
PROBABlLITY 
AND 

MATHEMATICAL STATISTICS 

HLBEWT SPACE VALUED TRACES 
M"4D MULTIPLE SERATONOVICH INTEGRALS 

. - WITH STATISTICAL APPLICATIONS 

A. B U D H I R A J A  A N ~  G. KALLIANBUR* (CHAPEL HUL, NORTH CAROLINA) 

Abstract. Multiple Stratonovich integrals (MSI) with respect to 
the Wiener process and the Brownian bridge are defined for a class of 
kernels having k-th order t-traces which are, in general different from 
the traces investigated in earlier work. Asymptotic distributions of 
V-statistics are derived and the limiting distribution expressed in terms 
of appropriate MSI. Another application yields an alternative proof of 
Filippova's theorem on the limiting distribution of von Mises sta- 
tistical functions. 

1. Introdnction. The study of Hilbert space valued traces and their 
connection with multiple Stratonovich integrals (MSI) originated, at least to 
our knowledge, in a paper of Hu and Meyer [43 in which a new approach to 
Feynman integrals was presented. In making this approach rigorous, Johnson 
and Kallianpur [7] introduced several different definitions of traces of which 
the limiting trace turned out to be the most appropriate one for the proof of the 
formulae in [4]. The MSI of [7] (the term "Stratonovich integral" was not used 
in the paper) were defined by using the ideas of lifting. While interesting from 
the point of view of furnishing formulae for certain types of Feynman integrals, 
these Stratonovich integrals do not meet the requirements of statistical 
applications since they are based essentially on Hilbert space techniques and 
do not take into account the values on the diagonals. 

In the present paper, we take a fresh look at the problem. The z-traces 
introduced in Section 2 are defined for a subclass (denoted by 9;) of the 
L2-space of p-th order symmetric kernels. Yi is made into a Hilbert space 
under a new inner product in such a manner that each of the k-th order z-traces 
(k = 0, 1, . . . , [ p / 2 ] )  is a continuous map from Yb to L2 [0, l]p-2k. 
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Results relating MSI to multiple Wiener integrals similar to those 
obtained in [77) are derived in Section 2. In Section 3, MSI are defined with 
respect to the Brownian bridge and a Hu-Meyer type formula is proved. The 
latter result is used in connecting the asymptotic distribution of a U-statistic 
with that of a V-statistic. Sections 4 and 5 are devoted to statistical applications 
of our results. In Theorem 4.3 the limiting distribution of a V-statistic is derived 
in terms of MSI. It is natural that Stratonovich integrals are involved 
since a V-statistic (in contrast to a U-statistic) allows repeated indices (see 
Definition 4.2). Hoeffding's pioneering 1948 result [3] is mentioned as 
a corollary to Theorem 4.3. An application to the asymptotic distribution of 
von Mises differentiable statistical functionals is made in Section 5. An 
alternative proof of Filippova's result is given in Theorem 5.3 vribere the limit is 
obtained as an MSI with respect to the Wiener process which is shown to be 
equivalent to the MSI with respect to the Brownian bridge obtained in [2], 

2. Hilbert space valued traces and multiple stochastic integrals. In this 
section we will introduce the multiple Stratonovich integral. This integral, in 
general, is different from that considered by Johnson and Kallianpur [7], 
though the two integrals agree for step functions. The Stratonovich integral is 
closely tied to certain Hilbert space valued traces. In this section we will 
introduce these traces and discuss their connection with the "limiting traces" of 
Johnson and Kallianpur. 

DEFINITION 2.1 (the class 9, of step functions). A real valued symmetric 
function f, on COY 11, is in the class 9, of step functions iff there exists 
a partition {0 = ti < .. . < tm < t,,,+l = 1)  of [O, 11 and constants {ai  ,,..., ip; 
i , ,  . . ., i ,  = 0, 1,  2, .. . , rn) such that 

where Ail = ( t i j ,  t i ,+ l ]  if 1 < ij < rn and A,, = (0) if i j  = 0, j = 1 , 2 ,  . . . , p. 

Let (a, 9, P) be a probability space and (W,; 0 < t < 1) be a Wiener 
process on this space. We first define the multiple Stratonovich integral with 
respect to the Wiener process for integrands in Yp. This integral turns out to be 
the same as the multiple Stratonovich integral of Johnson and Kallianpur 
which will be denoted by 6; ( - ) .  

DEFINITION 2.2 (multiple Stratonovich integral for functions in YP). Let 
f, E Yp be given by (2.1). Define the multiple Stratonovich integral (MSI)  of f, as 

We will now briefly recall the limiting traces as introduced in M and then 
give a representation for Sp(fp) .in terms of those traces. 
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DEFINITION 2.3 (limiting traces), Let f, be a symmetric function in 
L2 [O, 1]P. Fix k,  1 < k < b/2]. Suppose that for every complete orthonormal 
system (CONS) (#,I for L~ 10, 11 

4 i I @ & i l n  4 i k @ 4 i k @ # i z k + l m - -  $ z p  > & i m + l - . -  4ip 
converges in L2 [0, 1IP-" to a limit which is independent of the choice of the 
CONS (#J. Then we say that the k-th limiting trace for f, exists, which, by 
definition is the limit of the series in (2.3) and is denoted by 3%. S0fp is 
defined to be the same as f,. 

The following proposition relates the MSI 6, with the multiple integral of 
Johnson and Kallianpur, and therefore with multiple Wiener integrals through 
the Hu-Meyer formula. 

PROP~S~TIUN 2.4. Let f, E YP. Then ??' fp exists for all k3 0 8 k Q [ p / 2 ] ,  
and we h ~ v e  

Furthermore, 

(2.5) E C6, tfP)l2 G C { 1 f %.(ti ,  . . . , t,)dt, . . . dt, 
E0.13P 

where 

I j  is the j-foid multiple Wiener integral, and C is an appropriate constant. 

Proof. Let f, be given by equation (2.1). Define a CONS (e , )  for L2 [O, 11 
so that the first m elements of the CONS are given as follows. For 
i = 1, 2, ..., my 

where [Ail = (ti+ -ti). Then it is clear that 

9 - PAMS 15 
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where bi ,,..., i p  = ail ,,,., jp lAi,1112 . . . lAip1112, ij = 1 ,  2, . . . , m, j = 1, 2 ,  . . . , p. The- 
refore? by Proposition 3.2 of [7], T!Pfp exists for all k = 0, 1 ,  . . . , b / 2 ]  and, 
by Theorem 5.1 of [7], &(SF) exists and is given by the following formulas: 

~ e n c e  from (2.6) and (2.7) we have 
ni 

d i  ( f p )  = C Q i 1  ,.... i ,  (W(tit +I)- W(ti1)) - . . (W(tiP + 11- Wf;)) = dP (fp). 
i ~ , . , . , i ~ =  1 

Therefore (2.4) is proved. By the orthogonality of multiple Wiener integrals of 
different orders it follows from (2.4) that 

Finally, we obtain (2.5) from (2.9) and observing that 

= (  for all k = l ,  ...,Cp/ 21, 

the last step following from Theorem 3.1 of 171. m. 
The inequality in (2.5) will enable us to extend the domain of definition of, 

the integral to a larger class by a denseness argument. 
Let us first define the following inner product on Sp,: 

where ( a ,  .), is the inner product in L'[O, l ] ~ - ~  and kf;-[O, + R for 
k = 1,  2, . . . , Cp/2] is defined as 

(2.1 1) 'fp(tl, .-., tp-k):=fpi t l?  " ' 5  t k ,  t k ,  t k + l ?  '", t p - k )  

with Ofp = f,. Define k g p  similarly. 
Let 9: be the completion of YP in the above inner product. We denote 

( fp , fP)* ,P  by Ilfplli,,, The multiple Stratonovich integral for elements in Yf is 
defined as follows. 

