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LmYRB DB~NSPON OF BROWNIAN TRACE* 

Abstract. Suppose that X is a two-dimensional Brownian mo- 
tion. The trace X [ O ,  I] contains a self-avoiding continuous path 
whose Hausdorff dimension is equal to 2. 

1. htmdurction. The question studied in this paper has been inspired by 
a series of recent articles of K. Hattori, T. Hattori and Kusuoka (see [TO]-[13]) 
on self-avoiding processes on fractals. Various dimensions of such processes are 
of interest to physicists. It is clear that the Hausdorff dimension of any 
self-avoiding path within a fractal set cannot be larger than that of the fractal 
itself. Can the two dimensions be equal? The answer depends on the fractal set. 
We will consider self-avoiding paths inside a Brownian trace. 

Recall that a set is called a Jordan arc if it is homeomorphic to a line 
segment. 

DEFINITION. The supremum of Hausdorff dimensions of all Jordan arcs 
contained in a set K will be called the labyrinth dimension of K .  

THEOREM 1. Suppose that X is a Zdimensional Brownian motion. The 
labyrinth dimension of X([O, 11) is equal to 2 a.s. 

Our proof of Theorem 1 actually yields a much stronger statement. Taylor 
[I81 proved that the exact Hausdorff measure for 2-dimensional Brownian 
trace is given- by 

# (u) = u2 Iog (l/u) log log log ( l /u)  

(see also [16]). For the definition of the exact Hausdorff measure see, e.g., [17]. 

THEOREM 1'. Let X be a 2-dimensional Brownian motion. With probability 1, 
for every E > 0 there exists a Jordan arc r c X ([0, 11) such that the #-measure 
of X([O, I])\r is less than s. 

* Research partially supported by NSF grant DMS 91-00244 and AMS Centennial Research 
Fellowship. 
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It is elementary to construct a set with Hausdorff dimension 2 whose 
labyrinth dimension is equal to 1. 

Our proof of Theorem 1' uses two non-trivial facts about Brownian paths. 
First, the exact Hausdorff measure of the set of all double points is different 
from the exact Hausdorff measure of the whole Brownian path [l6], [la]. 
Second, 2-dimensional Brownian paths have no double cut points [6]. Since 
the last result is one of the key ingredients of our proof, we will take this 
occasion to correct some results about cut points originally published in [4]. 
Theorem 2.2 of Burdzy [4] is correct but its proof is false. Theorem 2.3 of the 
same paper is fabe. Corollary 2.1 is true but its proof is false. See Theorems 
2 and 3 below for the correct statements. The proof of Corollary 2.3 in [4] is 
based on incorrect Theorem 2.3. The corollary is in fact true - its proof may 
be based on Theorem 4 below. The error appears on p. 1029,I.-2. in [4] - this 
form of the scaling property may be applied only in the 3-dimensional space. 

Let X be the standard d-dimensional Brownian motion. We will say that 
X([O, 11) has a (global) cut point if for some t ~ ( 0 ,  1) we have 

X([O, t)) n X((t, 11) = 0 and X(t) # Xb)  for all s # t, S E  [0, 11. 
One-dimensional Brownian motion does not have cut points because it does 
not have points of increase (see the original proof of Dvoretzky et al. [9] or 
more recent proofs of Adelman El] or Burdzy [5]). If d 2 4, Brownian motion 
has no double points [8], so it obviously has cut points. It turns out that they 
also exist for d = 2 and 3. Here is a slightly stonger statement. 

THEOREM 2. Suppose that d = 2 or 3. With probability 1, for every E > 0, 
there exists t E (0, E) such that X ([0, t)) n X ((t, 11) = 0 and X (t) # X (s) for 
s # t, S E  10, I]. 

Suppose that K c Rd and X E K  (we will be mostly concerned with 
K = X([O,  11)). We will say that the order of rarn$cation of x in K is less than 
or equal to n if for every E > 0 we can find (at most) n points y,, . . . , y,, different 
from x such that the connected component of K\{ y,, . . . , y,) which contains 
x has diameter less than E (see 133). The order of ramification of x is equal to 
n if it is less than or equal to n but not less than or equal to n-1. 
The definitions of infinite and countable order of ramification are similar. 
Theorem 2 clearly implies 

COROLLARY 1. Suppose that d = 2 or 3. With probability 1, the order of 
rarn$cartion of X (0) in X ([0, 11) is equal to 1. 

When we replace X(0) with an arbitrary X(t) in this corollary, the 
conclusion no longer holds in 2 dimensions. 

THEOREM 3. (i) Suppose that d = 2. With probability 1, for almost every 
t ~ ( 0 ,  I), the order of ramijkation of X (t) in X (LO, 11) is ininite. 

(ii) Suppose that d = 3. With probability 1, for almost every t ~ ( 0 ,  I), the 
order of ram$cation of X(t) in X([O, 11) is equal to 2. 
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We will not supply a proof of Theorem 3 (ii). The proof of Theorem 2.3 in 
[4] applies here with only minor modifications needed for the 3-dimensional 
process. As we have already mentioned, there is no problem with scaling in the 
3-dimensional case. 

We would like to pose the following 

PROBLEM. Suppose that X is a Zdimensional Brownian motion, Is it true 
that with probability 1, for almost every t ~ ( 0 ,  11, the order of ramification of 
X ( t )  in XQO, I]) is countable? 

We will say that x = X ( t )  is a local cut point for X ( [ 0 ,  11)  if X (t) # X (s) for 
all s # t, s E-LO, 11, and for some s > 0 we have X ((t  - E ,  t)) n X ((t, t + E))  = 0. 
We have rather easy -- 

THEOREM 4. Suppose that d = 2 or 3. The set of Eocal cut points is dense 
in X ( [O ,  I]) ,  with probability 1. 

A version of the following result is needed in the proof of Theorem 2. We 
state it in a form which seem to have some interest of its own. The ball and 
sphere with center x and radius r will be denoted by B ( x ,  r)  and d B ( x ,  r), 
respectively. 

PROPOSITION 1 .  Wi th  probability 1, for infinitely many integers k,  the 
3-dimensional Brownian motion does not return to aB(0,  k-1) after hitting 
dB(0 ,  k). 

We will give a very elementary proof of Proposition 1 .  See [I41 for 
a number of related results. 

The next section contains the proofs. We start by proving Proposition 1 and 
Theorems 2-4 since these proofs are much shorter than that of Theorem 1'. 

We would like to explain the main idea of the proof of Theorem 1. Recall 
that the Hausdorff dimension of a Brownian path is equal to 2. We will take 
X [0, I ] ,  remove some small pieces of this path, and reconnect the remaining 
ones to obtain a self-avoiding path with large Hausdorff measure. In order to 
visualize this process, consider first a smooth curve which makes a single loop 
in the shape of the letter a. We can remove a tiny neighborhood of the 
intersection point and replace it with two short non-intersecting -he segments 
so that we obtain a self-avoiding path containing most of the original path. In 
this case we had to add two extra line segments but we do not have to do it in 
the case of the Brownian path because such a path does not have double cut 
points, and hence there are always some paths around an intersection point. 
We can limit the changes to a small subset of the path as the set of all 
intersection points has a smaller exact Hausdorff measure than that for the 
whole path. A Brownian path contains infinitely many loops which contain 
and intersect other loops and this presents a combinatorial problem much 
harder than the one suggested by the example with the u-shaped curve. This is 
the main reason why the proof of Theorem 1 is quite long. 
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We would like to thank Otner Adelman for the most helpful discussions 
related to cut points. We are grateful to Robin Pemantle and Vic Reiner for 
supplying a proof of Lemma 2.7 which is one of the key steps in the proof of 
Theorem 1. 

2. Proofs. See [7] for a review of h-process techniques used in our paper. 
The distribution of an h-process will be denoted by Pi. 

We wiII use the following "scaling property" of h-processes. 

LEMMA 2.1. Suppose that c ~ ( 0 ,  co), D c @ is a Greenian domain, h is 
a psitioe supt?rharrnonicfinction in D, and p is a measure supported in 5. Let 
$2 be the space of paths continuous until their lgeetime and let F be the BoraI 
a-field in Q. Suppose that A €9 and de$ne -- 

h, (2) = ?a (z/c) for z E cD, ~r, (B) = p (B/c)  for B c cD,  
' 

A, = ( ~ E B :  3w1 E A such that w ( t )  = cw ,  (t ic2) for all t). 

Then Pf: (A3 = P# (A) .  

P r o  of. The lemma follows from the scaling properties of the Brownian 
motion and harmonic functions. 

