] be defined as

(2.14) [F3):={[f): freF2}

We will show now that the class &% can be identified with [} 1.

Let g,€ %% and let {f,,.} be a Cauchy sequence in &, such that f, , — 9
in the norm described above. Since f,, is Cauchy in the I p,4-nOTM, ¥, is
Cauchy in the L?[0, 1]7~2*-norm, and hence there exists h,_, € L?[0, 1]7~*
such that, for 0 < k < [p/2], ¥, = hp—x in L?[0, 1]°7%. S

Now define a real-valued function f, on the set {(t;,...,t,): 0<¢, <
<t <...<t, <1} as follows:

@15) . [ty --es t)

(B, ... 8) 0t <t <...<t,<1,
| hp-i(tys 35 ooy Log— 15 Lak+1s ooes t,) “
= Ot =t <ty=ty<..<lzeg =t <lomss<.. <t <1,
1<k<[p/2],
L0 otherwise.

Extend f, to all of [0, 1]” by symmetry. Then *f, = h, ,‘GL2 [0 13P7k,
that f,e&}. Identlfy the element g,€ ¥} with [f, ] Wlth this 1dent1ﬁcat10n,
LS E= [9’,,]

Next we show that &, is dense in [%}], and since &”* is the closure
of #,, we have [}] < &}, proving that there is a 1-1 correspondence between
Sy and (1. : - T
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PROPOSITION 2.6. Let f,: [0, 1]? — R be in &} Then there exists a sequence
{fom} in &, such that
(1 f"#p as n— co.
Moreover, if 9, ~fp, then ' o
N Somn =l p—>0

Proof We need to show that there exists a sequence { f,, n} in &, such that
the followmg relations hold:

(216a) { [fom f] (tl,...,tp)dtl...dtp—»O as n'—»oo,
_,_[ouv . C ‘ o
(2 16b) W e : _ : _
j [fom f]Z(tl,tl,...“,’t,‘-;;_ tes Ea1s - oes L)ty . ‘dt,,dtzm' .dt, >0
[0,137 - . :
g as n—»oo for all k=1, [p/2]
To motivate the 1dea of the proof we consnder ﬁrst the case p = 2. Note

that we can find a sequence of step functions {g>,,} on-L*[0, 1]? and another
sequence of step functions {g,,} on ‘L?[0,-1] such that, as n— oo,

| 192, =12 (t, ?dtds >0 ~and = [ |g1.(B)=S2(t t)Izdt—>0
(0,112 T A [01]‘ N N o

Deﬁne , N S ‘ .
on(t s): —gz..(t S) 5(t S)gz..(t S)+5(t S)gu.(t)

where 5(t s) is 1ift= = 5 and 1s 0 otherwme Then clearly, as n— oo,
S et 9156, s)Izdtds—>0 and | | fo,n 2, t)—fz(t t)2dt - 0.

[0,132 [0,11 -

Hence we have the desired sequence, the only problem bemg that f, , is not
* a sequence of step functions. Therefore we need to replace §{t, s) by a sequence
of step functions converging to it. This 'is the essential idea of ‘the proof.

Returning to the case of a general p, let us assume for the sake of
notational simplicity that p is odd. Note that for each fixed r, 1 < r < [p/2], we
infer, by thie denseness of step functions on [0, 1]~ in L?[0, 1]°~" that there
exists 'a sequence: {g,-,.} of step functions, g,_,,: [0, 117" — R, such that

j [gp—r,n(tl’ tz,..., t’" t2r+1a---5 tp) a

o - ’ = Do .
f {tl, tl, t,., t2,+1, ‘p)]?dt1 cedtdtyyy...dt,—0 as n— oo,
(2 17) j [gpﬁ(ti!" t) fp(tls- )jzdt1 dt -0 as n— oo,
(S N L : )
~Let: ;= {0 —.1:1 <r2 <y = 1} ‘be: a sequence of partitions

of [0 1] (where the dependence of 7; and I on n is suppressed in the notation)
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with |I1,] = 0 as n — c0. We now construct a new set of sequences {h‘;’,.} and
{f®.} of step functions on [0, 177, 0 < r < [p/2], as follows: S
"Define h®):= 0. For 1<r<[p/2], deﬁne

. l ' N -
(2.18) KO (Sgo . .r 8,)i= {1 if (520-1, 820)€ U (s Ti411%

. ) i=1
0 otherwise.

The functions h},”,, constructed above will play the role of the approximating
sequence for the delta function.
Also; define fg,“,), =gpn- For r=1,2,...,[p/2], define

(219) f(;.)n(sla'j's‘s) f(r 1)(s1,---’s‘1)_ hg)n(sly' 9s)f(r 1)(s1$""’sp)
+hg,)n(sl’j » S )gp-rn(sla S3,.. s S2p~ 1: Sar+1s 32r+2’ ’sp)

We will show that f, ,:=f12/2D jg the required sequence, i.e.; it satisfies
(2.16a) and (2.16b). In fact we show somethmg more, namely, for each ﬁxed
rr=12,...,[p/2]), as n— o0, OO SRR -

.‘- [fg.)n_f;:]z (¢4 , tp)dt1 ...dtp—bO,'

[0,1)7
(2.20)

L=t tys ooy by b Eama 1 +ees L)y ot dtypmyy ... dt, >0
[0,1}p-m

for m =1,2,..,r
To prove (2.20), we will first show it for r =1, and then assuming that it
holdsforr=1,2,..., k—1(k—1 < [p/2]) we will show that it holds for r = k.

This will prove that (2.20) holds for r =0, 1, ..., [p/2].
Let us first consider the case r = 1. Note that from (2.19) we obtain

@21) [ [f8—f1P(, .o 5,5y .. ds

[0,11°
<3 | [fO—fTss...r $,)dsy..ds,+3 [ [fOI(sy, -ons s,)ds, ... ds
(0,117 - A0
+3 [ [9,- 1,.] (sl,s3,s4,. . $)dsds, ...ds,
A(l ,0) .

where
o ' l .
A(k 0) ((sla ey sp)e[()’ l]p: (SZk—la sZk)e U '(Iis ‘;H— 1]2,)’ . k= vla, 25 seey [P/Z]-
. . I . . i='1 . P ' B

Since A®” (A1) — 0 as n — oo (A being the Lebesgue measure on [0, 1]), the sec-
ond and the third terms on the right-hand side of (2.21) converge to 0 as n — co.
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The first term on the right-hand side of (2.21) converges to 0 as n— oo by (2.17)
and the fact that [ =g,, Agam

| [f‘”—fp]z (545 85 S35 34, vees S,)d8 ds,ds, .. . ds,

[0,1}p-1

= 5 [(figl)l f(O)_ p)(sls S1s 835 845 005 Sp)
[0,1)p -1

+1.gpo1,a(S1, S35 S5 -0 S dsydsyds, ... ds,

= I [9p-1.(515 53, 54, “'“’.Sp)
[0.1}p-1

| —f (51> 515 S35 545 --+» S  dsy dsyds, ... ds,.

The last expression converges to zero as n — oo by (2. 17) Hence from the above

.observations we see that (2.20) holds for r = 1.

Now suppose. that (2.20) holds forr =1, 2, . ., k—1, where k——l < [p/2].
We will show that (2.20) holds for r = k. Note initially that for m strictly less
than k we infer using (2.19) and arguing as in (2.21) that, as n— oo,

(2.22)

[ f',]z(tl,tl,...,tm,tm,t2m+1,...,tp)dtl...dtmdt2m+1...dtp—>0.
[0,1j7-m

Also it can be similarly seen that

§ [fﬂ—‘_fp]z(h,-- )dt1 dt —>0 as n— oo.

[0,1]p—m
- Consider now.the case r =k, .m = k. Then

§ S O—f2 (s tys ooy b by Bagns -ons Bty dtydtay gy .. dt,
[0,1]7-*

= I [(f(.:.n_l) f(k 1)_fp)(t15 tl, seey tk:tk".tlk+l3 [RRS} tp)
[o,11p-*% ’ :

+1.gp_k’,|(tj1, ey tk’ t2k+1, veey tp)]zdtl-...dtkdt2k+1...dtp

= | [gp-inltss s b takr1s ooes L)
[0.1}e -k

~fo(tys Eysoons by By bagg s onns t)12dE L dbydlay iy .. dt,

and ‘the last'expression converges to zero as n— oo by (2.17) with r = k.