DEFINITION 2.5 (multiple Stratonovich integral for elements in 9:). Let 
f, E Y,* and Iet (f,,*) be a sequence in Yp such that 11 - fpll ,,, converges 
to 0 as n + ao. From (2.5) we infer that 6,(f,,,) converges in L' (52) as n + CO. 
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Define the multiple Stratonovich integral of f' denoted by 6,(f,), as 

(2.12) s, (f,) : = L2 ID)- lim 6,  Cf,,n). 
n-'m 

There is a useful identification of an element of Y: with an equivalence 
class of functions which we discuss below. 

Let 9: be the class of real-valued measurable symmetric functions fp on 
[0, 1]P such that 

where kf is defined as in (2.11). We will employ the convention that 
9'; = 9'; = R and that II-II*,-, is the usual Euclidean distance in R: 

We introduce an equivalence relation (denoted by .Y) in 9'; as follows: 
For f,, g, E Y:, we say that f, - gp iff 

k f, = 'g, a.e. [O, l]p-k for all k (0 < k < Cp/2]). 

Denote by [f,] the equivalence class generated by f, under the above 
equivalence relation and let [Y:] be defined as 

(2.14) CeI: = ( C f p I :  f p f  9:). 

We will show now that the class Yf can be identified with [Y:]. 
Let g, E 9': and let {f,,") be a Cauchy sequence in 9, such that f,, -, g, 

in the norm described above. Since fp,, is Cauchy in the Il-ll,,*-norm, yp,  is 
Cauchy in the L2 [0, 1]f'-2k-norm, and hence there exists hp-, E L2 [Oy 
such that, for 0 < k < Cp/2j, ''J,,, + h,-, in L2 [0, 1lp-lt. 

Now define a real-valued function f, on the set ((t,, . .. , tJ: 0 < t ,  < 
< t, < ... < t, < 1) as follows: 

(2.15) f ,(t l , .- . , tJ  

h P ( t  . t )  if 0 d t, < t, < ... < t, 4 1, 
- hp-k(tl, t3, -.., t~k-1, t2k+lr ..., tp) 

if O < t l  = t 2  < t 3  = t 4  < . m e  <t2k-1 = t Z k <  t2k+l < - - . < l a <  Iy 

1 < k < b/21, 

0 otherwise. 

Extend f, to all of [0, 11, by symmetry. Then kf, = h p - k ~  L~ [Oy I]P-~, SO 

that fp€Y:. Identify the element g,~9',* with [fp]. With this identification, 
9; E [Yi]. 

Next we show that Yp is dense in [Y:], and since 9: is the closure 
of YP, we have [Yj] c Y:, proving that there is a 1-1 correspondence between 
9': and [ 9 : 3 .  
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P ~ o ~ o s m o ~  2.6. Let f': [0, llp -+ R be in Yj. Then there exists a sequence 
Ifp,,,) in yip such that 

Moreover, if gp - fp, then 

Proof. We need to show that there exists a sequence (f,,,} in YP, such that 
the following relatjons hold: 

5 [fb,n-fp]2(t13 tl, 7 tk; tlr, t2k+l9 -.-, tp)dtl..-dtkdt2t+i...dtp-)0 
[o,ijr-k 

as n - + m  for all k=l, ...,b/ 21. 

To motivate the idea of the proof we consider first the case p = 2. Note 
that we can find a sequence of step functions {g2 ,n)  on L2 [O, 11' and another 
sequence of step functions (g,,,) on L2 [0, 11 such that, as n + CQ, 

where S(t, s) is 1 if t = s and -is 0 otherwise. Then, clearly, as n -+ a ,  

S If~,n(t, s)-f,(t, s)12dtas + 0 and J ) f2,,(t, t)-fa@, t)12dt + 0. 
[0,lJ2 ro.11 

Hence we have the desired sequence, the only problem being that f,,, is not 
a sequence of step functions. Therefore we need to replace S (t, s) by a sequence 
of step functions converging to it. This is the essential idea of the proof. 

Returning to the case of a general p, let us assume for the sake of 
notational simplicity that p is odd. Note that for each fixed r, 1 < r < Cp/2], we 
infer, by the denseness of step functions on [0, in Lz [0, I]'-' that there 
exists .a sequence (g,-,,) of step functions, gp-,,,: 10, 11'-' + R, such that 

CgP-r,n(tl,t2,.-.rtrrt2r+1,..-rtp) 
[o.l]p-' 

, -fp(tl, tl, . . .:, tr, try tZr+lr  . .. , tp)IZdtl ... dtrdtar+l.. .atp -+ 0 as n + m, 

(2.17) [gp,n(tl, . .. , tg)-fp(tlr tp)ladtl. ..atp -, 0 as n + co. 

[O.J]P 

Let- L!,, = (0 = z, < z2 < . . . < 2,+ = 1) be a sequence of partitions 
of [O,1] (where the dependence of zi and 1 on n is suppressed in the notation) 
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with In,l-, 0 as n + a. We now construct a new set of sequences (hf!J and 
{f:!J of step functions on 10, 1IP, 0 G r < b / 2 ] ,  as follows: 

Define hL$ : = 0. For 1 < r < Cp/2], define 
r 1 

(2.18) h!!,,(s1, ..., sp) :=  1 if b ~ r - l r  S Z ~ ) E  U ( ~ t ,  z i + i I Z ,  
i =  1 

0 otherwise. 

The functions ht!n constructed above will play the role of the approximating 
sequence for the delta function. 

Alsoi define f  : = gp,n. For r = 1, 2 ,  . .., Cp/2], define 

We will show that f,," := f j!12]' is the required sequence, i.e., it satisfies 
(2.l6a) and (2.16b). In fact, we show something more, namely, for each fixed 
r (r = 1,  2, . . . , [p/2]) ,  as n 4 a, 

J E f  -fp12 ( ~ 1  r . , tpl d t l .  +. dtp  4 0, 
[ O , l l P  -- 

(2.20) 

J Cft!n-fP12(ti, t i ,  -. ., tm, tm,  t ~ ~ + i ,  . . ., tp)dtl .. .dt,dtzm+l ... dt ,  + 0 
[O,l]p-'" 

for m =  1 ,  2, ..., r .  