Proof of Proposi t ion  1. Let A, denote the event that a 3-dimensional 
Brownian motion Z does not return to aB(0,  k-  1) after hitting aB(0,  k). 
Let h, be the restriction of the function h(x)  = k/Jxl to the set D, = {[XI > k} .  
Note that h, is harmonic in D, with boundary values 1 on {lxl = 1 )  and 0 at 
infinity. If 1 yl = k, then 

Note that the formula is true even for k = 1 although our proof does not apply 
in this case. The process Z conditioned by A, is a gk-,-process where 
the conditioning function g,-, is equal to I - h k - l .  Suppose that n 2 1, 

= k + n - 1 ,  and lyl = k+n.  Then 

=- gk- I ('I PY ( T ( ~ B  (0,  k + n - 1)) < m) 
gk- 1 ( Y )  

- - 1 - ( k - l ) / ( k + n - 1 )  
1 - (k- l ) / (k+n)  P(-4;+3 

Hence 
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It follows that for all N 

This and the fact that C,P(A , )  = co allow us to use a version of the 
Borel-Cantelli lemma proved by Kochen and Stone [1 51 in Theorem (ii). Their 
theorem imp!ies that A,'s dcbur for infinitely many k with positive probability. 
By the 0-1 law for tail events, this happens in fact with probability 1. rn 

Proof  of Theorem 2. First we consider the Zdimensional case. 
Suppose that Y is an h-process in {xER': 1x1 < 1). Let the conditioning 
function h be given by h (x) = -log 1x1 in the complex notation. The initial 
distribution of Y is assumed to be uniform on the unit circle. Then it is easy to 
see that the process Y converges to 0 at its lifetime a.s. Let Ck denote the event 
that Y does not return to aB(0, 2-"l) after hitting dB(0, 2-k). It is routine to 
check that the distribution of -log lY] is that of the 3-dimensional Bessel 
process, i.e., the norm of the 3-dimensional Brownian motion. Hence Proposi- 
tion 1 implies that, with probability 1, C, holds for infinitely many k. 

\ Fix an arbitrarily small EE(O, 1) and let K be the smallest k such 
that C, holds and 2-k < E. Let S = T(aB(0, 2-I)). We will condition Yon 
{K = k,)  and (Y(S) = yo]  for some fixed k, and yo. The conditioned 
path consists of two pieces: Vl = {Y(t), 0 < t < S )  and V2 = {Y(t), S < t < z), 
where z is the lifetime of I: Note that T/, is an hl-process in B(0,  2-,0+ l) 
starting from yo and conditioned to go to 0. Here h, (x) = -log 1x1 +10g(2-~0+ I). 
The process V2 is independent of Vl given {K = k,) and {Y(S) = yo). Theorem 
2.1 of Burdzy [4] implies that with probability p > 0 the process V2 has a cut 
point within B(0, 2-k-1). In particular, with probability p, there exists t E(T, z) 
such that Y(t) E B(0, 2-k-1) and Y([T, t)) n Y((t, z)) = O. The probability 
p does not depend on k, or yo by scaling (see Lemma 2.1) and rotation 
invariance of conditioned Brownian motion. Since (K = k,) implies C,,, we 
also have Y([O, t)) n Y((t, z)) = O with (conditional) probability not less than p. 
Let A(&) denote the event that there exists t ~ ( 0 ,  z) such that IY('(t)l < E and 
Y([O, t)) n Y((t, z)) = a. By summing over all k ,  and integrating with respect to 
yo we can prove that P(A(E)) 2 p > 0 for every fixed E > 0. The sequence 
( A  (l/j)lja is monotone, so P j 1  A )  2 p. The event inja A (lh)} 
belongs to the tail a-field for the h-process Y, so by the 0-1 law its probability 
is equal to 1. In other words, with probability 1, for every E > 0 there exists 
t ~ ( 0 ,  z) such that IY(t)l < E and Y([O, t))n Y((t, z)) = 0. 

Suppose X is a Zdimensional Brownian motion starting from 0 and 
let U, be the first hitting time of the circle B(0, r) by A'. The process 
{X(t), 0 6 t < U,) is the time-reversal of E: so its path contains cut points 
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in every neighborhood of 0 as. By scaling, this is true for the process stopped at 
any stopping time Ul lk ,  k 1. Since at least one of these stopping-times is less 
than 1, the trace X([O, 11) contains cut points in every neighborhood of 0 a.s. 
Note that if X(tk) is a sequence of cut points converging to 0, then t, 4 0 by 
continuity of Brownian paths and the fact that Brownian motion never returns 
to its starting point. 

The 3-dimensional result is a straightforward corollary to the Zdimen- 
sional result and the fact that the orthogonal projection of the 3-dimensional 
Brownian motion on a plane is a 2-dimensional Brownian motion. 
. . 

P r 0 of of T h e  o r em 3 (i). Consider two independent Zdimensional 
Brownian motions X1 and X2 starting from 0 and killed at the hitting time of 
aB(0, 1). Let 

S{ (k) = inf {t: IXj(t)l = 2-'1, 

Let N, (k) be the number of crossings of Xj from 8B (0, 2-k )  to r3B (0, 24k-'), 
i.e., N j ( k )  is equal to the largest rn such that Ti,(k) < co. A standard cal- 
culation shows that the probability that a Brownian motion starting from 
a point of aB(0, 2-,) Will hit aB(0, 2-k-1) before hitting dB(0, 1) is equal to 

p, k/(k+ I). By the strong Markov property applied at SL(k)'s, the distri- 
bution of N j  (k) is geometric, i.e., P (Nj (k) = n) = p: (1 - p,). The indepen- 
dence of X1 and X2 implies 

Hence 

In particular, if we take n = clogk for some constant c < oo, we obtain 

For k > k, we have 

2 
(c logk+ 1) log(k/(k+ 1)) = (c logk + 1) log(1- l / (k  + I)) 2 - -(c logk + 1) 

k+ 1 

Exponentiating yields 

(k/(k+l))clOgk+l > 0 1 -k-lI2 
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and, therefore 
1 - p i l ~ e k +  1 = 1 - (k/(k + 1))clo&+l < k- 'I2. 

This and (2.1) give 

P (N, (k)+ N, (k) G c log k) 6 (clog k + 1) (1 - k/(k + I)) k- < co . 
k > k o  k > k o  

By the Borel-Cantelli lemma, for any fixed c < a, only a finite number of 
events (N1 (k) i- N, (k) < clog k) occur. 

Let K . . .  = Uk3idB(0,.2-k) and let 

U{ (n) = inf {t > l / n  : Xj ( t )  E K) , 

Note that we have Uj,(n) = ~ i ( i )  for many distinct values of m, n, k and i. 
For a family of points x i  (p z )  let F = F ({x; (n), j = 1, 2, m, n 3 1)) denote 
the event {Xi(ui, (n)) = X& (n), j = 1, 2, m, n 2 1). Observe that x', (n)'s de- 
termine the values of N, (k) + N ,  (k) for all k >, 1. Given F, the processes {Xj (t), 
t E [U;',(n), Ui,l (n)]), m, n 2 1, are independent. If we condition on F 
and suppose that Jxi(n)J = 2-k, then (Xi(t), t E [UA (n), UL,, (n)]) is an 

h-process in D, B (0, 2 - k +  l)\B (0, 2-k- l) converging to xi+ (n) E all,. 

Fix some integer M. We will say that a set C belongs to the family 9, if 
(i) C contains closed loops within both annuli 

B(0, (7/4)2-k)\B(0, (3/2)2-k) and B(0, (3/4)2-k)\B(0, (5/8)2-k), 

and 
(ii) for each j = 1, . . . , M, the set C contains a continuous path connecting 

the circles i3B (0, (9/16)2-k) and JB (0, (15/8)2-,) within the wedge 

Let A, be the event that the process starts from a point of aB(0,2-k) and 
its path stopped at the hitting time of K\BB(O, 2-k) belongs to Yk. Let Q be the 
union of trajectories of X1 and X2. It is standard to prove that, for any 
harmonic function h in D, and any point x EBB(O, 2-k), the probability of A, 
for an h-process starting from x is bounded from below by a constant q > 0 
which does not depend on x or h and which, moreover, does not depend on k, 
by Lemma 2.1. Hence the conditional probability given F that Q does not 
contain a set in 3, is greater than (1 -q)N1(k)+N2(k'. Let c = -2tlog (1 -q) .  We 
can assume that N1 (k) + N, (k) 2 c logk for all k 2 k1 = k, (I;). Then 

Since & k - 2  < a, the Borel-Cantelli lemma implies that, for almost all k, 
Q contains a set in 9k. 
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Let 9, be the hmiIy of sets from Xk rotated around 0 by the angle n/M. 
The same proof which works for 9k shows that, for almost all k, Q contains 
also a set in $,. It is now elementary to see that, with probability I, Q contains 
at Ieast M disjoint paths (except that they all start at 0) which connect 0 and 
some circle aB(O, 2-y), k c co. Since M is an arbitrarily large number, we see 
that the order of ramification of 0 in Q is inil~lite a.s. 

The same proof would apply if we killed Xi's at the hitting time of 
a circle aB(0, 2-k )  for some fixed k > 1. Note that if X is a Brownian motion 
and t ~ ( 0 ,  1) is fued, then (X(t-s)-X(t), SE[O, t ] )  and {X(t+s)-X(t), 
SE[O, I -t]) are independent Brownian motions starting from 0 and with 
probability 1 they both hit some circle aB(0,2-k).  Thus for every fixed 
t ~ ( 0 ,  1) the order of ramification of X ( t )  in X([D, 11) -is inhite a.s. 
Theorem 3 (i) now follows from the Fubini theorem. 