From the above observations we see that (2.20) holds for r = k. Therefore,
as remarked earlier, this proves that (2.20) holds for r=1, ..., [p/2]. Sub-
stituting. = [p/2] in (2.20) we have, as 'n— oo, , co
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f [fg,';’”’~f,,12(t1, e ) dty - dty 0,

0.1
[ LS £ T2 (s s s s bs Eamt 10 -5 ) - wiltzmsr . 41, +0
[0,1}p-m

for m=1,2,..., [p/2].

Therefore the sequence f,,:=f /2D satisfies (2.16a) and (2 16b) B

Henceforth, we will not distinguish between the equivalence class [ f,] and
the function f,e %, that belongs to it. We will write 6,(f,) for &,(Lf,])

The multiple Stratonovich integral introduced in this section can be
represented as a sum of multiple Wiener integrals through a formula which is
very similar to the Hu-Meyer formula (2.4), though the traces appearing in this
formula are in general different from the limiting traces that appear in (2.4). We
discuss below the appropriate notion of a trace for this setup.

. DEFINITION 2.7. Let f,e #;. Fix 1 < k < [p/2]. Then the k-th t-trace of f,
denoted by t* > 1S an element of ,9’p 2k deﬁned as
(2.23) ™, ()= j'k_ﬂ,(tl,tl,..._,t,c, ty, )dty...dt,.

Define °f,:=f,. o
Note that if g, ~ f,, then g, ~ 7*f, for all k, 0 < k < [p/2]. _

We state below the following important property of k-th 7-traces as
continuous maps. v

PRrROPOSITION 2.8. If {fp,,} f,€p and | fou—1, ll*,,-—»0 as n— oo, then
17 fom— Syl wp-26—=0 as n >0 for all k,0<k<[p/2].

In particular, the map *: 5’!1,—»L2 [0, 177~ 2% is continuous.

The following proposition is the analogue of the Hu-Meyer formula
for J,.
PROPOSITION 29. Let A 65’1 Then
- [p/2]

(2.24) L b, = Z Ckap (T (fp))-

Proof. Observe that (2.24) holds for f,e%, by Proposition 2.4 and
the fact that, for such functions, T f, is the same as t* f,- Next let
{fo.n} be a sequence of functions in %, such that || fon—Splls.p 0 Note that
such a sequence exists from Propos1t10n 26. It follows from (2. 5) that

0, (fp.n) —>5 o () Furthermore, since (2.24) holds for each f,,, we have

[p/2]

(2.25) o Bl = X Cudp-ale "(fp,,_.))g



(2.28)
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Proposition 2.8 1mp11es that *(f,, ,,)L o1 r k( fp) as n— oo. Therefore

combining the above observations and taking the limit as n — oo in (2.25), we
have the result. w ' : -

Johnson and Kallianpur showed that the multiple Wiener integral for
integrands which have limiting traces of all orders and are such that these
limiting traces are consistent with the second order traces can be expressed as
a sum of MSI of Johnson and Kallianpur. We show in the following
proposition that a similar result holds for the multlple Stratonov1eh integrals
introduced in this section.

PROPOSITION 2.10. Let f,€ %%, Then
| - ' /21

@2 LU= X D Cudalt )

" The proof of the proposition is similar to that of Proposition 2.9, i.e., (2.26)
is first shown for elements in %, and then, by using Proposition 2.8, (2.5) and
the usual denseness arguments, the result is extended to- elements in &}1.

It is clear from Proposition 2.9 that d;(f,) and d,(f,) will agree if the
limiting traces Tr* (f,) are the same as the traces 7*f,,. As we remarked earlier,
t-traces are in general not the same as limiting traces, though for functions in
&, they agree. The following proposmon glves another snuatlon in which the
two traces are the same. :

ProrosiTioN 2.11. Let f, €L?[0, 1J? be symmetric and continuous.

(i) Then the Solé and Utzet trace T*f, (see [11] for the definition. of T*f,)
exists and is the same as r"fl, for all k=0,1, [p/2]

(i) Suppose that for some k (1 k< [p/2]) Tr"f exists. Then

(2.27) Tr"ﬂ()-.—ﬁf,,(-) = | f(tl, Eys s bs by )yt

Lot e [0,1]% :

Proof. We will prove (ii). For the proof of (i), the reader may refer to [5].

We will assume that p is odd; the case where p is even can be treated in

a similar fashion. The existence of ﬁ"fp implies that for every CONS {e;} for
L2[0, 1] the following series ‘converges in L?[0, 11772 as.n - co:

Z Sy e.,®e.,® ®el,c®e.,,®e1,m® @8y, iy €5, ().
[ PIT TRi 20 4 1500ss ip= 1

" To prove (2. 27) we w111 use the CONS 1ntroduced by Nualart and Zakai
in [8]. Let {II,} be a sequence of partitions of [0, 1] such that |I1,] >0
as n — oo. We assume that II, is a refinement of IT,_, by only one point. Set
11, = {0, 1}. Define e, = 1. For m > 1, e,,}, is defined as follows. Let « be the
point of refinement in I7,.,, and assume that this point is in the interval




232) Su,.,—Sn
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(d,,d,], d,,d,ell,. Then

d—a  \ a—d, \?
em+1(t)-=(m) Iy, (0)— (m) l(ﬂ-dz?(t)'

It can be shown (see [8]) that {e,} is a CONS for L?[0, 1].

Let the partition IT, be {0 =1, <... < 7,4+, = 1}, where the dependence
of 7, on n has been suppressed in the notation. Let 4;= (t;, 7;+,] and
{4, :=1;4,—1;. Let

(229)  Sp;(Uzr1s -o-s 1)

n
1 .
= I, (uaks1)...1, (u,)
T15000y ik,12§1 ..... ip=1 |Ai1|"'|Aik| |Ai1k+l|"'|Aip| b 2t B Ip
X f f@, o, t)dey . dt,

Ay x Ay % x Ay x 4y,
ey X o X A,

We will show that for all n>1

(2.30) Sn,.(')

= Y {fy €,06,® ... Qe;, e, Beiy, @ ... B8 ey - €1, ()
Cifyeuiiolizic feeip=1 ' :
Observe that to prove (2.30) it suffices to show it for p = 2 and k = 1, for then
the general result can be obtained by iteration and noting that the span of
{14,172 1,,, ..., |4,)"Y*1,} is the same as that of {e,, ..., e,}.

We will prove (2.30) for p=2 (k = 1) by induction on n. Nate that
for n=1 the result holds trivially. Suppose now that the result holds
for n=m, ie., , : -

(2.31) i {fre®e> =Y 14171 [ £, ty)dt dt,.
i=1 i=1 ‘ -

A; X 44 T

i=

Then

I fit,, 1) dt1:dt.2'. |

1 (dy,2)?

1 g 1
= dz—d(a,gzlzf(tl’ ty)dt de, + "y

1 .
f(ty, t,)dt dt
d2—d1 (di:‘;zlz v e

L |
= t,,t dt, dt
@@, =d) o)) e ) A dta
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d,—
_ f(ty, t,)dt,dt
(a_d1)(d —d,) (d{(a]z 1 ) Aty

2
f(ty, t,)dt,dt,.
dZ _dl (dha]{(a,dz] 12 1

Again,
. i |
[o!fuzf2 (t1s t5)ems 1 (t)) em+1 (E2)dtydt, = (_:)—(ti—dﬂa{.{fz (1, ty)dt, dt,
.o . o— d dydz  dz
1 A —d) Ly, 1 dtdt t,, t,)dt, dt
(d_ )(dz 1)ij2(1 z) 2= dz—d“'[ng(l 2) 161,

= Sﬂm+ 17 Snm’
the last equality following from (2.32). Therefore, in view of (2.31), we have

m+1 m+1

Shmes = Z 417§ foleyg, t)dtydt, = Z (f2: 6®e).
di X A; =1

Hence (2.31) holds with m replaced by m+ 1. As remarked before, this proves

(2.30) for all n > 1. Now from the definition of limiting trace and (2.30) we have

L2[0,11P 2k _,

(2.33) S, - T,

We show now that Sy, converges to 7*f, as n — . Let & > 0 be arbitrary and
let 3 > 0 be such that

|f(t1, cie tp)—f(sl, ..., Sl <& whenever max |t;—s]| <d.