To prove (2.20), we will first show it for r = 1, and then assuming that it 
holds for r = 1, 2 ,  . . . , k- 1 ( k  - 1 < Cp/2])  we will show that it holds for r = k. 
This will prove that (2.20) holds for r = 0, 1, . .. , Cp/2]. 

Let us first consider the case P = 1. Note that from (2.19) we obtain 

where 

Since IQlp(A~l.O)) + 0 as n + a~ ( A  being the Lebesgue measure on [0, I]), the sec- 
ond and the third terms on the right-hand side of (2.21) converge to 0 as n + GO. 
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The first term on the right-hand side of (2.21) converges to 0 as n -+ cm by (2.17) 
and the fact that f :I, E gP,=. Again 

The last expression converges to zero as n + o ~ ,  by (2.17). Hence from the above 
observations we see that (2.20) holds for r = 1, 

Now suppose that (2.20) holds for r = 1, 2, . . . , k- 1, where k - 1 < [p /2 ] .  
We will show that (2.20) holds for r = k. Note initially that for m strictly less 
than k we infer using (2.19) and arguing as in (2.21) that, as n 4 m, 

(2.22) 

Also it can be similarly seen that 

Consider now the case r = k, .m = k. Then 

and the last expression converges to zero as n + & by (2.17) with r = k. 
From the above observations we see that (2.20) holds for r = k. Therefore, 

as remarked earlier, this proves that (2.20) holds for r = 1, . . . , b/2]. Sub- 
stituting r = Cp/2] in (2.20) we have, as n -, m, 
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j [ f ;%'=I' - f,] = (tl , . . . , t,) dtl . . . dtp 4 0, 
[O.l]P 

j ~$/'21)-fp]2(tl,t1,. . ., t,, t,, t2,+I,. . .,tp)dti .. .dtmdtZm+1 .. .dtp + 0 
[O,I]P - m 

for m = 1, 2, . . ., Cp/2]. 

Therefore the sequence f,,n : = f %j2]) satisfies (2.16a) and (2.16b). 
Henceforth, we will not distinguish between the equivalence class [fJ and 

the function f , c Y :  that belongs to it. We will write 6,( f,) for 6,([fp]). 
The . rn-ultiple Stratonovicb integral introduced in thls section can be 

represented as a sum of multiple Wiener integrals through a formula which is 
very similar to the Hu-Meyer formula (2.41, though the traces appearing in this 
formula are in general different from the limiting traces that appear in (2.4). We 
discuss below the appropriate notion of a trace for this setup. 

DEFINITION 2.7. Let f, E 9;. Fix f < k < Cp/2]. Then the k-th 2-truce of fb, 

denoted by zkfp ,  is an element of 9 i - 2 k  defined as 

Define zD f, : = f,. 

Note that if g, -- f,, then tkg, - tk fp for all k, 0 < k ,< Cp/2]. 

We state below the following important property of k-th z-traces as 
continuous maps. 

Ilzkfp,,-zkfpll,,p-2, + 0 as n + ao for all k ,  0 < k < Cp/2]. 

In  particular, the map zk: 9; + L2 [0, l ] p - 2 k  is continuous. 

The following proposition is the analogue of the Hu-Meyer formula 
for 6,. 

PROPOSITION 2.9. Let f , ~ Y i .  Then 

k = O  

Proof.  Observe that (2.24) holds for f p € Y P  by Proposition 2.4 and 
the fact that, for such functions, Tflf, is the same as 2fp. Next let 

be a sequence of functions in 9, such that 11 f,,. - f p l l  *,p + 0. Note that 
such a sequence exists from Proposition 2.6. It follows from (2.5) that 

L2 
6, ( fp,n) -, S, (f,). Furthermore, since (2.24) holds for each f,,,, we have 
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L 2 [ 0 , 1 ] ~ - -  
Proposition 2.8 implies that zk(fPrn)  ~ ( f p )  as n - oo. Therefore 
combining the above observations and taking the Iimit as n -, co in (2.25), we 
have the result, se 

Johnson and Kallianpus showed that the multiple Wiener integral for 
integrands which have limiting traces of all orders and are such that these 
limiting traces are consistent with the second order traces can be expressed as 
a sum of MSI of Johnson and Kallianpur. We show in the following 
proposition that a similar result holds for the multiple Stratonovich integrals 
introduced in this -section. 

PROPOSI~ON 2.10. Let fp E 9'; Then 

The proof of the proposition is similar to that of Proposition 2.9, i.e., (2.26) 
is first shown for elements in YP and then, by using Proposition 2.8, (2.5) and 
the usual denseness arguments, the result is extended to elements in 9':. 

It is clear from Proposition 2.9 that S",( f,) and S,(f,) will agree if the 
limiting traces sk ( fp$  are the same as the traces ?Ip. As we remarked earlier, 
T-traces are in general not the same as limiting traces, though for functions in 
9' they agree.' The following proposition gives another situation in which the 
two traces are the same. 

PROPOSITION 2.11. Let & E  L2 [0, lJP be symmetric and continuous. 
(i) Then the Sold and Utzet trace Tkfp (see [ll] for the definition of Tkf,) 

exists and is the same as zhf, for all k = 0, 1, ..., Cp/2]. 
(ii) Suppose that for some k (1 < k C Lp/2]) ? ? f p  exists. Then 

Proof. We will prove (ii). For the proof of (i), the reader may refer to [5 ] .  
We will assume that p is odd; the case where p is even can be treated in 
a similar fashion. The existence of svp implies that for every CONS (ei) for 
L2 [0, I] the following series converges in LZIO, l ] p - 2 k  as n + m: 

To prove (2.27) we will use the CONS introduced by Nualart and Zakai 
in 181. Let {n,) be a sequence of partitions of [0, 11 such that Inn] 4 0 
as n + oo. We assume that l7, is a refinement of Lf,- by only one point. Set 
l7, = (0, 1). Define el = 1. For m 2 1, em+, is defined as follows. Let a be the 
point of refinement in and assume that this point is in the interval 
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It can be shown (see [8]) that {em) is a CONS for [O,  11. 
Let the partition 17, be {0 = T, < . . . < zn+, = 11, where the dependence 

of T~ on n has been suppressed in the notation. Let A, ( + ]  and 
lAil:= T ~ + ~ - T ~ .  Let 

. . 

(2.29) sll. ( u Z k  + 1 - - - I up) 

We will show that for all n 2 l 

Observe that to prove (2.30) it suffices to show it for p = 2 and k = 1, for then 
the general result can be obtained by iteration and noting that the span of 
(]A1t-1/2 IA1, . . . , lAn1-1/2 Id,) is the same as that of (el, . . . , en). 