Proof of Theorem4. Fix some t ~ ( 0 ,  1). Note that Y =  ( X ( t + s ) - X ( t ) ,  
s 2 0) and Z = {X (t - s) - X (t) , s E [O , t ]  ] are independent Brownian motions 
starting from 0. Theorem 2 applied to the first process shows that, with 
probability 1, for every n 3 1 there is s , ~ ( t ,  t +  l/n) such that X [ t ,  s,] is 
disjoint from X [s,, I] and X(s,) # X (s) for all s # s,, s E [t, 1). Hence one can 
find E, > 0 such that 

Since Y and Z are independent and a Brownian motion with probability 1 
does not hit a fixed point, it follows that X[O, t] does not contain any point 
X(s,), n 3 1, as. Thus with probability 1 there are cut points arbitrarily 
close to X(t). The same is true simultaneously for all rational t ~ ( 0 ,  1) a.s. 
It remains to notice that the set of points X ( t )  with rational t E (0, 1) is dense 
in X[O, 11. a 

P r o  of of Theorem 1'. Recall that X is a 2-dimensional Brownian 
motion with X(0) = 0. We will choose many constants depending on the 
particular path but we will suppress expressions "with probability 1." 

We will construct a number of paths (we will call them (P)-paths) which 
are not, strictly speaking, Brownian paths, although they may be called 
"Brownian" as they have many typical properties of a Brownian trajectory. We 
start by defining a countable family X of C1 lines. First, all line segments 
whose endpoints have rationaI coordinates are contained in X. The family 
X also includes all arcs of circles such that the center of the circle and its 
radius are rational and the arc corresponds to an angle which is a rational 
multiple of rc. Finally, X contains all C1 Jordan curves which are finite unions 
of line segments and arcs described above. Note that for every finite union of 
balls M and every E > 0 there exists an open set M, containing M such that 
aM, EX and all points of aM, are within distance E from M. 
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We will also need a family d of random times. A random time T belongs 
to d if it satisfies one of the following conditions: 

(Al) There exists a rational t such that T= t a.s. 
(A2) There exist K E X and rational t, such that T = inf (t > t ,: X (t) E K). 

(A3) There exist K E X and rational t, such that T =  sup {t < t, : X (t) E K). 

(A4) There exist S , ,  S, E d such that T =  min (S, , S,). 

(A5) There exist S, , S, E d such that T = max ( S ,  , S,). 
(A6) There exist K E X and S E  d such that T =  id (t > S: X (t) E K). 

(A7) There exist Ke X and S E sl such that T =  sup {t c S: X ( t )  E K). 
(A81 There exist S, S,, S,  E d such that T =  inf (r > S: X (t) EX [S,, S,]) .  
(A9) There exist S, S,, S , E ~  such that T =  sup (t < S: X(~)EX[S,, S,]) .  
Adelman and Dvoretzky [2] observed that the point where a Brownian 

motion hits the trace Z[O,  11 of an independent Brownian motion Z is not 
a double point of Z with probability 1. This and a standard argument show 
that in (A8) there is only one s~ [S, , S,] such that X (s) = X (T). The fact that 
Brownian paths do not hit a point fixed in advance and the Markov property 
can then be used to show that there is no other U E  [O, 11 besides s with 
X(u) = X ( T ) .  A similar remark applies to (AlHA9). 

We will say that a path {A@), t E [t,, t,]) has property (P) if it satisfies the 
following. There exist a finite increasing sequence ( s ~ ] ~ $ ~ ~ ~  such that s, = t,, 
s, = t,, a (not necessarily increasing) sequence (uj)lQjSk, and for every j < k 
there is a A j  = 1 or -1 such that A(sj+t) = X(uj+Ajt) for all t < 
In other words, A is assembled from a finite number of pieces of X. We also 
assume that the pieces of X that make up A are disjoint, i.e., 

(the formula needs an obvious modification when A j  = - 1 or A, = - 1). 
Moreover, all times uj and uj+ Aj(sj+, -sj) have to belong to d. Finally, we 
require that if uj or uj+ A j  (sj+ , -sj) is equal to T defined by (A8) or (A9) and 
S E  [S1, S23 is such that X(s) = X(T),  then there is S > 0 such- that either 
X 1s-6, sf or X [s, s+ 61 is not used in the construction of A. 

Obviously, the original Brownian path (X (t), t E [0, 11) is a (P)-path. 
The following transformations may be used to obtain a (P)-path from 

another (P)-path although not every application of (T2) will guarantee that the 
pieces of X in the definition of a (PI-path are disjoint. 

(TI) If {A (t), t E [ t ,  , t,]) has property (P), t ,  ,< TI < T, < t,, and 
TI, T, E d, then {A (t), t E [TI, T,]) also has property (P). 

(T2) Suppose that {A, (t), t E It,, t,]) and (A, (t), t E [t,, t,]) are (P)-paths 
such that A, (t,) = A, Its). Then {A, (t), t E [t, , t, + t, - t,]) defined by 
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may be (or may be not) a (PI-path. 
(T3) If {A(t), t ~ [ t , ,  t,]) has property (P) and A, (t)  = A(t, +tl-t), then 

{A, (t), t~ [t,, t,]) is also a (PI-path. 
We would like to point out one particular combination of these trans- 

formations which will play an important role in the proof. Suppose that 
{A(t), t~ [tl, t2]) has property (P) and let dA be defined relative to A 
in the same way that d has been defined relative to X. Let us assume that 
T, S, S,, S, ~ d , ,  S < S1 < S2, and these random times satisfy a condition 
analogous to (AS), i.e., 

Let S, = sup{t~[S,,  S,]: A(t) = A(T)}.  Now let us replace the piece 
A[S,  S,] of A with A t $ ,  TJ and A[S, ,  S,]. We obtain a new (PI-path A,. The 
precise meaning of this operation should be quite obvious but we are going to 
spell out the definition of A, in this case. We will limit ourselves to the word 
description in future instances of this operation. We have 

We will say that {A(t), t E [t,, tz]) has a local double cut point at x if there 
exist s,, u, ~ ( t , ,  t2) and a small disc B(x, r) with the following properties. Let 

so = inf{t: Art, s,] c B(x, r)}, s, = sup{t: A[s,, t] c B(x, r)], 

u0 =inf{t: Art, u,] c B(x, r)), u2 =sup(t: A[ul, tJ c B(x,r)). 

Let D, , D,, D ,  and D, be the connected components of B ( x ,  r)\(A [so, s2] v 
u A [uo, u,]) which touch the boundary of 3 ( x ,  r). The point x is called a local 
double cut point if A @ , )  = A(ul), s, < uo or u, < so and at least two of Dls 
contain x in their closure. 

Every (PI-path {A (t), t E [t, , t,]) has the following properties: 
(PI) A is continuous. 

(P2) A Ct 1, t 2 l  c X LO, 11. 
(P3) A has no local double cut points. 
Properties (PI) and (P2) are evident. (P3) follows from the fact that the 

Brownian path X has no local double cut points (Lemma 2.2) and from the fact 
that the points where the pieces of the X path are spIiced (i.e., X(uj) and 
X(uj+ Aj(sj+, -sj)) in the notation used in the definition of a (P)-path) are not 
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double points. See the last condition in the definition of (P)-paths and the 
remarks preceding the definition. 

For a continuous path (A(t), t ~ [ t , ,  t , ] ]  and sets D c D+ let 

Suppose that (xkjk2 is a sequence of points of R2 and (y,),, , , (o?,jk3 1 

and (Pk)AB , are positive sequences decreasing to 0. Let Ck = 3 (xk, yk), 
C: = 3 (x,, yk + fl3. Assume that: 

(i) y,'s, a,'s, #I;S and the coordinates of xk's are rational. 
(ii) X ( 0 )  and X(1) are outside the closure of C: for every k. 
(is) Every point in R2\(X(0), X(1)) is covered by infinitely many discs 

B (x, 7 IlJk - 4 / 2 ) .  
Other conditions will be imposed on these sequences later in the proof. 
Find the smallest k, such that X [O, I] n Cko # 0. Sometimes we will 

suppress k, in the notation and write C and C4 instead of Cko and Ckf,. 
Note that T,C(X) < m for only a finite number of k. Let V, be a time 

t between Uf (X) and T$ (X) at which IX (t) - xol takes its minimum value. Note 
that IX (I/,) -x,l < yko a.s. Then let 

The continuity of the Brownian path implies that for any given ako > 0 we 
can choose sufficiently small Bko > 0 SO that X [UE(X), V;] and 
X [V,' , T f  (X)] lie in 

Fix some small > 0, and find aka, Bko > 0 such that the time Brownian 
motion X spends in L before time 1 is less than E , .  The #-measure of a piece of 
2-dimensional Brownian path is equal to its time-length, where 

# (u) = u2 log (l/u) log log log (l/u) 

(see [I81 and [16]). Hence the $-measure of X [0, I] n L is less than E,.  