' . 1<i<p
- Let N > 0 be such that |IT,] < é for all n.> N. Then it can be shown from some
straightforward considerations that, for all ue[0, 11772,

2.34) [Sp. )= [ fltss tyseeor b b Wdty...dt) <& ~for all n> N.
[0,11*

As ¢ > 0 is arbitrary, Sﬂn( } converges to j' kf(tl, Eis eens by bo 7Yt .. dE,

uniformly, and therefore in L?[0, 172, The above observatlon combined

with (2.33) gives the result. =

COROLLARY 2.12. Let fI,eL2 [0, 11?7 be continuous and symmetric. Suppose
that there exists a CONS {¢;} for L*[0, 1] such that

e o] [}
= Y 6. ¢,®..0¢;, and Y ai,.l < .
Tfgeeny ip=1 iy00es ip=1

Then Tr* f, exists and we have f’r"fp =1f,.
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Proof..By Theorem 3.1 of [7] we infer that T f, exists, and then the
result follows from Proposition 2.11. &

Except for the special situation considered abm‘/e, the equality of Tr f,and
1*f, is not clear. In general, the following set of sufficient conditions can be
given under which the limiting trace equals the 7-trace.

PROPOSITION 2.13. Let j;pe 2 be such that T f, exists. Suppose that there
exists a CONS {¢;} for L*[0, 1] such that:
(a) the series Z:ll...;,'ij,'#l S 0@ .. @0, i, (ty)... ¢1,(t,)) converges

pointwise-on [0, 117 as n — co;

(b) Z:Il ..... ip=1 <fp’ ¢1’1® . . ®¢ip> ¢i1¢i2 (tl) ven ¢i2k« 1¢i2k (tk) ¢i2k+1 (t2k+1) .
.. s, (t,) converges in L'[0, 1177 as n— co. | {

Then if, = 'f’r"j;,.
The proof, being standard, is omitted.

3. Multiple integrals with respect to a Brownian bridge. Let (2, #, P) and
{W,} be as in Section 2. Let W = W,—tW, be the Brownian bridge. In this
section we will discuss multiple integrals with respect to W;. As in the case of
the Wiener process, two types of integrals appear naturally. The first integral
accounts for the diagonal contribution of the integrand and will be referred to
as “the multiple Stratonovich integral (MSI) with respect to the Brownian
bridge.” It will be denoted by 49 (-). The second integral — which ignores the
contribution of the diagonals like Itd’s integral — will be referred to as “the
multiple It6 integral (MII) with respect to the Brownian bridge.” It will be
denoted by I9(-). We like to remark here that I9 () is not to be interpreted as
an iterated integral. The Brownian bridge process does not have orthogonal
increments, hence it is not straightforward to define a stochastic integral for
adapted or bounded predictable integrands. In this section we will define the
multiple integral as in [6] for special elementary functions and then proceed to
the general case via a denseness argument. We will also obtain a relation
between multiple integrals with respect to the Brownian bridge and those with
respect to the Wiener process. This will be useful in connecting our result on
asymptotic distribution of von Mises functionals with that of Filippova (see
Section 5). Finally we will obtain a formula like the Hu-Meyer formula,
connecting 85(-) and I5(-).

DEFINITION 3.1 (multiple Stratonovich integral with respect to a Brownian
bridge). Let f,€ ¥, be given by equation (2.1). Define the multiple Stratonovich
integral of f, with respect to the Brownian bridge {W?}, denoted by 83 (f,), as
follows: :

(3.1 53():,):=_ Y a,.. ip(Wo(ti1+1)_Wo(ti1))---(W0(tip+1}_Wo(tip))-

[PTN ip=1




140 A. Budhiraja and G. Kallianpur

To extend the definition of the integral to a larger class we use the
following moment bound, due to Filippova [2] for 85(f,) ( freSp:

32 B <c*{ | fp(th t)dt, ..

[o,1
[p/2] : : .

+ Y f‘,(tl,tl,...,tk,tk,t2k+1,...,t‘,)dt1 dtkdt2k+1 ..dt,},
k= 1[0 1Pk ’ ' :

where C* is an appropriate conSfant, The moment bound (32 (which is the
same as the bound given in (2.5) excepting a constant) enables us to extend the
definition of the integral to &%, just as in the case of the Wiener process.

DEFINITION 3.2 (multiple Stratonovich integral with respect to the Brow-
nian bridge for integrands in &}). Let f,: [0, 1]? - R be in &} and f,, "€, be
such that | f, . —f,ll,,« = 0 as n — co. Define the multiple Stratonovlch mtegral
of f, with respect to the Brownian bridge {W?}, denoted by 69 ( f,), as the limit in
L? (Q) of 89(f.) (which exists by (3.2))..

Note that (3.2) holds also for f, 69’1

The following s1mple relatlon between 0, (1) and on(f) will be useful in
Section 5.

PrOPOSITION 3.3. Let f e.Sf’l Then

63 &)=t f“”+ Z ( )W’ "5°(f"’ o)

and

60 B =Crrwips z()(—m-‘*wr"a,,<fzf-k>),

[0,1]7

where Jor k=1, —1.
_fﬁ,"‘k)(;l,..., = | 'fp(tl,:...,tk, t)dt, te[O, 137 7%,
o [0,1]p % o
f:=f, and fP:= | f(t;,...,t)dt.

Proof. Initially, let f,e%, be as in (2.1). Then

‘(3-5) 5p(fp)='_ Z ;... i,,(W(tili;l)_.W(til))---(W(ti,,+1)_W(tip)) :

= 3 Qi (W2 (14 1) = WO (i )+ (tiy+1—13,) w)...

L (W° (ti,+1)—W° (ti,)+ (ti,+1 ;tip) W)
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=W Y ay . e1—t). (1 t,)

+ i (i) W’I—k_, i_‘. @iy (WO iy )= WO 1) ..

. . -(_Wo v(tik+ D= WO () s 41 —ty).. Atipr1— ti,,);
Now, since. o ’
fe 0@, )

= 2 {

Bfyende =1 i+ 1seeny lp"“l

we infer from (3.5) and Deﬁnltlon 31 that

Ma

wip (tu,+ 1+1— tlk) (tlp+ 1 tlp)} 141 (tl) IA;;'(tk)’

8,(f) =WifP+ Z ( )W’;"‘a,?( foh),

Let now f,es%, and let {f,,} be a sequerice in &, such that
| forn=Tpllpx =0 as n—oco. It is'a simple observation that '

| fe R —fe=op -0 asn—oo forall k=0,1,...,p

From (2.5) and (3.2) we infer that 8,(fom) = 6,(f,) and 60 (f&r "’) -8 (feh)
inL?(Q)asn— oo forallk =1, ..., p. Hence (3 3) follows for f, on noting that
it holds for f,, for all n and then taking the limit as n — co. Equation (34)is
proved similarly. a

We now introduce the multiple integral with respect to the Brownian
bridge that does not account for the diagonals. To construct this integral we
proceed as in [6]

"DEFINITION 3.4 (the class of special elementary functions (.? )). A real-
-valued symmetric function f, on [0, 1]° is in ) iff there ex1st Borel
measurable sets A, (1 £ig m) w1th .

() 4,=[0,1] and Ainﬁj%ﬂ if i #j,
i=1 : : L :

and real numbers a;, (I<ij<m, j=1,2,..., p) such that g,

.....

unless i,, i,, ..., are all distinct, and -

fp(sla""sp)=a' ..... ip
if (31,---,Sp)§Ai,X--gXA i.=1,2,....m,j=1,2,.

1p’ J . .
DEFINITION 3.5 (multiple It integral with respect to the Brownian bridge).
Let f,e€ %% be as in Definition 3.4. Define the multiple Ité integral of f, with
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respect to the Brownian bridge, denoted by Ip(f,), as

(3.6) Ig(fp):=_ Yo oay,.i, WO(4)... WO (4,),

where W°(A):= W(A)—1(4) W, for a Borel set 4 in [0, 1], and 2 is the
Lebesgue measure. .

It is clear from the definition of 52 that if the sets {4, j} above are intervals,
then I and 89 agree. The following proposition shows that in fact the two
integrals are equal for a general special elementary function.

PROPOSITION 3.6. Let f,€%; be as in Definition 3.2. Then )=
=05(f,) ae.

The proof is stralghtforward and is omitted.

Proposition 3.6 and (3.2) show that
E[I3(f)1*< | fi(ty,....t)dt ...dt, for f,e¥},
[,1J°

and therefore the definition of I9 can be extended to L?[0, 1]° by the
usual denseness arguments. MII for elements in L2[0, 117 is denoted once
more by I3(°).

ProposiTION 3.7. Let f,eL*[0, 13. Then
r
(3.7) L) =wifP+ ¥ (,’:) Wi (7 )
and |

(3.8) D) =(1PwifP+ i()( P WL ().
k=1

The proof follows by first proving the result for f, in &, and then
extending in the usual manner.

We close this section with a Hu and Meyer type formula for Brownian
bridge with integrands in &}. This formula will be useful in connecting the
asymptotic distributions of U-statlstlcs with that of V-statistics.