We will prove (2.30) for p = 2 (k = 1) by induction on n. Note that 
for n = 1 the result holds trivially. Suppose now that the result holds 
for n = m, i.e., 

Then 
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2 -- I f ( t l ,  t2)dtidtl.  
d2 - dl (dl.,, x{cr.dz, 

Again, 

the Iast equality following from (2.32). Therefore, in view of (2.31), we have 

Hence (2.31) holds with m replaced by m+ 1. As remarked before, this proves 
(2.30) for all n 2 1. Now from the definition of limiting trace and (2.30) we have 

We show now that Snn converges to zkfp as n + GO. Let E > 0 be arbitrary and 
let 6 > 0 be such that 

I f( t  ,,..., tp)-f(sl ,..., s p ) J < c  whenever maxIti-si l<6. 
l < i d p  

Let N > 0 be such that II7,l< 6 for all n 2 N. Then it can be shown from some 
straightforward considerations that, for all U E I O ,  l]p-2k,  

(2.34) ISnn(u)- f ( t l , t i  ,..., t k , t k ,u )d t  i . . . d t k l < ~  --for all n 2 N .  
CO,llk 

As E > 0 is arbitrary, Snm (*) converges to jro,llk f ( t l ,  t,, . . . , t,, t,, .) dt, . . . dt, 
uniformly, and therefore in L2 [0, l]p-2k. The above observation combined 
with (2.33) gives the result. 

COROLLARY 2.12. Let fp E L2 LO, 1 I P  be continuous and symmetric. Suppose 
that there exists a CONS { # i }  for L2 [O,  11 such that 

m m 

f p =  C i . i i  and C Iail ,..., ipI < a-  
i l ,  ..., ip= 1 i t ,  ..., i p = l  

Then s k f p  exists und we have T'?& = #'fp. 
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Proof,.  By Theorem 3.1 of [7] we infer that y!? fp exists, and then the 
result follows from Proposition 2.11. rn 

Except for the special situation considered above, the equality of ?? fp and 
zkfp is not clear. In general,' the following set of sacient conditions can be 
given under which the limiting trace equals the z-trace. 

P ~ o ~ o s ~ m l r  2.13. Let f E 9: be such that T'f fP exists. Suppose that there 
1 exists a CONS (4,) for L [O, l] such that: 

(8) the series xy (fp 4ii@ -.. @4i,> # i ,  It11 - - k, (tJ c o n v ~ e s  
pointwise -on [O, 1IP as n -+ co ; 

(b) zf , , . . . , ip=,  <fp, d i j@ . @(Pip) O i j 4 i z ( f 1 )  -. - #iU-i#ia(tt) #im+l ( f l k + l ) -  -. 
. . . &Itp) converges in L1 [O, l]p-k as n + m. -- 

Then rk fp = 3%. 
The proof, being standard, is omitted. 

3. Multiple integrals with respect to a Brownian bridge. Let (a, 9, P) and 
{w) be as in Section 2. Let W: = &- t W, be the Brownian bridge. In this 
section we will discuss multiple integrals with respect to WP. As in the case of 
the Wiener process, two types of integrals appear naturally. The first integral 
accounts for the diagonal contribution of the integrand and will be referred to 
as "the multiple Stratonovich integral (MSI) with respect to the Brownian 
bridge." It will be denoted by S:(-). The second integral - which ignores the 
contribution of the diagonals like ItB's integral - will be referred to as "the 
multiple It6 integral (MII) with respect to the Brownian bridge." It will be 
denoted by I: (+). We like to remark here that I: (-) is not to be interpreted as 
an iterated integral. The Brownian bridge process does not have orthogonal 
increments, hence it is not straightforward to define a stochastic integral for 
adapted or bounded predictable integrands. In this section we will define the 
multiple integral as in [6] for special elementary functions and then proceed to 
the general case via a denseness argument. We will also obtain a relation 
between multiple integrals with respect to the Brownian bridge and those with 
respect to the Wiener process. This will be useful in connecting our result on 
asymptotic distribution of von Mises functionals with that of Filippova (see 
Section 5). Finally we will obtain a formula like the Hu-Meyer formula, 
connecting 6: (-) and I: (.). 

DEFINI~ON 3.1 (multiple Stratonovich integral with respect to a Brownian 
bridge). Let fp E YP be given by equation (2.1). Define the multiple Stratonovich 
integral of fp with respect to the Brownian bridge (WP}, denoted by S:(fp), as 
follows: 

m 

(3.1) 6; (f,):= C ail,...,i, (WO (ti, + 1)- W0 ( t i l )) .  * .  (WO (ti,+ 1 ) -  W0 (ti,)). 
ii. .... i ,= 1 
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To extend the definition of the integral to a larger class we use the 
following moment bound, due to Filippova [Z], for 6; (f,) Ifp€ 9,): 

where C* is an appropriate constant. The moment bound (3.2) (which is the 
sa-me as the bound given in (2.5) excepting a constant) enables us to extend the 
definition of the integral to Y:, just as in the case of the Wiener process. 

DEFINITION 3.2 (multiple Stratonovich integral with respect to the Brow- 
nian bridge for integrands in 9':). Let fp:  [O, 1IP + R be in 9'; and f,,,, E Yp be 
such that I]&,.-fp[lp,, -, 0 as n + m. Define the rnultipb Stratonovich integral 
of fp with respect to the Brownian bridge { W f ) ,  denoted by 6; (f,), as the Iimit in 
L2(62) of SE(f , , , )  (which exists by (3.2)). 

Note that (3.2) holds also for f , ~  9':. 

The following simple relation between 6,( fp) and 6: (f$ will be useful in 
Section 5. 

PR~POSITION 3.3. Let fp € 9;. Then 

(3.3) a, (f ,)  = w : f f l  + c) w~ -' 6x0 vkP - 
k =  1 

and 

where for k =  1, ..., p-1 

fLO) : = f, and f : = j f, ( t l  , . . . , t,) d t .  
r0.11p 

Proof. Initially, let f , € Y P  be as in (2.1). Then 
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m 

+ c) w:-~ ail, ..., i p  (WO (ti1 + 1)- W o  (ti,)). . 
k = l  i r .  ..., i,= 1 

NOW, since 

we infer from (3.5) and Definition 3.1 that 

Let now fP€Y;, and let (f,,,,) be a sequence in YP such that 
11 fp;n-fpllp.* + 0 as n 4 co. It is a simple observation that 

I(f~,"k)-fjlP-k)Ilk,*+Oas n + a ,  for all k = 0 , 1 ,  ..., p. 