Let K, = X[O,  1]\UkX[U;, TE] and K, = UkX[V,, V:]. Both sets 
K, and K, are closed and K, n K, = 0. Let 

inf ( t  > Rk- ,: X(~)EK,}, k even, 
Rk={  inf(t>Rk-l:  x ( t ) ~ K , ) ,  k odd. 
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Since K ,  and K 2  do not intersect and X is continuous, Rk 4 V ;  for only 
a finite number of k, say for k 4 i,. Let R, = UE (X) and Ri,+ I = VT.  Now we 
apply Lemma 2.3 to { X ( t ) ,  t~ [R,, R,])  and sets K, and K,. We replace this 
piece of the Brownian path with a new path {To  (s),  S E  [sy, s a )  such that 

and 
(K1 u r0 Cs?, . ~81) n (K2 u ro Cs!, ~ $ 1 )  = {To ( ~ 3 )  

for some s: E (sy , 5:). 
- The remarks before the definition of a (P)-path show that  st) is not 

a double point. Hence there is an open ball B, whose boundary belongs to 
9" which contains ~ ( $ 1  and satisfies X [R , ,  R,] n 3, = 0. Let 

Note that s': < s t  < s t  and-@ n K$! = 0. Let us apply Lemma 2.3 again, this 
time to ( X ( t ) ,  t~ [R,, R,]), Ky playing the role of K ,  and K: playing the role 
of K , .  We will obtain fr, (s), SE [st, s!]} such that 

~ ( R I )  = r~ (s:), X(R2)  = r1 (s ; ) ,  rI [s:, si] c X [ R , ,  R,] 
and 

for some S! E (s:, s;) and S$ E (s:, s:). 
By repeating the same procedure we can construct continuous paths 

{rk (s), s E [ s t ,  s;]) for 0 < k < iO such that 

and 

( K l u  u rkcskl, u rk[~kgl 41) -. 

k even k odd 

n (K, u U r k  Cskl skzl u tJ r k [ s L  4 1 )  = U {r,(sk)} 
k even k odd k 

for some sk, E (sk, , s;) . 
Next we can find continuous ~ a t h s  analogous to r,'s which will replace 

all pieces X [UE(X), V i j  and X [ V : ,  T:(X)] of the original Brownian path. 
Let { A ,  (u), U E  [u,, u,]) be the path obtained from { X ( t ) ,  t E [0, 11) by 
replacing all pieces { X ( t ) ,  t E [R,, Rk+ ,I )  with the corresponding new paths 
(rk (s) ,  s E [4, ~ $ 1 ) .  Let {u j )  j G  jo be the family of all parameter values for the 
new path A, such that A,(erj) is one of the points r,(skg) (we recall that 
we include also the new paths and points corresponding to X [ U f ( X ) ,  V i ]  and 
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X [V;, T f ( X ) ]  for all k 2 1). Let us suppose that uj's are labeled so that 
uj < uj,l for all j and let us rename u, and call it erj,+,. As a result of our 
construction, there is a partition of integers between (and including) 0 and j ,  
into two disjoint sets J, and J ,  such that 

Moreover, for one of those sets, say for J , ,  we have 

U A, Cuj, uj+lI C+ while U [uj, u j + J  $ C'. 
I - jeJ1 jfJz 

Let 
. - 

M =  u ~ ~ C U ~ ~ U ~ + ~ J ~ ~ ~ C U ~ ,  ~ k + i l .  
~ . R E J I  
j + k  

Note that M is a subset of the set of double points of X. Le Gall [I61 has 
proved that the exact Hausdorff #,-measure for the double points of the 
2-dimensional Brownian motion is given by 

I 

b2 (u) = u2 (log ( l /u )  log log log (l/u))2. 
I Moreover, he has shown that for every fixed 6 > 0 the set of all points x such 

that x = X (t,) = X (t,), It, - t,l > 6 and t , ,  t, E [O, 11 has a finite 4,-measure. 
It is easy to see that there exists 6 > 0 such that for every pair of j, k~ J ,  the 
paths A, [ujl uj+ and Al [uk, uk + are assembled from pieces of the 
Brownian path which correspond to subsets of the time axis whose distance is 
greater than some 6 > 0. Thus 4, -m(M) < m as. Recall that 

4 (u) = u2 log (l/u) log log log (l/u) 

gives the exact Hausdorff measure for the whole Brownian path and note. that 
4, (u)/4 (u) + ao as u + 0. It follows that every set whose &,-measure is finite 
must have zero #-measure. This remark applies to M. Hence, it is possible to 
cover the set M with a family of open discs {Bj) such that the &-measure of 
U j ~ j  n X LO, 11 is arbitrarily small, say, less than E, > 0. Since the set M is 
compact and Bis are open, we can assume that the family {Bj} is finite. It is 
easy to see that we can slightly enlarge the set Uj  Bj so that it becomes the 
union of a finite number of open disjoint sets Aj whose boundaries belong to 
X' and such that 

4-rn(U A j n X I O ,  11) < 2 ~ ~ .  
i 

For every j find an open Af which contains the closure of Aj. We choose Af's 
so that they are disjoint, have boundaries in X and 

12 - PAMS 15 
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Let A = U j  Aj  and A" = Uj  Af . Recall the notation introduced in (2.2). 
Note that there is only a finite number of k with T f ( A , )  < a. By applying 
Lemma 2.5 successively to all Aj we construct for every k~ J ,  a continuous 
path ri (t) with endpoints A,  (u,) and A,  ( u k f l )  whose range is contained in 
A, [u,, uk+ and which contains all the points of A, [u,, uk+ ,] except possibly 
A, (14) for some u E (u? (A, ) ,  Tf (A,)) ,  j 2 1. Moreover, each has property (P) 
and 

r,' [u? (ri), Tf (r!)] n rkl [U? (r;), ~ f l  (rk)] = 0 for all i # j. 

We construct a new path by replacing every A, [u,, uk+,] with rkf before 
applying the next lemma. 

Then Lemma 2.8 below shows that there is a continuous (PI-path, say, 
{ X 1  (t), t E [ t l ,  t z ] ) ,  with the same endpoints as A, which contains all the 
points of A,\A+ and such that 

XI [UY(X'), T f ( X 1 ) ]  n X1 [Uf ( X 1 ) ,  (X1)] = dZI for i # j. 

Every path X 1  [Uy(X1), T?(X1}] contains two points of the form A, (u,) or 
A, (uk+ ,), k~ J1. Let Qj denote the part of X1 [UjC (X1), Tj"(X1)] between these 
points. If we remove the endpoints of Q j ,  it becomes disconnected from the rest 
of the path. Every continuous self-avoiding path within X1 [tl  , t,] which has 
the same endpoints as X1 and which contains at least 3 4stinct points of !Pj 
must pass through both endpoints of Qj. Let 6 ,  = minjq5-m(Qj). It is easy to 
see that 6 ,  > 0. If a path inside X 1  [t!, t,] has &measure greater than 
+m(X1 [t , ,  t,])-Sl/2, then it must contain at least 3 points of every Qj and, 
therefore, it must pass through a11 endpoints of all @;s. 

Suppose that we have Xk. Find the smallest j such that C j  intersects Xk 
and construct Xk+' from Xk relative to C j  in the same way we constructed X1 
from X using Cko. 

We will impose some more conditions on the parameters of our 
construction. 

Suppose that Xk is parametrized by the time interval [fi, 41. Let 
(fi, A, . . . , yk,,) be the family of all points on the path of Xk which are defined 
in the same way as A, (u,) and A, (uk, , ) ,  k E J , ,  have been defined in the 
construction of X 1 .  We will argue that if we choose the parameters of our 
construction in a suitable way, then 

for every j. Let 6,  be the minimum of #-measures of all pieces of Xk 
joining pairs of distinct points in Uk6  ( y t  , y i ,  . . . , yk,). Again, it is rather easy 
to see that 6,  > 0. Then we choose yk ,  a,, 8, and x, so that the 
&measure of the intersection of Xk-' with B (x,, yk +Bk)\B (xk, y, - a,) is less 
than min (~,/2~, 1/4). See the construction of X 1  for the justification of this 
step. In the construction of Xk, we choose sets Aj,, and A h  analogous to Aj's 
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and AT'S sufficiently small so that 

4-m (U A ; ~  n X LO, 11) < min (3~,/2" d k -  ,/4). 
j 

Hence the total &measure of al pieces removed in the k-th step is less than 
6,-,/2 and, therefore, (2.3) follows just like in the case of X1. 

Choose any E > 0. The pieces of the original Brownian path which are re- 
moved at the k-th stage are contained in the union of B (x,, y, + &.)\B(x,, yk - a,) 
and Ui A;k. Hence the $-measure of all pieces removed at all stages is less than 
C, ~,/2'+ 3&,/Zk and we can assume that this number is smaller than E by 
choosing some E, and c ,  smaller than ~/100. 

Note that -- 

df 
for every k. Hence U = n , X k  [ v i  , &] is a compact set whose #-measure differs 
by no more than E from that of the original Brownian path X LO, 11. It remains 
to show that U is a self-avoiding continuous path. 

Recall the family {ykl, yk,, . .., A,). It follows from (2.3) that 

Since 

1 ,  {uk)ka I and ( f l k I k  2 are decreasing to 0, and every point in the plane 
(except X (0) and X (1)) is covered by infinitely many discs 3 (x,, (7, - rw,)/2), the 
set 9Y is dense in U and, therefore, 5Y is infinite. 