ProrosITION 3.8. Let f,e5;. Then

. [p/2]
(39 B =Y Cprly_2('f,)
r=0
and
{p/21
(3.10) Ip(f) = Z Cpr (=17 005, ("))

The proof is omitted.
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4. Asymptotic distributions of U- and V-statistics and stochastic integrals.
In this section we will discuss the asymptotic distribution of a V-statistic under
certain assumptions of square integrability of the kernel over the diagonal. The
limit is a multiple Stratonovich integral with respect to the Wiener process. We
also show in this section that a certain linear combination of related
U-statistics has the same asymptotic limit as the original V-statistic.

We begin by giving some basic definitions. Let (2, %, P) be a probability
space and {W,; 0 <t <1} be a Wiener process on this space. Let W7 =
= W,—tW, be the Brownian bridge. The integrals 1,(-), 6,(*), 95(), I3 (), 65()
are to be-understood as in Sections 2 and 3. Let (Q,, #,, P,) be another
probability space.

DerFINITION 4.1. Let X,, X,,... be iid. random variables defined on
(Q,, #,), with the common continuous distribution function F. Let f,: R -+ R
be a symmetric function. The U-statistic (U ,(f,)) corresponding to the kernel f,
is defined as

(41) Un(fp) = Un(XU R | Xn):= (Z)_ pr(Xin res Xi,,)s :

where €:= {(iy, ..., i,)e{1,2,...,n}% iy #i, if I#m; ,m=1,2,..., p}.

DeFiNITION 4.2. Let X,, X,,... and f, be as in Definition 4.1. The
V-statistic (V,(f,)) corresponding to the kernel f, is defined as :

42) ATAES A S SIS 2 F(Xiys oo Xi ).

From now on, we will assume that {X,} is an iid. sequence of U [0, 1]
variates. We note that all the results in this section with obvious modifications
hold for a general iid. sequence (i.e. not necessarily U [0, 1] varlables) with
a continuous distribution function.

The central theorem of this section is Theorem 4.3 stated below. To prove
the theorem we will need several lemmas which we give following the statement
of the theorem. Many of the arguments in Lemmas 4.8-4.12 are contained in
the work of Rubin and Vitale [9] but for the sake of completeness we have
reproduced those arguments here. After proving the lemmas, we then give the
proof of the theorem. Corollary 4.13 is a well-known result due to Hoeffding
[3], which is a direct consequence of Theorem 4.3. Finally, Proposition 4.14
shows that the asymptotic distribution of an appropriately centered and
standardized V-statistic is the same as that of a certain linear combination of
U-statistics.

“ Rubin and Vitale [9] derive the asymptotic distribution of a U-statistic by
using the Hoeffding decomposition for the kernel, i.e. expressing the U-statistic
as a finite sum of lower order U-statistics with centered kernels, each of
which — appropriately standardized — has a multiple Wiener integral as the
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asymptotic distribution (see also [1]). We describe now the notion of the
centering of a kernel, which will also be useful in deriving the asymptotic
distribution of a V-statistic.

Let f,:[0,1]P>R be a symmetnc mtegrable functlon We _define the
“centerlng” of f,» denoted by f,.: [0, 117 — R, as follows:

(4.»3) fp,’c(x;, e Xp)

L ?—1 ( l)m | . d
_f;;(xla .. x )+ ;mzlnﬂ(P ) I fp(xﬂ:(lb revy xn:(p'-m)’ ym) ym
H(=1y 5 f(yl,...,y,,)dyl.-.dy,,, o

(0.1

where y,,,e[O 11™ and the outer summation in (4.3) is over all permutatlons
n of the p symbols {1,2,..., p}. Note that when p=1

fp.c(xl) =fp(x1)_ gf;:(y)dy’

and when p =2,
1

1
oo (1 Xg) = folxy, %)= 1,0, Vay— [ f,(x2, Wdy+ | f,(yy, y)dy,dy,.

()] o [0, 1]
Also, for r = 1,2, ..., p—1 define the function f¥; [0, 11777 > R as follows:
(44) fg)(xls .. xp -r) = _“ f (xls vrey Xp—ps .V)dy
. 0,11 :

Denote the centering of the function f& by f%%, ie.,
4.5) fg,)c(x1’~"" Xp—r) | |
. =fg)(X1’...;Xp—r)-F(—l)P—r I fp(yl""’ yp)dh‘dyp
10,11 ,
+Zp_i—li J' (r)(x. Yo o . z)dz
m, s=1 S!(p—r——s)![o ™ .P m,(1)s --:., n‘(?__Lr_S)’ ‘ s s

where 7, runs over all permutatlons of the p—r symbols {1 2,..,p—=r} and
define : ‘ o

(0) _fpc

In Lemma 4.4 we represent an mtegrable kernel f, as a linear combination
of f s which is premsely the Hoeffding decomposmon for the kernel f,. We
‘now state our main theorem.

THEOREM 4.3. Let f,: [0 1]1’—>R be a measurable, symmetr:c - function
satisfying

(4.6) - ffp(xl,xl,;..,x,, X, ..)dx,...dx, < o,
. SR (51 : - :
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where x,, X5, ..., X, appear $,, S,, ..., S, times, respectively, for all (s, ..., s,)€
€Z'y such that s;+...+s,=p and for all r=1,2,...,p. Then

NACAEEN N (x)dx]] Z ( )V(f"’)+0 1)

[0, 1]”
and

@4.7) n2[V(f)— [ f()dx]>pd, (fer ”)

[0,1]17

moreover, lf for fixed 0 <k <p we have fPh=0 ae. in [0, 1]’ for all
j=1,2,..., k, then

+1)/2 T £ p—
(4.8) nlt [Kl(fp) [O'j;]pfp(x)dx] (k+1>5k+1(f( k=1),

LEMMA 44. Let f, be as in Theorem 4.3. Then
@9)  fyless s x)= [ Ly (nses 3y,

[0.1]»

Z Z f (x (1) ..be;_‘)) ’
s L r'(p r)'pcn! > 1|:pra.

where © runs over all the. permutdtions of the p symbols {1,2, ..., p}.°

Proof. By substltutmg the express1on for Soe ® from equation (4.5) on the
nght -hand side of (4 9), we have : o o

(410) Z Z fpc(xn:(l)a ey 'xﬂ:(p—'r))
=) Z (O a1y > Xng-m)+ (=177 f ‘.fp(’Yb'-!-;‘yp)dyl"‘;dyp
T r= Or'(p r)' [0,11*
p-r—1 ( 1)s " i L .
R mm&f P it - Xstyr-an 2)05).

Z g, r|(p r)'(fp (xn(1)5 s Xa(p— r))+( l)p " I f(.VD- ,yp)d}ﬁdyp

- 10,177

+ (p—n)!

p—r—1 ( 1)s * A : '
—_— " (x cees Xp(p—r— z)dz
L, g mrmh ¥ e 236

P-ll p-r—1 (_])s - o) o . '
= — — U veeg X —_yp—
Zn:r=0r!( s;() S'(p r— S)' r ( m(1)s > Mn(p—r S))))

— [ £,1s s y) Y- dy,.

10 — PAMS 15
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By substituting r+s = k and rearranging the summations in (4.10), we have

Z Z r|(p r)'f;.)c(xw(ljs veey xn(p—r))

n r=90
p—1 k 1 —1F
= Zl: Z (Z (k—S)'S'((p—“)k)') fg‘)(x("(l))’ Tre x(ﬂ(P—k))):|

k=0 \s=0

§ 01 y)dys .. dy,

[0.1}7

1
= _TZf(po)(x(n(l))s fees x(n(p)))_ j fp(J’n cees J"p)dh "'dyp
Pz [0,11» .

=f,(%0, e, x)— | (01, ¥ dY...dy,. B
[0,11°
LEMMA 4.5. Let {¢;}T be a CONS in L*[0, 1] such that ¢, = 1. Let M be
a fixed positive integer and let g,, ..., g, be real-valued continuous functions
defined on RM. Let (Yy,, ..., Y,,) be a vector sequence of random variables on
(2, #,, P,) such that each component n Of the vector converges in probability
to a constant c;. Then

r

n 1 n » r
Z ,ng,(\/;ig,l ¢, (X)), ..., ﬁi§1 ¢‘M(X.-)) _’jg,l ngj(Il (®5)s .- Iy (¢M))

ji=1
~ The proof is straightforward and is omitted.

LemMMA 4.6 (Filippova [2]). Let &, be a double array of square integrable
random variables and &, be a sequence of square integrable random variables
defined on (Q,, #,, P,) so that £, » &, in L? as m — oo, uniformly in n. Then
L& &) = 0 as m - oo, uniformly in n, where L{X, Y) is the Lévy distance

between the laws of X and Y. V

For the proof see [2].