From (2.5) and (3.2) we infer that 6, (f,,,) + 6, (f,) and 6; (f $; k)) + 6: (f $'-k)) 
in L2 (a) as n 4 ao for all k = 1, . . . , p. Hence (3.3) follows for fp on noting that 
it holds for f,,, for all n and then taking the limit as n -, ao. Equation (3.4) is 
proved similarly. a 

We now introduce the multiple integral with respect to the Brownian 
bridge that does not account for the diagonals. To construct this integral we 
proceed as in [6 ] .  

DEFINITION 3.4 (the class of special elementary functions (9;)). A real- 
-valued symmetric. function f, on [0, 1]P is in 9'; 8 there exist Bore1 
measurable sets Ai (1 < i < m) with 

- 111 

U 11 and A i n A j = O  if i + j ,  
i =  1 

and real numbers ai ,,..., i p  (1 < ij  < rn, j = 1 ,  2, . . . , p) such that ail ,..., ip = 0 
unless i,, i,, . . ., i, are all distinct, and 

DEFINITION 3.5 (multiple It6 integral with respect to the Brownian bridge). 
Let f,~9; be as in Definition 3.4. Define the multiple It6 integral off, with 
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respect to the Brownian bridge, denoted by ig(f,), as 
rn 

(3-6) 1; ( f p )  := C ail ..... i p  W" (Ail) - W" (Aip)g 
ii, ..., ip= i 

where W0 (A) : = W(A) - A  (A) W1 for a Bore1 set A in [0, 11, and rZ is the 
Lebesgue measure, 

It is clear from the definition of 6; that if the sets {A i j )  above are intervals, 
then I: and S: agm. The following proposition shows that in fact the two 
integrals are equal for a general special elementary function. 

PROPOSITION 3.6. Let f,€YB, be as in Definition 3.2. Then I i ( f , )  = 
= d,O (f , )  a.e. 

The proof is straightforward and is omitted. 

Proposition 3,6 and (3.2) show that 

and therefore the definition of I: can be extended to L2 LO, f]P by the 
usual denseness arguments. MI1 for elements in L2 [O, lIP is denoted once 
more by I : ( - ) .  

PROPOSITION 3.7. Let f, e L2 LO, 1 JS Then 

The proof follows by first proving the result for fp in 9; and then 
extending in the usual manner. 

We close this section with a Hu and Meyer type formula for Brownian 
bridge with integrands in 9;. This formula will be useful in connecting the 
asymptotic distributions of U-statistics with that of V-statistics. 

PROPOSITION 3.8. Let f p ~ 9 ' i .  Then 

and 

The proof is omitted. 
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4. Asymptotic distrib~ntions of U- and V-statistics and stochastic integrals. 
In this section we will discuss the asymptotic distribution of a V-statistic under 
certain assumptions of square integrability of the kernel over the diagonal. The 
limit is a multiple Stratonovich integral with respect to the Wiener process. We 
also show in this section that a certain linear combination of related 
U-statistics has the same asymptotic limit as the original V-statistic. 

We begin by giving some basic definitions. Let (P, P) be a probability 
space and (w; 0 < t < 1) be a Wiener process on this space. Let W: = 
= - tWl be the Brownian bridge. The integrals I , ( - ) ,  6, (A), S",.), I:( .) ,  Sg (.) 
are to be -understood as in Sections 2 and 3. Let (QiY S l ,  PI) be another 
probability space. 

DEFINITION 4.1. Let XI, X,, ... be i.i.d. random variables defined on 
( a l ,  S1), with the common continuous distribution function F. Let f,: Rp -, R 
be a symmetric function. The U-statistic {(U, (f,)) corresponding to the kernel f, 
is defined as 

where %':= {(il, ..., i p } ~ { l ,  2, + . + ,  @Ip; it # i,,, if 1 # m; 1, rn = 1, 2, ..., P } .  
I 

I 
DEFINITION 4.2. Let XI,  X,, ... and fp be as in Definition 4.1. The 

V-statistic (K(f,)) corresponding to the kernel f, is defined as 
n 

(4.2) K(f,) K(Xl,  ..., X,):= n-P C fp(Xii, .-., xi*)- 
i i ,  .... i, = 1 

From now on, we will assume that (Xi) is an i.i.d. sequence of U [0, 11 
variates. We note that all the results in this section with obvious modifications 
hold for a general i.i.d. sequence (i.e. not necessarily U [0, 11 variables) with 
a continuous distribution function. 

The central theorem of this section is Theorem 4.3 stated below. To prove 
the theorem we will need several lemmas which we give following the statement 

I of the theorem. Many of the arguments in Lemmas 4.8-4.12 are contained in 
I 
! the work of Rubin and Vitale [9] but for the sake of completeness we have 

reproduced those arguments here. After proving the lemmas, we then give the 
proof of the theorem. Corollary 4.13 is a well-known result due to Hoeffding 
[3], which is a direct consequence of Theorem 4.3. Finally, Proposition 4.14 
shows that the asymptotic distribution of an appropriately centered and 
standardized Vstatistic is the same as that of a certain linear combination of 
U-statistics. 

Rubin and Vitale [9] derive the asymptotic distribution of a U-statistic by 
using the Hoeffding decomposition for the kernel, i.e. expressing the U-statistic 
as a finite sum of lower order U-statistics with centered kernels, each of 
which - appropriately standardized - has a multiple Wiener integral as the 
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asymptotic distribution (see also [I]). We describe now the notion of the 
centering of a kernel, which will also be useful in deriving the asymptotic 
distribution of a V-statistic. 

Let f,: LO, 1]P + R be a symmetric integrable function. We define the 
"centering"0f f,, denoted by fP,=: [0,  1IP 4 R, as follows: 

where Y , E  [O, 1lm and the outer summation in (4.3) is over all permutations 
K of the p symbols (1,  2, Note that when p = 1, 

1 

f , . C ( . l >  =f,(.,)- J ~ , ( Y > ~ Y ,  
0 

and when p  = 2, 
1 1 

Also, for r = 1 ,  2,  . . . , p - 1 define the function f F): LO, + R as follows: 

Denote the centering of the function fg) by fg i ,  i.e., 

(4.5) f!!c(x1, -.., xp-J 

where n, runs over all permutations of the p-r symbols (1 ,  2, . . . , p-  r), and 
define 

f ;:; : = f,.c. 

In Lemma 4.4 we represent an integrable kernel fp as a linear combination 
of f$'s which is precisely the Hoeffding decomposition for the kernel f,. We 
now state our main theorem. 

THEOREM 4.3. Let f,: LO, l j P  -, R be a measurable, symmetric function 
satisfying 

(4.6) S f ( x l ,  x l ,  . . . , x,., xr, . . .) a x l . .  . dx, < a, 
[ O # l F  
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where xl, xZ, , . . xr appear s l y  s . ~ ,  . . ., sr times, respectively, for all (sly . .,. , s,) E 
E 2; such that s, +. . . + sr = p land for all r = 1, 2 ,  . . . , p.   hen 

and 

(4.7) .lt2 I[v.(fp)- 1 f p ( ~ ) d x J ~ ~ ~ , ( f ~ : l ~ ) ;  
/O,llP 

moreover, .if for $xed 0 < k < p we have f gC-j) = 0 a.e. in [0, l]j for all 
j =  l , 2 ,  ..., k,  then 

LEMMA 4.4. Let f, be as in Theorem 4.3. Then 

where x runs over all the permutations of the p symbols ( 1 ,  2 ,  . . ., p ) .  