Let us (arbitrarily) order points of 9, say ti? = { z , ,  f,, ...I. Recall that 
every path X k  visits all points of g. Observe that every potnt 5 is visited only 
once by Xk if k is suillciently large. Find an infinite subsequence of (Xk) such 
that the paths in this sequence visit z ,  and z, only once and in the same order. 
Then find a further subsequence so that the paths in this subsequence visit 
z , ,  z ,  and 2,  only once and in the same order. By repeating the procedure and 
then using the diagonal method we can find a subsequence of { X k )  such that all 
Xk in the subsequence with k > E(n) visit all points z, ,  z,, . . ., z, in the same 
order. We will write z, < z j  if z, is visited before zj by the paths in the tail of our 
final subsequence. 

Let us define a mapping F from 5Y onto a subset of [O, 11. We start with 
F ( z l )  = 1/2. Suppose that we have defined F(zj )  for all j < k. If zj < z, for all 

df 
j < k, then F(z,) = [I +maxj, ,F(zj)] /2 Similarly, if z, < z j  for all j < k, then 

df 
F (2,) = minj,, F (zj)/2. If none of these conditions holds, find j ,  and j, so 
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that zj, < zk < zj2 but no z j ,  j < k, lies between zj, and zj2. In this case 
df df 

let F (z$ = [F (z j , )  + F (zj2)]/2. Note that G = F -  is a univalent function. Let 
4 be the smallest closed interval containing F(Y). We will argue that 

df  
f = F ( g )  is dense in 9 and that G can be extended to a continuous function 
on 4. 

Suppose that there is a non-degenerate interval (Q, b) c 9 such that 
F ( 3 )  n (a, b) = $3. This easily implies that there exist z j  and z, such that there 
is no z, with z j  T( zlll < z,. In view of (iii), there are discs B(x,,, y,+P,) and 
Blx,, (7,-an)/2) corresponding to the n-th stage of the construction such that 
z, lies outside the bigger disc but z j  lies inside the smaller one, According to the 
construction, any continuous path within the range of Xn which passes through 
zj and z, must pass through B(x,, y,+/?,)\B(x,, y,-m;), and so it must pass 
through one of the points {yk y;, . . . , yk,} after visiting z j  and before visiting 
z,. This shows that there must exist z,,, with z j  < z, i z,. We conclude that 
F ( g )  is dense in 4. 

Next we prove that G can be continuously extended to 4. There are two 
possible reasons why this may fail. The first one is that there may be 
a discontinuity of the first kind at a point ~ € 4 .  Suppose that 

df dl  
(2.4) x, = lim G ( t )  # lim G (t) = x,. 

t + s -  t + s +  
t ~ f  

We use an argument similar to the one in the previous paragraph. 
Find discs B(x,, y,+p,) and B(x, ,  (y,-m,)/2) such that x ,  lies outside 
the bigger disc and x, lies inside the smaller one. In view of (2.4), there 
are t ,  and t ,  arbitrarily close to s  and such that G( t , )  and G(t , )  are 
arbitrarily close to x ,  and x,. A continuous path passing through G ( t , )  
and G (t,) must also pass through { y", y",, . . . , y:n) between its visits to 
G( t , )  and G(t,).  Hence we can find t, arbitrarily close to s  with G ( t3)€  
~ ( y y ,  yL . . ., yLn). We obtain a contradiction with (2.4) which shows that 
a discontinuity of the first kind is not possible. 

Next we discus? the possibility of the discontinuity of the second kind. 
Suppose that G does not have a left or right limit at a point s of 9. Suppose, for 
example, that the left limit does not exist. Then we see using compactness that 
there are infinite increasing sequences { s j )  and It j )  converging to s and such 
that limj G(sj )  = x,, limj G( t j )  = x, # x ,  and s j  <: t j  < s j + ,  for all j.  Again, find 
discs B (x,, y,+ /I,) and B(x, ,  (y,-an)/2) such that x, lies outside the bigger disc 
and x,  lies inside the smaller one. For large k, the path Xk has to pass 
alternatively through small neighborhoods of x, and x,. Hence, it must also 
pass through { y" , y;, . . . , Gn). Since the path can visit the last set only rn, 
times, we obtain a contradiction with our assumption that the sequences fsj) 
and ( t j )  are infinite. This completes the proof of the claim that G can be 
continuously extended to 4. 
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RecalI that 5Y is dense in U. Since G is continuous and its range contains 
fY, it maps $ onto U. 

The last thing we have to prove is that G (s) # G(t) if s # t. We will assume 
that this is not true and prove that this assumption leads to a contradiction. 

df 
Assume that G (s) = G (t) = x, for some s < t. It follows from the definition of 
F that G is not constant on any interval. Hence, we must have G (u) = x, # x, 
for some UE (s, t). Suppose that the discs 3 (x,, y, + p,,) and B (x,, (y, - aJ2) are 
such that x, lies outside the bigger disc and x, lies inside the smaller one. The 
inductive procedure which produced X" from X"-l  insures that if a piece of 
a path Xk, ,'k > n, starts at a point inside B (x,, (y, - q)/2), leaves 3 (x, , y, + p,), 
comes back to B(x, ,  (y, -a,)/2) and does not visit any point of 
{ynl , y;, . . . , y i , )  more than once cannot come within some positive distance, 
say, g > 0, of its initial part inside B (x,, ( y ,  - a,)/2). However, the definition of 
F and the assumption that x, is visited twice by G show that for every 
r ~ ( 0 ,  @/4) there are some points x,, x, E B (x,, r) n @Y such that for large k the 
paths Xk visit x2 between the visits to x ,  and x,. This is a contradiction. 
The proof is complete. 81 

Recall the definition of a local double cut point from the proof of 
Theorem 1'. 

LEMMA 2.2. Z%o-dimensional Brownian path (X (t), t E [0, 11) does not have 
local double cut points a.s. 

P r o  of. Suppose that X has a local double cut point x. Then the definition 
says that there exist s,, u, ~ ( 0 ,  1) and a small disc B ( x ,  r) with the following 
properties. Let 

SO =inf(t:  XCt, s l l  c B(x, r)), s ,  = sup{t: X[s,, t] c B(x, r)}, 

Let Dl ,  D,, D, and D, be the connected components of B(x, r)\(A [so, s,] v 
u A[uo, u,]) which touch the boundary of B(x, r). Then X(s,) = X(u,), 
s, < uo or u, c so and at least two of Dfs contain x in their closure. 

Suppose that Dl and D2 contain x, let the endpoints of Dl n B ( x ,  r) be 
called y ,  and y, and let y, and y, have the analogous meaning for D,. We can 
assume that y , ,  y,, y, and y, come in this order oh the boundary (although 
they are not necessarily disjoint). 

We will discuss three possible situations. First, suppose that y, = X(s,), 
y, = X (s,), y, = X (u,) and y, = X (u,). In this situation, the argument given 
in the proof of Theorem 1.5 (ii) of Burdzy and Lawler [6] applies and yields the 
lemma. 

The next case is when y ,  = X (so), y, = X (u,), y, = X(u,) and y, = X(s,). 
Suppose that s, c u,. By conditioning on the value of X(s,) we may assume 
that ( X  (t), t E [so, sZ]) and (X (t), t E [u,, u,]} are independent. Since u, is the 
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first hitting time of the first path by the second path, we may apply the strong 
Markov property at u, . The path {X (t), t E [u, , u,]) contains infinitely many 
small closed loops around its starting point x and @is shows that x cannot 
belong to the closure of Dl and D2. 

The same argument applies when y, = X (uo), y, = X (so), yB = X (s,) and 
y,  = X(uo). Other situations can be handled in a similar manner. s 

LEMMA 2.3. Suppose that { A  (t), t E [t,, t 2 ] }  has property (P )  land K, and K, 
are disjoint closed sets with A(t j )€  Kj for j = 1,2. Assume that each K j  is the 
@ace of a (P)-path.' Suppose that for some to we have A [t,, to] n K,  = 0 and 
A [to,  t,] n K 1  = O. Then there exists a path {T ( t ) ,  t E [s,, s,]) with property 
(P) which satisjies the foliowing conditions: 

(i) r (sj) = A (t j )  for j = 1 , 2, 
(ii) Cs, , s,J = Ctl , 4, 
(iii) r has a cut point so such that 

P r o  of. Let gj  = {x: dist ( x ,  K,) G E )  forj = 1, 2. By compactness, we can 
choose E > 0 SO small that A Ct,, to] n X ,  = 0 and A [to,  t,] n K", = 0. Let 

Let us define a continuous path r on an interval [s ly  s,] = [ t ,  , t ,  - U + T ]  by 

Note that r has property (P), it has the same endpoints as A, its trace is 
a subset of Act,, t,] and it has a cut point r ( T ) .  Observe that r(T, s,)n 
n 9, c { A  ( T ) )  c ar?, , and so T (T, s,) n K, = O. It remains to show that 
r ( s , ,  T ) n K ,  = 0. 