LemMA 4.7. Let ¢&,,, &, be square integrable random variables on
(Q,, #,, P,) forn,m > 1 such that &,,, — &, in L* as m — oo, uniformly in n. Let
fms 1 be square integrable random variables on (2, #, P) such that &,, > 1, in
distribution as n —» oo for each fixed m and n,, »nin L> asm — 0. Then &, —» 1
in distribution as n— oo,

The proof being standard is omitted.

The following lemma is essentially contained in the work of Rubin and
Vitale [9].

LEMMA 4.8. Let f, be as in Theorem 4.3, and let {¢;} be a CONS for
L*[0, 1] with ¢, = 1. Then, as M — 0,
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M M
(411) Z Z bg?---,ik,izm- Lovensip—r
| ST B=1 {2k + 1uers ip-r=2

x (n—(p—r)/z ; ¢i1 (X.il) Lo ¢ik (X.ik) ¢l'zk+ 1 (iju+ 1) ¢ip-r(ij—r))

LX) 0 )

- Z Z bg'ﬂ-...ik.iu-;-l ..... ip—r

iyeeesie™=1 i2k+ 1sevesip-r=2

x ("_‘(p_')/z'z ¢i1 (Xj'i)‘ . ¢’l'k (Xjk) ¢izk+1 (ijkn) ¢ip-r(ij—r))
7

uniformly in n for all r=1,2,...,p, and k <[p—r]/2, where

L ={(ys s o Jant1s oo es dp-)E{L, ooy m}PTTTH

Ji#jm ifl#Emy Lm=1,..,k 2k+1,..., p—1)}
and

(4-12) b?ﬂ...,ik,izk-;-l ..... ip-r = j (fg,)c(xla xla ey x]p xk:» X2k+1sr0es xp—r)
[0,11p-r-k

X i, (%) i () Diy , (X20c41) - - ¢ip—r(xp—r))dx1 codxgdxggyy .. dx,—,.

The dependence of the coefficients b, i...... ..., onr has been suppressed in
the notation for simplicity.

Furthermore,
M . n
(4.13) > b s, (Y b (XG) i, (X,)
l'] ..... ip—,-=2 . j1 ..... jp—'-=1
M 1#Jq n
5 Y b ne N $ (X)), (X))
i1yeeey ip—r=2 j],...,jp—r=1 .
h#iq
uniformly in n for all r=1,2, ..., p, where
(414) b&?,)...,ip—r = 5 ( g‘,)c(xls ey xp—l‘) ¢i1 (xl)"' ¢i,-r(xp—r))dx1 "'dxp-r'
{0,117 r -

Proof. We will only prove (4.11). The proof of (4.13) is similar. Note
initially that since ¢, = 1, we have

M M

Z ' Z bgﬂ---,ik.izku ----- ip-»r n—(p_r)/zzd’in(xh)"'
[ TR k=1 i2K+150es ip—r=2 &
"'¢ik(Xjk)¢izk+1(Xj2k+x)¢ip~r(ij—r)
k M
=) Y BP. ieriizes 1onip e O Y 01 (X ).
=1 igyeensitoizi+ tynsip-r=2 - &

e ¢1 (Xj,-l) ¢i1 (Xj,)' . ¢ik(Xjk) ¢i2k+l (Xi2k+ 1)' .. ¢l'p-r(Xip—r)
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k M
=y ) BP
tasernrilesi2e+ Lreensip—r
5=1 ig,..., U2+ 19eeip-r=2

xn=@=2 E ¢is (st) ¢lk (X.lk) ¢|2k+ I(X]2k+1 ¢1p -r (ij r)
<

where
k) — hk)
ﬁgs ----- ix,82k + 14e-0sip—r b ----- 1,.dsreeny 1e,82k + 14eemrip —

L__v_)
s—1
times

= j‘ ./g,)t'(xl; Xis ey xk: xka x2k+173'--sxp—r)
[0,1]p-r=k -

X @i, (X9 - Gi (%) Pires s Kot 1) - Biy, (Xp—r)dXy .. X dXgry .. dXp

Hence we need only to show that

M

- . k
SM'_ Z () witesi2ic+ 150 p-r

igsesnsiicsizic + 15eredr =2

X’n"*‘f’*"’”z 61, (X5). . bilX ) ¢,Zk+,(x,1k+1) By (X))

converges in L2 unlformly in n as M — oo. C :
Again, if € is a finite subset of the set {(i,, ..., i, izk+1,..-5 ip—r)E
€{2,3,...}r7r7k7s+1 then

E [Z ﬂ?:,)--uik,l'zk--# ;,---.ip;r n-_(p‘—r)/z Zd’i; (X_] )
€ . &F
.- X'(bik (Xjk)‘¢i2k+1 (Xj2k+1) ree ¢ip—r(ij—P)]2
< (=r—k—s+DITELE B puineriy ,n "2
T €

X Z ¢is (ng) vee ¢ik (Xjk) ¢i2k+1 (Xj2k+ 1) . ¢ip—r(XjP—r)] 4
. 1S jn(a) <.o. i : . )
< Jr(2r'+ 1) <l <J1|:(p nEn . ’

where = runs over all the permutations of the p—r—k—=s+1 symbols
{s,s+1,...,k, 2k+1,...,p—r}.

Again, since E(¢,(X,)9;(X,)) = O whenever i, j > 1 and @, u) # (} v), the
right-hand side of the above inequality equals

(p__r_k_s—'-l)!zz[ﬁg:,),lk 12k+1 ..... lp r n_(P_")
n €

X ) > _ E[d’is(st)...(bik(Xj,;)qﬁ,-z,‘H(XjZkH),',_¢ip_r(XjP_r,)]2
15 jin(s) <oor S i) ! -
<jrr+1)<..<jn(p-rSn . . -
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.. n! .
n—p+r+k+s-1)!

=(p—r—k—s+1)'Z(ﬁ$ ‘lklz)g+1 ..... ip- .-)2 ~emn

<(p r—k— S+1)’Z(ﬁ(k) sitesf2de+ 1y0eny ip—.-‘z"l

Now, since
oD

Z (ﬂt, ..... Elesizk + 15+ lp_,_z < 00,

igyeensikriz2k + 150o0ip—p=1

the above inequality shows ‘that § + is a Cauchy sequence in L2, uniformly in n,
and therefore S,, converges in L?, uniformly in n. The lemma now follows from
earlier discussions. m

Leva 49. Let {¢;} be a CONS for L*[0, 11. Then fori;>1 (= 1,2, ..., )
1 & P , .
WZ ¢ (X))... 41, (X)) >0 as n> o0 whenever u>2.

The proof is straightforward and is omitted.
LemMA 4.10. Let {¢;} be a CONS for L*[0, 1] with ¢, = 1. Then
(a)Forallu>311,.. i,>land r=1,2,...,u—2,
15 0 Z ¢,1® ®¢,u(x§s;>, ey X§7) 50 as n— oo
i ‘ ~ whenever ma'x(si', cees s,) > 2,

where X$9 = (X, X;,,...) is an s-dimensional vector, 1=1,2,...,r, and
S5 ..., S, are positive integers with Z:=1si =u
(b) Forall uz2 and i, ...,i,>1,

@16 Y (X)) S LG8 BB
and

@1 ey __1¢il®...®¢,.u(le,X“,Xn,X,z,...,X,-,,,X,-,,,
Jlyeees, ]b,_ﬁz;&-t-l:':..:..ju—

) _) 5!1 iz2* 5i2b—.1?izb Ilf‘Zb (¢izb+1® ree ®¢iu) as n— o
Sforall b=1,2,...., [w/2],

where 0;; 1s the Kronecker delta functzon ie;:0;;=0if i#jand 611‘ =1, and
Iy(¢:,.,® ... ®¢;) is understood to be 1.

Proof. We will prove the lemma by induction on u. We observe first that
(a) holds for u = 3, since max(s,, ..., s) >2 implies in this case that r =1

X

Jab+1s o0
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and s, = 3, and therefore (4.15) follows from Lemma 4.9. We also note that for
u = 2 the left-hand side of (4.17) is equal to n™ 1)}, —; s, (X)) ¢:, (X;,), which
clearly converges in distribution to J;,;, by the law of large numbers. And for
u =2 the left-hand side of (4.16) is equal to

Y (X5 6 (X,

J1.j2=1
which is the same as hi#i2
o E G E X)) -t Y (X 6,(X;).
. Ji=1 Jj2=1 j1=1

The last expression converges in distribution by the central limit theorem and
the law of large numbers to I,(¢;)I,(¢:,)—0;,.:,» Which is precisely
I, (¢:;,®¢;,). Hence (4.16) and (4.17) hold for u = 2.