Pr o of. By substituting the expression for f F,)C from equation (4.5) on the 
right-hand side of (4.9), we have 

I0 - PAMS 15 
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By substituting r+s = k and rearranging the summations in (4.101, we have 

LEMMA 4.5. Let (4,)F be a CONS in LZ [0, 11 such that @, = 1. Let M be 
a $xed positive integer and let g,, . . . , g, be real-valued continuous functions 
defined on R". Let (Y,,, . . ., Y,,) be a vectw sequence of random variables on 
(a,, Pi, PI) such that each component Y* of the vector converges in probability 
to a constant cj .  Then 

The proof is straightforward and is omitted. 

LEMMA 4.6 {Filippova [Z]). Let cnm be a double array of square integrable 
random variables and 5, be a sequence of square integrable random variables 
defined on (SZ , ,  S,, PI) so that 5, + 5, in L' as m + CO, ungormly in n. Then 
L(&,,, tn) + 0 as m + m, uniformly in n, where QX, Y) is the Ltvy  distance 
between the laws of X and Z: 

For the proof see [2]. 

LEMMA 4.7. Let t,,, r, be square integrable random variables on 
(GI, PI, PI) for n, m >, 1 such that <,, + cn in L~ as m + ao, uniformly in n. Let 
q,, t] be square integrable random variables on (a, 9, P) such that t,, -r q ,  in 
distribution as n + co for each fixed m and q, + q in ,C2 as m + CO. Then cn + q 
in distribution as n + co. 

The proof being standard is omitted. 

The following lemma is essentially contained in the work of Rubin and 
Vitale 191. 

LEMMA 4.8. Let f, be as in Theorem 4.3, and let {$J be a CONS for 
L2 [O, 11 with 41 = 1. Then, as M + oo, 
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uniformly in n for all r = 1 ,  2 ,  . .. , p, and k < Cp-r]/2, where 
p - r - k .  9 = ((j .. ., jk, j Z R + I y  ..., jp-Af (1, ..., n }  

j ,+j, , ,  i f i # r n ;  i , m =  1 ,  ..., k Y 2 k + l  ,.-. , P - P ) }  
and 

The dependence of the coeflcients bi:! .,&, ik,,,, ,..,, ip-r  on r has been suppressed in 
the notation for simplicity. 

Furthermore, 

uni$ormly in n for all r = 1,2, . . . , p, where 

Proof .  We will only prove (4.1 1). The proof of (4.13) is similar. Note 
initially that since 4, = 1, we have 
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where 

s- 1  
times 

Hence we need onIy to show that 

converges in L2, uniformly in n as M + 00. 

Again, if %' is a finite subset of the set {(is, . . . , ik, i,, +, , . . . , ip-,) 6 
€12, 3 ,  .. . } p - r - k - S + l  }, then 

where x runs over all the permutations of the p - r- k -s + 1 symbols 
(s, s+1, .. ., k ,  2k+1, .. ., p-r). 

Again, since E (#i (X,,)$j(X,)) = 0 whenever i, j > I and (i, u) # (j, v) ,  the 
right-hand side of the above inequality equals 
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Now, since 
m 

the abovejnequality shows that S, is a Cauchy sequence in L2, uniformly in n, 
and therefore S ,  converges in L2, uniformly in n. The lemma now follows from 
earlier discussions. 

LEMMA 4.9. Let {bi) be a CONS for L2[0, 11. Then for ij 2 1 (j = 1, 2, . . ., u) 

1 P 

;;;ii 
&) . . . qjL (XI) 4 0 as n + m whenever u > 2. 

j= 1 

The proof is straightforward and.is omitted. 

LEMMA 4.10. Let {$J  be a CONS for ~ " 0 ,  11 with 4, = 1. Then: 
(a) For all u 2 3, i,, ..., i, > 1 and r = 1, 2, ..., u-2, 

n P 
(4.15) n-"I2 C $il@...@$i,(Xt),...y X p ) ) + O  as n + m  

j1, ...,ju= 1 
j 1 + j m  whenever max (sly . . . , s,) > 2, 

where Xfsl) = (Xjl, Xjl, . . .) is an s,-dimensional vector, 1 = 1, 2, . . . , r, and 
sly .. . , s, are positive integers with XI=, si = u. 

(b) For all u 8 2 arid i,, . .. , i, > 1, 
n 9 

(4.16) n - u/2 C 4il (XjJ - - $iu (XjJ + lu ($il @ 8 4iu) 
j t ,  ...,ju= 1 

k + i m  

and 

for all b = 1, 2, . . ., [u/2], 

where aigj is the Kronecker delta function, i.e., .2iisj = 0 if i # j  and 6i,i = 1, and 
... @#iU) is understood to be 1. 

Proof .  We will prove the lemma by induction on u. We observe first that 
(a) holds for u = 3, since max (sly . . . , s,) > 2 implies in this case that r = 1 
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and s, = 3, and therefore (4.15) follows from Lemma 4,9. We also note that for 
u = 2 the left-hand side of (4.17) is equal to n- l EAll (Xjl) (Xjl), which 
clearly converges in distribution to Si, , i ,  by the law of large numbers. And for 
u = 2 the left-hand side of (4.16) is equal to 

j ~ , j z =  1 
which is the same as il +il 

The last expression converges in distribution by the central li.mit theorem and 
the law of large numbers to I, (4i,)11 (t#i,)-Sil,i,, which is precisely 
12(4r,6q5i2). Hence (4.16) and (4.17) hold for u = 2. 

INDUCTION HYPOTHESES. Suppose that p > 3 is such that (a) holds for 
3 < u < p and the relations (4.16), (4.17) hold for 2 6 u < p - 1. 

We will now show that (a) holds for u = p+ 1 and the relations (4.16), 
(4.17) hold for u = p. 

Let us first consider (a). For the proof of the relation (4.15) for u = p+ 1 
and r = 1, 2, . . ., p-1 we will show that (4,15) holds for r = 1 and under the 
assumption that it holds for r = 1,2 ,  . . . , m- 1 and m < p - 1 we prbve that it 
holds for r = m. Note that from Lemma 4.9 it follows that (4.15) holds for 
r = 1. Suppose now that, for fixed m < p - 1 ,  (4.15) holds for 
r = 1, 2, . . . , m- 1. Consider now r = m and assume without loss of generality 
that s, > 2. Then 

n 

si times 

where Xjl, Xj2, .. ., Xj, appear s,, s,, .. ., s, times, respectively. Note that the 
last term. in (4.18) converges to zero in probability, since (4.15) holds for 
r = m - 1 and u = p + 1 by assumption. 