It follows from the definition of S that A ( s ) E ~ , ,  and so we must have 
S < to. Since T< S, we have T <  t ,  and - 

LEMMA 2.4. Suppose that D is an open set homeomorphic to a disc and 
dD E X. Suppose that (r, (s), s E [s: , s:]) and {r, (s), s E [ s f ,  s;]) are paths with 
property (P) which lie inside D except that their endpoints belong to 8D. 
Moreover, let us suppose that their endpoints are distinct and they are-arranged 
on the boundary in the following order: r ,  (s:), T2 ( s f ) ,  rl (si) and rz(s2). Then 
there exist (P)-path { Y ,  (t), t E [t:, t i ] )  and (Y2 (t) ,  t~ [ t f  , tg]} such that 
pl ( t i )  = rl ( ~ 3 ,  Y ,  ( t i )  = r2 ( ~ 3 ,  y2 (ti) = rl (s:), Y ,  0;) = r2 (s;), 
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and 

!PI [ t i ,  ti] n 'P, [ t: ,  t i ]  = 0. 

Proof, Let Dl be the component of D\T, [s: , s;] u rz [sf, "$1 whose 
boundary contains the piece of aD between T ,  (st) and r, (si) and which does 
not contain the other endpoints of Tj's. Likewise, let D ,  be the component of 
D\rl [s:, si] u r2 [sl, sg J which contains in its closure the piece of 8D 
between r, (s:) and r,  (si) but no other endpoints. 

The closures Dl and D, are disjoint because (PI-paths have no 
local double cut points (see Lemma 2.2 and property (P3) in the proof 
of Theorem 1'). 

Now we can find open sets N, , N l  , N, and N: whose boundaries belong 
to X and such that 

D1=N1cN1cN1+, D 2 c N 2 c I s , c N $ ,  and Nrnl i j iz+=0. 

Recall the notation introduced in (2.2). Let { B ,  (u), u E Cut, u i ] )  ko 
be the family of all paths of the form (r, (s), s E [SjN1 (r,), Ty l  (rl)]) or 
{r, (s) ,  s E [SF (r2), TF (r,)]}. The set U, 9, [u'f , u5] is connected and con- 
tains r, (s t )  and r,(s:). Hence we may assume that @,'s are ordered in such 
a way that r, (3:) E @, [u:, u:], r2 (sf) E Gk1 [util uF] for some k, 6 k ,  and 

@ k [ ~ : , ~ ~ ] n @ , + l [ ~ ~ + l , u ~ + l ] # O  for all k c k , .  

Let Ci E [u: , u;] be such that 8, (C:) = r1 (s t ) .  I f  9,  [u:, G:ln @, [ul ,  u f ]  # 0, 
then let 

v; = sup {v < fi: : @, (v) E G2 [u?, u f ] ) .  

In this case we set v: = inf (v  > v:: @, (v) = r,  (s:)). The other possibility is 
that @, [G:, ui] n @, [u i ,  u f ]  # 0- Then 

v ~ = i n f ( v > G ~ :  @ 1 ( v ) ~ 9 2 [ u : , ~ i ] )  and v : = s u p ( u c v ~ :  @,(v)=r, (s: ) ) .  

Find i7: E [u:, ui3 such that B, (6:) = @, (vg). Now we repeat the same 
procedure as in the previous paragraph to obtain v f  and v f .  I f  @, [u?, fif3 n 
n 8, [u: , u:]- # O ,  then let 

v; = sup {v < c:: @, (v) E @, [u:, u;]} .  

In this case we set v: = inf {v > v$: Qi, (0) = @, (v;))  . The other possibility is 
that 8, LC:, u f ]  n Qi, [u: , uz] # 0. Then 

vg = inf{v > f i f :  @,(v)E dj3 [u:, u;]) and u f  = sup {u  < v;: G2(v) = GI (vg)}. 

An inductive argument produces sequences of points {vk,) and {&I 
such that 8, (v:) = r, (s:), Gk1 (vv )  = r2 (3:) and @ (v:) = Qi(vklf l) for all 
1 < k d k, - 1. The pieces (8, (v), v E [t$, v i ] )  can be spliced together to obtain 
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a (P)-path with endpoints r, (s:) and T ,  (sf) which lies in N: . An analogous 
construction gives a (P)-path in N l  joining r1 (si) and T ,  ( ~ 2 , ) .  The paths must 
be disjoint as N :  and N: are disjoint. H 

Remark 2.1. It is clear from the proof of Lemma 2.4 that the new disjoint 
paths may be constructed in every case when the endpoints of r's alternate. We 
can also do it in the case when the endpoints do not alternate but the original 
paths intersect. It should be mentioned in connection with the last claim that 
an easy argument based on the strong Markov property shows that two pieces 
of a Brownian path cannot touch at a single point unless it is an endpoint of 
olie of them (see the proof of Lemma 2.2). 

DEFINITION 2.1. Suppose that r,  and T, are continuous paths in an open 
simply connected set whose endpoints lie on its boundary. We wiIl say that 
they intersect fur topological reasons if the endpoints of r, alternate on the 
boundary with those of r,. 

Remark 2.2. Suppose that T I ,  . . .! T j  are continuous paths in an 
open simply connected set A whose endpoints lie on its boundary. Moreover, 
assume that no pair of these paths must intersect for topological. reasons. 
We will arg;e that a repeated application of Remark 2.1 will produce 
a sequence of disjoint paths r:, . . ., r? such that for each j the endpoints of 
TT are the same as those of rj .  

Suppose we apply Remark 2.1 to a pair of paths T ,  and r, which do not 
have to intersect for topological reasons and we obtain a pair of disjoint paths 
r,l and ri such that the endpoints of rjl are the same as those of rj for 
j = n, m. Then we will say that we applied transformation 9 to r, and T,. 

The endpoints of a path T, divide aA into two arcs. It is easy to see that 
there is a path r, such that one of these arcs contains no endpoints of other 
T,'s. Assume without loss of generality that k = 1. Apply operation 9 to r, 
and r, to obtain and r:. Then apply 3 to r: and r, to get T :  and T i .  
Proceed inductively - apply 9 to rl and T ,  +, for all n < j -2 to obtain 
rvl and r,l+,. An examination of the construction given in the proof of 
Lemma 2.4 shows that ri is disjoint not only from rt but also from rl for 
every n 2 1. More generally, rt is disjoint from r? for all rn 2 i- 1. Let 
r f  = rid'. This curve is disjoint from j- 1 curves T i ,  r:, . .., rjl. Note that 
these curves belong to a simply connected component A, of A\r:. Although 
A, is not a disc, Lemma 2.4 and Remark 2.1 can be applied as they have 
a topological nature. We have reduced the problem to that of j- 1 curves, and 
hence we can achieve our goal in a finite number of steps. 

Remark 2.3. We wiIl describe a splicing operation for a (P)-loop { A  (u), 
u E [ul, u2]) (here A(u,) = A(u,)) and a (P)-path (T (u): u E [s,, s,]) .  Let 
us assume that these paths intersect. Let t ,  = inf {u: r (u) E A) and t ,  = 
= inf {u: A(u) = r ( t , ) ) .  Then we create a single continuous (P)-path by 
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assembling the segments of A and r in the folIowing order: r [ s , ,  t,], 
A [ tZ ,  u,], A [u,, t2] and r [t,, s,]. A similar remark applies to a pair of. 
loops - in such a case we would obtain a single loop. 

LEMMA 2.5. Suppose that {A(u) ,  U E [ U ~ ,  u 2 ] )  is a (P)-path, A is a set 
homeomorphic to a disc, and A+ is another set homeomorphic to a disc which 
contains the closure of A. Assume that the endpoints of A Eie outside the closure of 
A". Then there exists a (P)-path r with the same endpoints as A, whose range is 
contained in A [u,, u2] and which contains all the points of A [u,,  u2] except 
possibly A(u) for some u E(U~ (A) ,  Tf  (A)), j 2 1. Moreover, 

. . 

U , T ( 1  n [ (0, T ( 1  = for all i # j. 

Proof. We will modify the path A inductively. Let us start by replacing 
the two pieces A [Uf  (A) ,  T;i (A)]  and A [U$(A),  T$ (A)] of A b y  two new 
disjoint paths ( Y , ( t ) ,  t ~ [ t : ,  t i ] )  and ( Y 2 ( t ) ,  t~[ t : ,  t;]). Suppose for a mo- 
ment that A (Uf (A)), A (Uf (A)), A ( T ~ ( A ) ) ,  and A (T! (A)) come in this order on 
the boundary of A + .  Then according to Lemma 2.4 we may choose Y, and !P2 
so that Y ,  (t:) = A ( u ~  (A)), Y, It:) = A(u$(A)),  Y ,  (t:) = A ( T ~  (A)), F2  (ti) = 
= A ( T f  (A)), and Y 1  u Y 2  is a subset of A [Uf (A), Ti (A)] u A [U: (A), 
T i (A ) ] .  Then we connect some pieces of A and Y ,  and P, in the fol- 
lowing order: A [u,, U;' (A)], Y ,  [ti, t i ] ,  time-reversed A [T f (A ) ,  U$ (A)],  
P, [t:, t;], and A [ T i ( A ) ,  u,]. Let A,  be the name of the resulting path. Note 
that the maximum k such that S;(A,) < oo is the same as that for S;I'(A) < a. 
We also have 

Some caution has to be exercised when choosing the endpoints of Y ,  and Y 2 ,  
for example, if we had chosen 

y2 0:) = A (Ti' (A)), Y2 (t;) = A (u; (A)), 

then we could assemble these pieces together with some pieces of A to make 
a (not necessarily disjoint) curve and a closed loop - this is not what we want. 
The modifications of the argument needed in the case when A(Uf (A) ) ,  
A (U: (A)), A (T: (A)), and A (Ti (A)) come in a different order on the boundary 
of A+ are quite obvious (see Remark 2.1). 