INDUCTION HYPOTHESES. Suppose that p > 3 is such that (a) holds for
3 <u<p and the relations (4.16), (4.17) hold for 2<u<p-—1.

We will now show that (a) holds for u = p+1 and the relations (4.16),
(4.17) hold for u = p.

Let us first consider (a). For the proof of the relation (4.15) for u = p+1
and r=1, 2, ..., p—1 we will show that (4.15) holds for r = 1 and under the
assumption that it holds forr =1, 2, ..., m—1 and m < p—1 we prove that it
holds for r = m. Note that from Lemma 4.9 it follows that (4.15) holds for
r=1 Suppose now that, for fixed m<p—1, (4.15) holds for
r=1,2,..., m—1. Consider now r = m and assume without loss of generality
that s, > 2. Then :

4.18) n-teruP2 ' Z $:,®...0¢;,,,X;, X;, ey Xy Xy o)

Jlsensjm=1
i1#Jq
id .
=n 51/2 Z ¢i1®"'®¢iﬂ,(XjI’le’"') X
=1
@+i-s2 % - e
- —s _
xp~ETETERE N b Xy Xy ) L0 Y 4@
’ J20resim=1 a=2 J2sennjm=1
Jt#]q . Si#g

"'®¢ip+l(X_ia’ Xju’ LEEE} ija ij, [EXEY Xj,..’ ij)s
k_Y__J

s1 times
where X;,, X;,, ..., X, appear s,, s,, ..., S, times, respectively. Note that the
last term. in (4.18) converges to zero in probability, since (4.15) holds for
r=m—1 and u=p+1 by assumption.
Now we will show that the first term -in (4.18) converges to zero in
probability. To see this, observe initially by Lemma 4.9 that

B Y $.® ... @b (X X)) 0.

J1=1
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Hence we only need to show that

n_(P+1_sn[2 Z ¢1; +1® ®¢m+1( J2» Jz’ s X-i"" XJ'")

J2s.
jl *Jq

(X;,» Xj,, ..., X;,, appear s,, s3, ..., S, times, respectively) converges m dlS-
tribution to a finite random varlable as n— oo.

Consider first the case max(s,, ..., s,) > 2. Then, since (a} holds for u<
by the induction hypothesm on (a), we have

. .
pp+1-siz Z ¢:,+1® ®¢:p+1(Xst 12,._,,ij, ij)->0 asn— oo,

Jl*Jq
where X;,, X;,, ..., X;,, appear s,, S5, ..., 8, times, respectively.
Finally, consider the case max(s,, ..., s,) < 2. Then, since (4.16) and (4.17)
hold for u < p—1 by the induction hypothesis, we see that

p-PH1s0i2 Z ¢I;+1® ®¢'p+1( i X XJ'"’ -jm) |

J2yeenndp+1=1
J1#jm

converges in distribution as n-»oco, where Xj,, X;,;...,X; appear
Sgs S35 ---5 Sy times, respectively. B
Therefore, the above observations imply that

n~sz Y $,®...9¢,(X;,, Xj,,..)

i1=1
and .
p—(p+1—s02 Z 4,'”1@ ®¢zp+1(Xm X ... X;,X;)
o
converge to 0 in probability as n— oo, where X;, X;,,..., X, appear

81> S35 ..., S, times, respectively. As remarked earlier this shows that

d P
n~ (P2 Z ¢i1®"'®¢ip+1(Xj1’ le’ - X.Im’ Xfm)—)o as n— 00,
J1 ’:i'll;eh;q= 1 ] "
where X, X;,, ..., X; appear sy, s,, ..., S, times, respectively. Hence (4 15)

holds for r =m. Therefore we have proved (a) for u=p+1.-
Now we will prove (4.16) for u = p. For the sake of simplicity we assume
that p is odd, the proof in the case when p is even is similar and is omitted. We

observe that

(419) 7P Z ¢, (X)) 01, (X)

Jl*Jq
Ip 2]

=17 3 Cou (= 1P (T, b () i ().
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- X (2:‘:1 ¢in<2k— 1)'(X i) ¢in(2k) (X J)) ( '21 ¢in(2k+ 1) 0.4 J)) cer (_il ¢in(p) 0.4 J))

+nr2 z i (X3 6, (X ) ... 01, (X3,)+0, (1).

The proof of this observation uses the hypothesis that (4.15) holds for
3 <u < p and that (4.16), (4.17) hold for u < p—1. The details are left to the
reader. ,

Observe next that the rlght-hand side of (4.19) equals

" 2]

T Cal=1; z—(.z Broi X ) Bioen () -

1

_( Z ¢ln(2k 1)(X)¢:,,(2k) ) ¢l1:(2k+1)(X]) - z ¢l,.,(,,) (X])
- \/—( Z \/— )

1 n
+—=(Y ¢, (X))...—=(Y ¢i,(X))+0,(1).
\/;(Z ) \/;(jgl j) Y

i=1
By Lemma 4.5 and the law of large numbers the above expression converges in
distribution to

[p/2]

Z CP k( l)k Z 5‘1‘:(1) im(2) * 51'1:(21: - 1)+En(2K) Il (¢in(2k+ 1)) s Il i((tbin(p))
+1,(¢s).. . I, ().

Moreover, from Theorem 6.1 of [7] we obtain
1
(4.20&) EZ 6i,¢(1),i1¢(2) T 6!',,(21(7 1)sin(2K) Il (¢i1:(2k+ 1)} e Il (¢lﬂ(p))

= 5(TH (4. ® . ®4,)
and . . - - _
(4.200) L) 11 (9:) = 5,6 ® ... ®,).

We remind the reader that the J appearing on the left-hand side of (4.20a) is the
Kronecker delta function, while 3 on the right-hand side of (4 20) refers to the
MSI introduced in Section 3. Therefore as n-— oo, o .

o [p/2]

nH Z b1 (). s, (X )a 2 Crul= 1)*5S(Trk(¢,l® ®¢., )
=1 (d’i,@- ®¢i,,))

the last step following from Theorem 61 of [7]. Hence (4.16) is proved
for u=p. .
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Finally, consider (4.17). Then, just as in (4.19), we have

n

n_“/z Z ¢i1®"'

Jsesdbrd2b + g5 nip =1
N#Eim

"'®¢ip(Xj1’ le, ij, ij, ...,ij, .ij, 'Xj2b+17""ij)

2[(1?—2b)."2] . 1 n
— n”P/ Z Cp—Zb,k(_ 1) Z—'( Z ¢in(l)® e
k=0 7 P jiredice bodzict 25 4 10eess Jjp=1

'.®¢iﬂ:(p)(Xj1’ le’ Tty Xjk+b’ X.ik+b’ Xj2k+2b+l’ RREE ij))}+op(1)'

And now the proof for (4.17) for u = p follows exactly along the lines of the
proof for (4.16). Hence, assuming that (a) holds for # = p and (4.16), (4.17) hold
for u = p-1, we have shown that (a) holds for u = p+1 and (4.16), (4.17) hold
for u = p. The proof therefore is complete by induction on u. m

LemMmA 4.11. Let f, be as in Theorem 4.3. Then

P
(4.21) n@72 N O XS, LX) 50 as no oo
f1seees, jp=1
Jljl*J.;"m

whenever max(s,, ..., s,) > 2, where s,,...,s, are positive integers with

S S=p—T.

Proof. Let {¢;} be a CONS for L*[0, 1] with ¢, = 1. Define
(422) ﬂs?.....i,, = ,[ fg.)c.(x(lsl)a see xsf")) ¢i: (xl) o ¢ib (xb) dxl mee dxln

[0,11®

where x{ = (x,, x;, ...) is an s,-dimensional vector for k = 1, 2, ..., b. Then

(4-23) g.,)c (x(ln)! sy X, SD)) = Z ag),...,ib ¢i1 (xl) e ¢ib (xb))
- i] ..... ib =1

where the summation converges in L2[0, 1]°. Since X’s are iid. uniform
variates, we infer from (4.23) that R

@24) neTZ Y O (xe0 g

J1reees, Jjp=1
jl*jm
[es] n
= Z ag?,...,ih n_(p_r)/z Z ¢i1 (X,h) s ¢l‘b (ij)’
i1eenip=1 J1seees, Jr=1

J1#jm
where the summation converges in L2(£). Note that from (4.16) we obtain
b2 - » «
n . Z ¢i1(‘X.Il)“'¢ib(be)_)Ib(¢i1®"'®¢ib) as n— oo.