Now we will show that the first term in (4.18) converges to zero in 
probability. To see this, observe initially by Lemma 4.9 that 
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Hence we only need to show that 

(Xj2, Xj3, . . ., Xjm appear s,, s,, .. ., s, times, respectively) converges in dis- 
tribution to a finite random variable as n + co. 

Consider first the case max (s,, . . . , sd > 2. Then, since (a) holds for u < p 
by the induction hypothesis on (a), we have 

where Xja, X j 3 ,  . .., Xjm appear s,, s,, .. ., sm times, respectively. 
Finally, consider the case max (s2, . . . , s d  6 2. Then, since (4.16) and (4.17) 

hold for u < p-1 by the induction hypothesis, we see that 
n 

n - t ~ +  1 -s1)/2 41,+,@..- @$i,,+,(XI., xj29 ..., Xjmr Xjm) 
jz, .... j p +  i = 1 

i l *  jm 

converges in distribution as n -r m, where X,,, Xi,, .:., Xjm appear 
s,, s,, . . ., sm times, respectively. 

Therefore, the above observations imply that 

n-sl/2 x #i1Bm - - @#i8JXj1y Xji? - . - I  
j1= 1 

and 

converge to 0 in probability as n + a, where Xjl, Xj2, .. ., Xjrn appear 
sly s, , . . . , s, times, respectively. As remarked earlier this shows that 

where Xjl , Xi,, . . ., Xjm appear s,, s,, . . . , s, times, respectively. Hence (4.1 5) 
holds for r = rn. Therefore we have proved (a) for u = p+ 1. 

Now we will prove (4.16) for u = p. For the sake of simplicity we assume 
that p is odd, the proof in the case when p is even is similar and is omitted. We 
observe that 
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The proof of this observation uses the hypothesis that (4.15) holds for 
3 < u < p and that (4.16), (4.17) hold for u 6 p - 1. The details are left to the 
reader. 

Observe next that the right-hand side of (4.19) equals 

By Lemma 4.5 and the law of large numbers the above expression converges in 
distribution to 

Ipi2l  1 
C C,k ( -  Ilk TxdiNl , in (2 ,  - . . Sin(z,- 1l,i.,[m) 11 Oiz[,+lJ -11 ($in(p,) 

k =  1 P. . 
+I1 (4i1). . -11 (4ip). 

More~ver, from Theorem 6.1 of [7] we obtain 

= af, (fik (4ii @ . . . @4ip)) 
and 

We remind the reader that the 6 appearing on the left-hand side of (4.20a) is the 
Kronecker delta function, while Sf, on the right-hand side of (4.20) refers to the 
MSI introduced in Section 3. Therefore, as n -t co, 

the last step following from Theorem 6.1 of [7]. Hence (4.16) is proved 
for u = p. 
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Finally, consider (4.17). Then, just as in (4.191, we have 

And now the proof for (4.17) for u = p follows exactly along the lines of the 
proof for (4.16). Hence, assuming that (a) holds for u = p and (4.16), (4.17) hold 
for u = p - 1, we have shown tbat (a) holds for u = p f 1 and (4.16), (4.17) hold 
for u = p. The proof therefore is complete by induction on u. rn 

LEMMA 4.11. Let fp  be as in Theorem 4.3. %en 
n P 

(4.2 1 )  n P 2  f~~(~$l~,...,X~))-0 u s n - c c  
jl, ... ,jb= 1 

h * j m  
wheneuer max(sl, ..., sb) > 2, where s,, ..., sb are positive integers with x:=l si = p-r. 

Proof. Let (&) be a CONS for L2 [O, 11 with = 1. Define 

where xp)  = (xk, xk, . . .) is an s,-dimensional vector for k = 1, 2, . . . , b. Then 

where the summation converges in L2 [0, lIb.  Since X,'s are i.i.d. .uniform 
vaniates, we infer from (4.23) that -. 

= C n - ( p - r ) 1 2  C 4ii (Xji). $ i b  ( X j b ) ?  

il ,..., i b =  1 j r ,  ...,jb= 1 
jl + j m  

where the summation converges in L2(S2). Note that from (4.16) we obtain 
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Therefore, since p-r is strictly greater than b, we have 

Therefore, for all M 2 1, 

Furthermore, arguments as in Lemma 4.8 show that as M .+ cc 

P 
in L2, uniformly in n. Therefore combining (4.25) and (4.26), we see that An + 0 
as n+m. rn 

LEMMA 4.12. Let f, be as in Theorem 4.3. Then 

for all r = 0 ,  1 ,  ..., p-1. 

Proof.  For the sake of s.implicity of notation we will assume that p  - r  is 
odd. The case when p  -r is even can be treated similarly. Furthermore, we can 
assume that p-r is greater than one or else the result follows from the central 
limit theorem. Observe first that from Lemma 4.11 and a combinatorial 
argument we obtain 



Hilbert space wlued traces 155 

Expanding the function f t!c (x, , x, , . . . , x,, x,, x2k + . . . , x,-,) in terms 
of the CONS we have 

the above series converging in L2 (a) for each fixed FZ, where bl:!...,ik . 2 k t  l. . .w.lp-r 

are given by (4.12) and (4.14). Note that the inner summation in (4.29) runs 
from 2 to ao, since 4, = 1 and ji f$!c(x, y )dy  = 0 for all X E  [ O ,  l ]P-'- l .  

Using (4.161, we observe that if exactly s elements (say, 1, . . . , s) 
amongst ($,,, ..., q!qk) equal 4 ,  (= I), where s < k, then as n 4 a, the 
expression 

converges to zero in probability, and if all k elements ..., # i k ]  are 
identically equal to 1, then this expression converges in distribution to 
Ip-,s- 2k (4iart l @  . . . @ # i p - $ .  Therefore, if M is a fixed positive integer, we infer 
from Lemma 4.5 that for k = 1, 2, . . . , [(g -r)/2], as n -, a, 

In a similar fashion we can show that as n + oo 
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Therefore once more from Lemma 4.5 we have 

[ ( P  - r)121 

i - p i  + Cp-bk 
i l .  ..., ip-*=2 k = l  

Note that since the conditions of Lemma 4.7 are easily satisfied in this 
case, making the obvious identitications, M can be replaced by co in (4.32). 
Substituting the expression for the Fourier coeficients b$f!,..,ik,i2r+ l,,,,,iPPr in (4.12) 
and (4.14), we see that the last expression in (4.32) (with M = co) is equal to 

which 'is the same as 

Note also that from (4.29) it is seen that the left-hand side of (4.32) (with 
M = co) is equal to the summand B, on the right-hand side of (4.28). Therefore, 
as n -, co, 
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And finally from (4.28) we infer that (4.33) implies 

We are now ready to prove our main theorem. 