Next we will modify the path of A,. At this point, we will consider only 

-4lCuf(A1), T f ( A 1 ) l ,  A , [ U ~ ( A , ) ,  T$(A,)] and A1[U;'(/il), T,"(A,)]. 

Recall that the first two pieces of the path do not intersect. If the 
third one intersects only one of the first two, we apply the same method 
as in the previous paragraph to replace the pair of intersecting pieces 
with new disjoint paths. The resulting curve A, will have the property 
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that 

A2 CU? ( ~ 3 ,  ~f (&)I, A U A ( A ]  and A2 [U: (A2) ,  T$ (AJ] 

are disjoint. 
Suppose that A, [U; (A,), T$(A,)] intersects both A, [U:' (Al), TZ (A,)] 

and A, [Ug {A,), T i  (A,)]. First replace A, [U: (A,), T;L (A1)] and A, [Uf (A,), 
Tf (A,)] with disjoint Y, and Y, just Iike we did it ih the first step. Let the new 
path be called A,. The key observation is that we may choose Y, and !P4 so 
that one d them is disjoint from A, [u% (A,), T$(A,)]. This is due to the fact 
that. one of Y, -& fP, must lie "on the opposite side" of A, [U~(A,),  
Tf (All1 tllan A, Cu; (A,), T i  (A,)] because A, CUf (A,) ,  Tf (All1 and 
A, [U$(A1), Tf (Al)] are disjoint (see that proof of Lemma 2.4). For this to 
happen one has to make sure that the sets N :  and N,f  in the proof of Lem- 
ma 2.4 are suficiently small. We conclude that only two of the paths 

A,'[uf (A,), T? (&)I, u ( ( 1  and 2, [u$ (A,), T:'(A~)]  
can intersect. We replace those two in the usual way with two new disjoint 
paths to obtain A, for which all three analogous'pieces are disjoint. Again, the 
maximum k such that Sf(A,)  < a, is the same as that for Sf(A) < a. 

We proceed by induction - we replace some or all curves Aj[Ui(Aj), 
Ti(Aj)], rn d j+2,  in order to obtain a new path Aj+, for which all pieces 
Aj+ [ ~ i  (Aj+ ,), T:(A,+ ,)I, m < j + 3, are disjoint. We obtain a curve with the 
desired properties in a finite number of steps. 

The next two lemmas are concerned with smooth curves and have 
a combinatorial nature. 

LEMMA 2.6. Suppose that A is a set homeomorphic to a disc and A,, . . . , A, 
are disjoint smooth curves. Each curve intersects itself at aJinite number of points 
and has endpoints on 8A. Then we can find a function x which takes values 0 or 
1 and is constant on each component of A\ U Aj and such that the components 
whose boundaries intersect along a non-degenerate piece of a curve Aj have 
digerent values. -. 

Proof.  First consider the case when we have only one curve A. Suppose 
that (A (u), U E  [u,, u2]) is a continuous parametrization of A. By using the 
Riemann mapping, we may assume that A is the upper half-plane and the 
endpoints of A are A (u,) = 0 and A (u,) = 1. For each x E A\A choose 
a continuous version of the function u + arg (x - A (u)) and let 

1 (x) = arg (x - A (u,)) - arg (x - A (u,)). 

It is easy to see that l(x) is a continuous function of x within each component 
of A\A and takes values in (2k71, n+2kn) for some integer k. It has a jump of 
ske 27t on the boundary between components. It will sate to let ~ ( x )  = 0 if 
k is even and 1 otherwise. 
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Now suppose that the lemma is true for k-l curves, Find a curve Aj 
among the curves (A,, . . . , A,) such that all the remaining curves lie in one 
component of A\Aj, say D,. Let D, be the component of A\U,+~A, which 
contains A,. By the induction assumption, we can find 31, and X ,  corresponding 
to the components of A\Aj and A\ Urn, ,- A,. By flipping the values of O and 1 if 
necessary we can assume that xj is equal to 0 on Dj for j = 1, 2. Then let 
11 (x) = x1 (x) + xz (x). The lemma follows by induction. ra 

Before we state the next lemma, let us give a name to a certain operation 
on smooth curves. Suppose that two smooth curves intersect at a finite number 
of points'and let x be one of them. Let B be a small disc centered at x which 
does not contain any other points of intersection. Let us remove the parts of 
the curves which lie within B and add two disjoint line segments within 
B connecting the points at which the curves intersect dB. This gives us two new 
curves - each new curve contains a piece of each of the original curves and 
a new line segment within 8. Note that there are two ways to perform this 
operation - each one produces a different pair of curves. We will refer in what 
follows to this operation as "reconnecting the curves at x." 

LEMMA 2.7. Suppose that A,, A,, . .. , Ajo are open disjoint discs whose 
cbsures lie inside a disc C, Suppose that smooth curves @, , QI,, . . . , Qko lie inside 
C and haw their enhoints on dC. Assume that for auery j and k the intersection 
of @, and Aj is either empty or is a finite number of line segments. Assume 
that the endpoints of these line segments are all distinct and that for each k 
the tine segments comprising UiAjn  ak do not intersect. Suppose that 
a , ,  a,, . . . , Gko- are pairwise disjoint and for all k < k, the intersection of a, 
and @, lies within UjAj. Then we can reconnect 8,'s at the intersection points 
within U j  Aj so that we obtain new disjoint curves @,, O,,  . . . , Oko and possibly 
some closed loops l7,, . . . , Hj0 .  The set of all endpoints of is the same as the 
set of all endpoints of 8,'s. IfJ c (1, 2, . .. , jo) and U,nj is connected, then 
this set can intersect at most one curve 8,. 

Proof.  Find a function x corresponding to the components of 
A" = C\Uk<ko @, according to Lemma 2.6. 

The intersection points of 8,'s divide these curves into a finite number of 
pieces, say, J,'s. Let I,, . . . , I,,,, be the consecutive pieces J ,  of @ko.  Imagine that 
initially each Qr, is painted with color k. We will repaint @is  and we start with 
@,,. The first piece, i.e., I,, will retain its color k,. We will put colors into 
categories of cool or warm colors as we proceed with our coloring scheme. The 
color k ,  will be called cool if I ,  belongs to the component of 2 with x-value 0. 
Otherwise we will call it warm. 

As we move along @,, we will encounter intersections with lines that have 
been already crossed by a,, and also new lines. Suppose that I ,  is the first piece 
of di,, touching aj. Then I,,, is painted with color j. At the same time 
we record the color of I, and call it VG). The color j will be called 
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cool if Ik+l  belongs to the component of A with X-value 0. Otherwise we will 
call j a warm color. 

If I, ends at a line @, which has been already visited in the past, we 
repaint I, + depending on the color of Ik. If the color of I ,  is different from m, 
we give color m to I , ,  otherwise I ,+ gets color %(m). 

We will show that for aII j and k, the colors W ( j )  and j belong to different 
categories of cool and warm colors and the color of Ik is cool iff it is in 
a component where x = 0. It is easy to see that this is true for k = 1, 2, for the 
color j of I ,  and the corresponding 48(j). Suppose that this is true for all k < k, 
and all colors j (and corresponding Qlj)) which have been used to paint all I,'s 
with k < k,. Now observe that I,, -, and I, ,  lie in components with different 
values of X .  It follows from our coloring scheme that their colors must belong 
to different categories of cool and warm colors, no matter whether we are 
crossing an old line or a new line. Hence, the induction assumption implies that 
I,,  is cool iff it is in a component where x = 0. If we are crossing a new line Qj0,  
a moment thought confirms that the induction assumption and the coloring 
scheme imply that 46,) and j, belong to different categories of cool and warm 
colors. 

For every k < k,, we repaint @, by alternating colors of its adjacent 
components J,,, between k and %(k).  We do it so that at least one of the 
endpieces of @, is painted with color k. 

Next we will show that all Jm's that meet at the intersections on the path 
a, have one of two colors: k or %(k). This is obviously true for J,'s that lie on 
@,. This is also true for all J,'s which lie on @,, and originate at @,, no matter 
where they have their second endpoints (the sense of direction is the same as for 
the sequence of 1;s). It remains to consider I is  which originate at some 8, with 
a # k and end at a point of 8,. The first such ij has color V ( k ) ,  by definition. 