J1yeennjo=1
J1¥ jm
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Therefore, since p—r is strictly greater than b, we have

n
P
n- @2 Z 0, (X;)... 0;,(X;,) =0 as n— 0.
Jtyeendn=1
J1# jm

Therefore, for all M > 1

M n P
(4.25) Z a(r},"_, n—(p_")/z Z ¢il (X“) vee ¢ib (ij) -0 as n— 00,
il,,_..,‘ib'—"l . J1s-ajp=1

J1# jm

Furthermore, arguments as in Lemma 4.8 show that as M — o

M n
@2 Y afan R Y (X bu(Xy)
[15000ip=1 ]1,-’:;.:‘;':1 .
- Z aﬁ),....i;, n—(P"T)J'Z Z ¢lx (X_h) ¢ib (ij)
i{1y0.05ip=1 J1seaes jp=1

in L2, uniformly in n. Therefore combining (4.25) and (4 26), we see that A, 5 0
as n—o00. &

Lemma 4.12. Let f, be as in Theorem 4.3. Then

(4.27) n~p-ni2 Z fOX5, .., X, r)—»é,, P(fS

J1seees, Jjp-r=1

Jorall ¥r=0,1,...,p—1.

Proof. For the sake of simplicity of notation we will assume that p—r is

_ odd. The case when p—r is even can be treated similarly. Furthermore, we can

assume that p—r is greater than one or else the result follows from the central
limit theorem. Observe first that from Lemma 4.11 and a combinatorial
argument we obtain

(428) n~n2 Z fO X, .. X;,.,)

J1senip-r=1
—(p—1)/2 = [z —n)21
=n "2 Y fOX, LX)t Y (Comrk
J1seens J.pvr:l k=1
jl’#jq
]
X Z f(r)( J1o Jx"":Xjka Xjk’ Xj2k+1,--- Jp- ,))+0 (1)
Jtaeees Jszk+1 ..... Jjp-r=1

1#iq

=:B,+0,(1).
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Expanding the function fC%(x,, X;, ..., X, Xgs X254+15 - Xp-,) i terms
of the CONS {¢;} we have

(4.29)
n
R > O (X s Xisvor Xjoo Xis Ximerss ooo» Xipo)
Jiveens, Jrer 2k + 15eens, jp_,.=1
jl*jq

o0 ©

= n—(p_r)/z Z Z (bsllcz...,ik,izp‘+1 ..... ip-r
o =1 D21+ 150 nip-r =2
n
X z ¢i1 (Xh)""ibik(Xjk)d’izkn(ijka,l)---¢ip_r(XjF_r)),
Jlseensdirj2ic+ 1yeendp-r=1
J‘l*jq

the above series converging in L?(£) for each fixed n, where b® _, ... .
are given by (4.12) and (4.14). Note that the inner summation in (4.29) runs
from 2 to oo, since ¢, =1 and [} f9%(x, y)dy =0 for all xe[0, 1777771,

Using (4.16), we observe that if exactly s elements (say, 1,...,5s)
amongst {¢;,, ..., ¢;,} equal ¢, (=1), where s <k, then as n— oo the
expression

n~ (72 Z o, (le)"'¢l'k('Xjk) ¢i2k+1(ijk+1)"'¢ip—,-(ij—,-)

Jseesfiaf2ie+ 1nnndp—r=1
Jj1#jq
converges to zero in probability, and if all k elements {¢;,..., ¢;} are
identically equal to 1, then this expression converges in distribution to
Ly 2k (Diye 1 ® ... ®y,_,). Therefore, if M is a fixed positive integer, we infer
from Lemma 4.5 that for k=1, 2, ..., [(p—r)/2], as n— oo,

M M
(430) n~®TP2 % Y (B i 1rmip—r
P1eees ikx=1 126+ 110eesip-r=2
n
X Z ¢51(XJ'1)" . ¢ik(X.ik) ¢i2k+1(Xj2k+l)‘"¢ip"—p(XjP_,-))
Jieewdinj2ic+ 1aeenip-r=1
J1# jm
r . M ,
- Z bsk.)l,...,l.izk+1 ..... i,,_.-Ip—-r—Zk((bi;kH@ "'®d’ip,,.)-
12K+ 13eees ip-r=2

In a similar fashion we can show that as n — o

M .
(431) n2 N B Y B i, (X;)... i, (X;, )

L STTRIN ip-r=2 jlo---_,jp‘—r_l

- .
g . Z bg).)...,ip_,-lp—r(‘bi‘@ e ®¢ip-r)‘
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Therefore once more from Lemma 4.5 we have

M n ‘
(432) nTeT2( Y bg?,)...,i,,_, Y ¢, (Xj)... b, (X5,
iyenip-r=2 J1reendp-r=1
J1# jm
[(p—r)/2] M M &
+ Z CP_'.k Z Z bll?..qlk 12k + Laeees ip—p
k=1 iyt =1 {2k + 140ney ip-r=2
. L n .
X Z d’il (le)--'¢ik(Xjk)¢izk+1(ijk+1)‘"¢ip—r(XJ'p—r))
Jiseensdienddiet 10eensjp-r=1 .
S #EJm i )
z M Up—r)2]
i Z bg?.)....i‘,_,.lp—r(d’n@---®¢ip_.-)+ Z Cp—r,k
igyeenyip—rp=2 ‘ _ k=1
M S
X Z b(ll‘:v)i----.lvilki-ln---nip—rIF"f“Zk(¢i2k+1® e ®¢ip—r)'
E2Kc+ Lavens ip-r=2 .

Note that since the conditions of Lemma 4.7 are easily satisfied in this
case, making the obvious identifications, M can be replaced by oo in (4.32).
Substituting the expression for the Fourier coefficients b _, R - in (4.12)
and (4.14), we see that the last expression in (4.32) (w1th M = o0} is equal to

X _2[[[0 1{ SR s Xy b, (%) By, (6 )Xy - dxp ]

: [(p—r)/2]
I (6, ® ... ® s, )+ Z Cp-r

X Z ﬂ: .f ( j. (r) (xlaxly--f:xka‘xka x2k+1,---9 xp—;')dxl'-'dxk)
2+ 150 [0,1]P 777 2K 0,17 .
venip—p=

X ¢i2k+1 (x2k+1) e ¢ip-,-(xp—r) dek.+1 e dxp-r]] Ip—r—Zk (¢i2.;¢+1® LR ®¢ip—r),
which is the same as
[(p—r)/2]

p r(f(r))'l" Z Cp—r,k Ip—-r—2k (Tk(fg,)c))

Note also that from (4.29) it is seen that the left-hand side of '(4 32) (with
M = w0)is equal to the summand B, on the right-hand side of (4.28). Therefore
as n— oo,

(p—r)/2] |
(433) B _’Ip r(f(r))'l" Z Cp—r,kIp—r—lk(Tk(fg)c))'
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And finally from (4.28) we infer that (4.33) implies

n-®P—n/2 Z f(r) (XJ ey ij_r)

Jrseensfp-r=1
-r)/2
o lp=n) ]C . " "
g Z p—rkip—r— Zk(Tk(f ) p r(f ) 2
k=0

We are now ready to prove our main theorem.
" Proof of The,brem,4.3. Note initially that from Lemma 4.4 we have

(4.34) Vn('fp_)'—j fp(x)dx=% 5 Xy Xp) = f fy(x)dx

[0.13¢ J1seess Jp_l [0,1]7

i Z Z Z T)‘ (r) ( Jr(1y? * 2 Xjﬂ(-P"'))~

1 ..... Jp—11|:r0

7=l pl 1 ./ 1 n "
= Lip—miEen L JiEe e X, ).

wip-r=1

The second equality in the above set of equations follows from equation (4.3).
Using (4.27) we obtain

n'2[V.(fp)— | f(x)dx]

[0,117
r-l ! 12 4/ .

= p: n "

._r;or!(p r)ln(p r)/2<n(p r)/z E,—lf (XJI ""Xfp—r)

=043, (4 = 8, (4

Moreover, if f (1) f »-2) R b are identically 0, then

435 n*UR[(f) = [ fdx]

[0,117
p—k—2 1 1 n
Zo (r)n(p E—1— r)/z(n(p -~y Z 1o (XJ,,... Xh r))
= Jtsenjp-r=1
B )(—1— > gt ”(X X, ))
k+1 n(k+1);‘2j1 ,,,, =1 J1o oo Je+ 1l )

From (4.27) it follows that the first term on the right hand side of
(4.35) converges to. 0 m probablllty and the second term converges in
distribution to

| (k.+1)5k+1(f"’ 15 “)
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as n— oo. Therefore we have shown that

nkt+1)2 “:Vn(fp)— -" fp(x) dx]] f) p 6k+1 (fgc_k— 1)) as n—o0. a
k+1

[o,11»

The next result is due to Hoeffding (see [3], Theorem 7.4 and remarks on
p. 306). We record it here (in our notation) since it is a natural corollary to
Theorem 4.3.