Proof  of Theorem 4.3. Note initially that from Lemma 4.4 we have 

The second equality in the above set of equations follows from equation (4.3). 
Using (4.27) we obtain 

Moreover, if f Ei I ) ,  f jfl; 21, . . . f are identically 0, then 

From (4.27) it follows, that the first term on the right-hand side of 
(4.35) converges to 0 in probability and the second term converges in 
distribution to 
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as n + m. Therefore we have shown that 

The next result is due to Hoeffding (see [3], Theorem 7.4 and remarks on 
p, 306). We record it here (in our notation) since it is a natural corollary to 
Theorem 4.3. 

COROLLARY 4.13. Let fp be as in Theorem 4.3. Suppose that Il f gCC ')I] # 0. 
.. 

Then both 

are asymptoticaily normal with mean 0 and variance p2 11 f $ - 1 ) 1 ( 2 .  
P r o  o f. Applying Theorem 4.3 we have 

By Lemma 5.7.3 of [lo] we obtain 

(4.37) n'/2[~(fp)-U,,(fp)]+0 as n + w .  
Therefore from (4.36) and (4.37) we have 

The proof is completed by observing that pi, (f ::;'I) is normally distributed 
with mean 0 and variance p2 11 f If:; rn 

The following proposition relates the asymptotic distribution of V-statis- 
tics with that of a linear combination of U-statistics. 

PROPOSI~ON 4.14. Let fp be as in Theorem 4.3. Suppose that f g;" = 0 a.e. 
in [0, l]j for all j = 1 ,  2 ,  ..., r-1; r < p. Then 

has the same asymptotic distribution as 

The proof makes use of the Hu-Meyer formula (equation (2.24)) and the 
fact that the asymptotic distribution of U, is a multiple Wiener integral. 

5. Asymptotic distribution of von Mises differentiable statistical fumtions. 
In this section we recall Filippova's result [2] on the asymptotic distribution. of 
a differentiable statistical function and give an alternative proof using results 
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from Section 4. Filippova obtained the limit as an MSI with respect to 
a Brownian bridge. In this section we obtain the limit as an MSI with respect 
to a Wiener process and show that the two integrals are the same almost 
surely. 

We will assume in this section the setup of Section 4. Let 9 be the class of 
all real-valued measurable functions defined on R. Let F be the distribution 
function of the i.i.d. 1 [ O ,  l] variates X I ,  ..., X,. Denote the empirical 
distribution function based on XI, . . . , X ,  by F,. A real-valued function T on 
B will be referred to as a statistical function. The following definitions are taken 
from E2]. - - 

DEFINITION 5.1. A statistical functional T is called p times direrentiabIe at 
the paint G E ~  with respect to the set Yl 8,c 3, which is assumed to be star 
shaped at the point G (i.e., if GI E $ ~ ,  then G+ t ( G ,  -G)€g1 for all t E [0, I]), if 
the following conditions are satisfied: 

(1) For any t E [O, 11, m = 1,2, . . . , p, and any G ,  E 

dm - T [ G +  t ( G ,  - G ) ]  
dt" 

exists. 
(2) There exist functions T(")(G): R" + W, m = 1,2, . . ., p ,  such that for 

any G 1  E 9', the relation 

6" 
(5.1) - TL-G+t(G,-G)II,=* = j T r n ( G ) ( y ) d y  dt" R'" 

holds. 

DEFINITION 5.2. A statistical functional T is called a von Mises functwnal of 
order p at the point F if: 

(1) there exists a star shaped set c B at the point F such that 

(2) the functional T is p times differentiable (in the sense of ~efinition 5.1) 
at F with respect to g1; 

(3) for any s>O,  6 > 0 ,  and m = 1 ,  ..., p, 

Filippova's theorem ([2], Theorem 4) gives the asymptotic distribution of 
nPt2  [T(FJ- T ( a  (where T is a von Mises functional of order p + 1 with T(")(F) 
identically equal to zero for rn = l , 2 ,  .. ., p-1) as an MSI with respect to 
a Brownian bridge. We now give an alternative proof of Filippova's theorem and 
in addition we obtain the limit as an MSI with respect to the Wiener process. 
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THEOREM 5.3. Let T be a von Mises function of order p +  1. Suppose that 
T ( ~ ) ( F )  = 0, m = 1, 2, . . . , p -  1. Denote T ( P ) ( F )  by p! f,. Suppose that fp  satisfies 
the conditions in (4.6). Then 

where f,, is the centering o f f , .  

Proof. Observe initially that from Theorem 2 of [2] we have 

Note that when p = 1, the theorem follows by applying the central limit 
theorem. Therefore, without loss of generality assume p > 1. Then 

+ (-1)" j f , ( y ) d y .  
10,l lP 

A further simplification yields the following equality: 

From equation (4.3) it follows that the expression on the right-hand side 
equals 

Therefore, in view of Lemma 4.12, we have 



Hilbert space valued traces 161 

Finally, we show now that 6,(fp,3 is the same as d;(f,). Using (4.3) 
we have 

The last equality follows from Proposition 3.3. Hence, taking the limit in (5.4) 
as n 4 oo and using (5.7) and (5.61, we have the result. 

COROLLARY 5.4, Let T be a von Mises functional of order 3. Suppose that 
T(lb (F) = 0. Denote T(2) (F) by 2 f,. Suppose that f, satisfies the conditions in 
(4.6) with p replaced by 2. Let fzsc be the centering o f f , .  Then 

where ( x ; , ~ )  is a sequence of independent X: trariates and Ak are the eigenvalues of 
the integral operator corresponding to f,,,. 

Pro of. Note that, by Theorem 5.3, 

Again, from Proposition 2.9 we obtain 

Let (e , )  be a CONS of L2 [0, 13 such that ei is an eigenvector corresponding to 
the eigenvalue Ii. Then 

m a, m 

1, (fi,c) = 1, ( C Aiei@ei) = C 4 1 ,  (e l&+)  = C A, [ ( I ,  (ei))" 11 
i =  1 i =  1 i =  l 

Substituting this in (5.9), we have the result from (5.8). al 

11 - PAMS 15 
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Remark  5.5. This result is different from Serfling's Theorem 6.4.1 
in [lo], which says that the asymptotic limit is an infinite linear combination 
of independent X: variates. The proof there seems to contain an error since 
it assumes that ~ ~ f , , ~ ( x ,  x)dx  equals the trace of the integral operator 
induced by fin,. This is in general false as discussed in Section 2. Clearly, 
if j:f2,c(x, x ) d x  does equal the trace of the integral operator associated 
with f2,=, then 

and therefore 

The statement (5.10) is true if, e.g., there exists a CONS (4,) of L2 LO, 11 such 
that the Fourier coefficients off,,, in the expansion with respect to the basis 
(# i@#j}  are summable or, more generally, if the sufficient conditions given in 
Proposition 2.13 with f, replaced by fZec hold. 
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