COROLLARY 4.13. Let f, be as in Theorem 4.3. Suppose that || f 21| # 0.
Then both -
2V (f)— | f(x)dx] and n'P[UL(f)— [ f,(x)dx]

{0,1)r fo,112.
are asymptotically normal with mean O and variance p* | fV|>.
Proof. Applying Theorem 4.3 we have
£ (p - -
436 wPLU- I S~ (1)61 (¥ =pL(FE).
By Lemma 5.7.3 of [10] we obtain
4.37) n'2[V,(f)-U,(f)] >0 as n— 0.
Therefore from (4.36) and (4.37) we have
z
n'2[U, ()= § fxds]->pl (fEY).
(.11

The proof is completed by observing that pI, (f@. ') is normally distributed
with mean 0 and variance p? || f& V|, =

The following proposition relates the asymptotic distribution of ¥-statis-
tics with that of a linear combination of U-statistics.

PROPOSITION 4.14. Let f, be as in Theorem 4.3. Suppose that f&;? =0 a.e.
in[0,1F for all j=1,2,...,r—1; r < p. Then

(4.38) : V)~ | f(x)dx]

[0,11°
has the same asymptotic distribution as
: p [r/2]
(4.39) (r) Y. Can® 22y, (*(f2).
k=0

The proof makes use of the Hu-Meyer formula (equation (2.24)) and the
fact that the asymptotic distribution of U, is a multiple Wiener integral.

5. Asymptotic distribution of von Mises differentiable statistical functions.
In this section we recall Filippova’s result [2] on the asymptotic distribution. of
a differentiable statistical function and give an alternative proof using results
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from Section 4. Filippova obtained the limit as an MSI with respect to
a Brownian bridge. In this section we obtain the limit as an MSI with respect
to a Wiener process and show that the two integrals are the same almost
~ surely.

We will assume in this section the setup of Section 4. Let % be the class of
all real-valued measurable functions defined on R. Let F be the distribution
function of the iid. #[0, 1] variates X,,..., X,. Denote the empirical
distribution function based on X, ..., X, by F,. A real-valued function T on
% will be referred to as a statistical function. The following definitions are taken
from [2].- -

DEFINITION 5.1. A statistical functional T is called p times differentiable at
the point Ge % with respect to the set ¥, = ¢, which is assumed to be star
shaped at the point G (i.e., if G, €%, then G+t(G, —G)e ¥, for all te[0, 1]), if
the following conditions are satisfied:

(1) For any te[0,1], m=1,2,...,p, and any G,€%,,

an
g T[G+t(G,—G)]
exists.

(2) There exist functions T™(G): R" >R, m=1,2,..., p, such that for
any G, €%, the relation

61 4 TO+1(G,=Glllo = | TG)(3)dy

holds.

DEFINITION 5.2. A statistical functional T is called a von Mises functional of
order p at the point F if:

(1) there exists a star shaped set 4, = % at the point F such that

lim P(F,e%) = 1;

(2) the functional T is p times differentiable (in the sense of Definition 5.1)
at F with respect to %;;

(3) for any >0, 6>0,and m=1,...,p

> 8) 0.

Filippova’s theorem ([2], Theorem 4) gives the asymptotic distribution of
nP? [T(F,)— T(F)] (where T is a von Mises functional of order p+ 1 with T™ (F)
identically equal to zero for m=1,2,..., p—1) as an MSI with respect to

a Brownian bridge. We now give an alternative proof of Filippova’s theorem and
in addition we obtain the limit as an MSI with respect to the Wiener process.

(5.2) lim P(n‘"'/z’ % sup :il— T[F+t(F,—F)]

n— te[0,1]
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THEOREM. 5.3. Let T be a von Mises function of order p+ 1. Suppose that
T™(F)=0,m=1,2,..., p—1. Denote T (F) by p!f,. Suppose that f, satisfies
the conditions in (4.6). Then , _

¢3) - n"’Z(T(F) T(F))—Hs (fo) = 03 (f),

where S is the centering of f,.

' Proof. Obse»:rr_yewlmtlally that from Theorem 2 of [2] we have

(5.4) nP/Z(:r(F) T(F)) =12 [ f (%, ) ﬂ ALF, () =1+ 0, (D).
. 10,117

Note that when p =1, the theorem follows by applying the central limit
theorem. Therefore, without loss of generality assume p > 1. Then

(3.5 § fp(xl,...,xp)]g[d[F,,(xj)—xj]= lp Z f,(Xjs s X))

{0,112 ji=1 Jtrenip=1
rp—1 p 1 n
+ Z (—1)’( )? Z I fp(ij'-'szp_,.s .V)dy
r=1 PR ip—r=1[0,1T
+(=17 | f,(nady.
. [0.1]r

A further simplification yields the following equality:

[ fGan ) [T ALF06)—x,]
i=1

[0,1)»
1 i
=-n—P(J zj:y_lf (le,... X;,)
! (= 1)'; X X d ‘lpi d
+r lrl(p__r)|z .[ fp( Ju(1)? "9 A jmp=r)? y) y+(_ ) [0:’;]pfp(y) y )

From equation (4.3) it follows that the expression on the right-hand side
equals:

n_" Z JoeXjis oo X))

Therefore, in view of Lemma 4.12, we have -

56) no? | fp(xl,...,xp)ﬁd[Fn(xj)—xj]
| o

{0,117

. .
=W 2 fI‘JC( “,...,ij)f;ép(fp;c)'
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Finally, we show now that J,(f,.) is the same as 39(f,). Using (4.3)
we have

p—1 r
(5-7) 5p(fp,c) o (f)+z Z ( 1) )| P( j f (xn(l)""’ Xn(p—r)s yr)dyr)

+8,((=1p § f,,(yl,...,y,,)dy—l...dy,,)

[0,1]P
1 _
=500+ 5 S E WG] S Xy 9)d)
’ [0.1F
+ (—1)P Wi j Lo s Y)Yy ... dy,
[0,1)P
= 53(];,)- .

The last equality follows from Proposition 3.3. Hence, taking the limit in (5.4)
as n— oo and using (5.7) and (5.6), we have the result. =

COROLLARY 5.4. Let T be a von Mises functional of order 3. Suppose that
TW (F) = 0. Denote T® (F) by 2f,. Suppose that f, satisfies the conditions in
(4.6) with p replaced by 2. Let f,. be the centering of f,. Then

n(T(F,)— T(F)) Z Ak[Xl k*1]+jf2c(x x)dx,

where {x3 .} is a sequence of independent y3 variates and 4, are the eigenvalues of
the integral operator corresponding to f,..

Proof. Note that, by Theorem 5.3,
&z
(5.8) _ n(T(F,)—T(F)) = 8,(f2.)-
Again, from Proposition 2.9 we obtain
1
59) N 8, (fr.) = L (f2,+ [ f2..(x, x)dx.
V]

Let {e;} be a CONS of L?[0, 1] such that e, is an eigenvector corresponding to
the eigenvalue A;. Then

I, (f2.0) =1, (Sl A ei®ei) = i A, (e®e) = _il A [(I1 (ei))z - 1]

lifs

8

A [X%,i_ 1].

i=1

Substituting this in (5.9), we have the result from (5.8). =

11 — PAMS 15




162 A. Budhiraja and G. Kallianpur

Remark 55. This result is different from Serfling’s Theorem 6.4.1
in [10], which says that the asymptotic limit is an infinite linear combination
of independent y? varlates The proof there seems to contain an error since
it assumes that j fu(x x)dx equals the trace of the integral operator
1nduced by fs,c. ThlS is in general false as discussed in Section 2. Clearly,
if j Jf2.c(x, x)dx does equal the trace of the integral operator associated
with f, . then

j.fz.c(xa x)dx = i ﬂ,i’
0 i=1

and therefore

[co]

(610) n(TE)=T)> ¥ ALt 11+ [focs, )dx = i T

The statement (5.10) is true if, e.g., there exists a CONS {¢,} of L?[0, 1] such
that the Fourier coefficients of f, . in the expansion with respect to the basis
{¢,®¢,} are summable or, more generally, if the sufficient conditions given in
Proposition 2.13 with f, replaced by f,, hold.
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