Let D be a component of A: Suppose that the first I j  which lies in D has 
color m. The path Qi,, may leave D by crossing some line @i for the first time. In 
such a case V(i) = rn. The first time (if there is such a time) the curve a,, returns 
to D, it must enter D by crossing the same line Qi. The color of the I j  that lies 
within D after that crossing can be only i or %ti) = m. Since only one of these 
two colors is cool and the path is in the same component of A" which already 
contains a path colored m, we can conclude that I j  has color m. A similar 
argument applies to multiple crossings of the same line Gi. We conclude that 
all Gs  in the same component of A" must have the same color. Since I j  leaving 
a path @, may have only one of two colors: k or %(k), so must the Ij's which 
come to a, from a different @,. This shows that all Jm's that meet at the 
intersections on the path @, have one of two colors: k or W ( k ) .  

We have shown that the paths J, meeting at an intersection point can 
have only two colors and the construction clearly shows that the colors come 
in two adjacent pairs as we go around the point. Hence we can apply the 
reconnecting procedure described before the lemma at every intersection point. 
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We always join J,'s which have the same color. The result will be a number of 
continuous paths @,, @,, ..., ek, and possibly some closed loops n,, 
n,, . . ., Ill,, none of which intersect within A,'s, k > 0. Each of these paths is 
painted with only one color. It is easy to see that the set of all endpoints of @is 
is the same as the set of all endpoints of @is. 

Recall that we have already shown that all IJs in the same component of 
2 must have the same color. Fix some k and consider the components of 
A, = C\U j , ,  aj. Then using Lemma 2.6 and the same argument as that with 
the Ifs we can prove that 3,'s which lie on QI, and belong to the same 
component of a, must have the same color. 

Suppose that two J,'s intersect outside U j ~ j  and, therefore, they both 
belong to the same Gj. It follows that they lie in the same m p o n e n t  of 2 and 
the same component of every a,, k # j, and so these two J,'s must have the 
same color. Note that all @j's must have different colors because we have 
painted (at least) k, initial pieces of @,'s with daerent colors. Hence 0;s are 
pairwise disjoint. A loop 4 can intersect other loops only if they are of the 
same color and all loops of the same color can intersect only one 9, - 
the one with the same color. This proves the last assertion of the lemma. 

LEMMA 2.8. Suppose that C is an open disc whose closure is contained in an 
open disc C'. Assume that for every j < j, we have an open simply connected set 
Aj whose closure lies within an open simply connected set Af . The sets Af are 
assumed to be pairwise disjoint and their closures are contained in C. Let 
A = UjAj and A' = UjAf .  Suppose that (A(u) ,  U E  [ul, uZ]) is a (P)-path with 
endpoints outside C'. Let A, be the piece of A between Ui(A) and TE(A). 
Assume that all the intersections of A, and Aj for j # k lie within A. Moreover, 
assume that 

A, [u? (Ad, Tf (Ak)] n Ak [Up (A,), TP (A,)] = O for all k and i # j. 

Then there is a (P)-path r with the same endpoints as A which contains all the 
points of A\A+ and such that 

r C U j C ( r ) , T F ( T ) ] n r [ U f ( r ) , c ( r ) ] = 0  for i#j. 

Proof.  First we replace the pairs of paths A, [Ufi (A,), TjAi (A,)] and 
A, [Uti (Ad, T,Ai(Am)] which do not have to intersect for topological reasons 
with pairs of disjoint paths as in Lemma 2.4 (see Remark 2.1). This will change 
the path A only within A. From now on we will assume that if A, [Ufi(A,), 
Tfi(Ak)] and A, [U;;'i(Am), T;;"(A,,,)] intersect, then they have to do so for 
topological reasons. 

We would like to apply Lemma 2.7 to the curve A but this curve is not 
smooth. Hence we will approximate it with a smooth curve @ as follows. We 
choose @ so that 

(i) @ has the same endpoints as A; 
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(ii) @ (Uf (@)) = A (Uf (A)) and @ ( T f  (@)) = A (TE (A)) for all k such that 
T,C(A) < ao; let @, be the piece of @ between Uf(9) and TE(@); 

(iii) Gk (UjA (@,I) = A, (UJA (Ak)) and 6, (Tf (@,I) = (Tf (4 ) )  for a11 j 
and k; 

(iv) intersections of @, and Qij for j # k lie within A; 

(v) [Uf (@d, Tf (Qik)] n 9, [UP (@by Tf1 (@k)] = 0 for all k and i # j ;  
(vi) if A, and Aj are disjoint, then so are @, and aj; 

(vii) if A, [ ~ f '  (A j, Tfi (A&] and A, [u$ ( A d ,  Tti  (AJ] are disjoint, 
then so are Qk [ufi (ad, ~ f l  (@,)I and @,,, [U$ (am), T,Ai (@A]; 

(viii) @, [ U ~ I  (@,), ~ f *  (@,)I and @, [ U i i  (@A, Tfl (@A] have at most one 
intersection point. 

It is easy to choose Q so that it satisfies (ij(iii), In order to have (ivHvii), it 
will ~ ~ c e  to construct @ so that for a sufficiently small S > 0 and all u we have 
I@(u)- A(u)l < 6. Condition (viii) is easily satisfied if A:'s are discs - it is 
enough to modify 9 ' s  so that all pieces Gk [Up (Gk), Tfi (BJ] are line segments 
Since (viii) is a topological assumption, it can be satisfied for any family of 
simply connected open sets Ai+. 

. Let us rename paths A, [Ufl (A,), Tfi (A,)] as ij = (Ij(u>, u E [ui, 41) 
and let J, = {Jk(u), U E  [&, s!]} be the new names for A, [ U ~ J  (A,), T i 1  (A2)]. 
Recall that 1;s are disjoint and the same is true for J,'s. If Ij and Jk intersect, 
then they have to do so for topological reasons. We will say that Ij hits Jk 
bdore Jm if 

Suppose that Ij and J, intersect and that I, is the first curve hit by J, after 
hitting lj. Let T be the infimum of u such that Jk(u)€I,. Then we let 
t', = inf{u: Ij(u)~J,[sk,, 7')) and 4 = ~ ~ ( t ' , ) .  Let 4 = inf(u: J,(u) = xi}. Note 
that 4 < T Since Jk [st, T )  does not intersect I,, we see that 4 = J,(flA and 
$ = J, (ri) for some 4 c I$. More generally, if we move along J ,  from J, (st) to 
J,  (sk;) and we hit Ij before hitting I,, then xik = J, (4) and x;: = Jk (r?) for some 
PJk < $. NOW suppose that Ij hits Jk before hitting J,. Let D be the component 
of A,\I, which contains 3, [st , T). Note that Ij and Jk [$ , T )  have to intersect 
in D for topological reasons. Moreover, Ij has to hit 3, [s:, 7') before hitting 3, 
in D. We conclude that if we move along Ij from lj(u{) to Ij (4) and we hit Jk 
before hitting Jm, then x'; = 1~(t9 and xk = Ij(t',) for some 4 < ti,. 

Let IF and $' be defined relative to 6, and @, in the same way as Ij and 
Jk have been defined relative to A, and A,. Use these curves to define points 
y;l analogous to $s. 

The main point of the construction of $s is that they come on the paths 
of 1:s and J,'s in the same order as yik.s on the paths of F s  and Jf's. Let dl 
denote a piece of one of Iys  or one of JFs between points & and 
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&2 - we will tacitly assume that either j, = j ,  or k, = k,. Suppose that a path 
made of arcs m, m, . . ., y'k",; A", intersects another path made of -- 
~2~ Y : ~ ,  y z  y z ,  . . . , Yt,ll yir ody at some &s. Then the paths made of pieces of 
1;s and J,'s: 

intersect only at some xi,'s. 
We will apply Lemma 2.7 to @, and @, . The sets AT in the statement of 

Lemma 2.7. will play the role of Ais in Lemma 2.6. Although AT'S are not discs, 
they are simply connected open sets and we can apply Lemma 2.6 as it deals 
only with topological and combinatorial properties. 

According to Lemma 2.7, @, and @, may be reconnected within A so that 
we obtain two paths 8, and 0, with the same endpoints as @, and @, 
(although the endpoints of Oj  need not be the same as those of Qj) and possibly 
a finite number of loops nJ. Every curve B, [Ufl(B,), Tfi(@,)] contains -- 
a number of arcs of the form y$ y'.:, & &, . . . , except that very small 
pieces of these arcs close to y','s were replaced by new connections. Consider 

j2j2 jf,,,"-,&" the corresponding curves i-2; consisting of paths ~L xkz ,  xt2 xks ,  . . . , m - l  hem. 
Note that LJj are (P)-paths in A: with the same endpoints as 
@, [Ufl (O,), TjA1 (@,)I. Define Gf's in a similar way relative to 8,. The proof 
of Lemma 2.7 shows that not only 8, and 8, are disjoint but the paths 
8, [Ufl (el), Tfl (@,)I are also disjoint for different j (the same is true for 0,). 
It follows that no pair of paths from the family of G's and i-2;'~ have to 
intersect for topological reasons. In view of Remark 2.2 we can replace 52;'s and 
G$'s with dj's and @'s which are disjoint (the endpoints of are the same as 
those of a!). If we perform the operation 9 discussed in Remark 2.2, dj's and 
fi;'s will not necessarily pass through the points xb as the old paths. However, 
we will record the fact that an original path 52; passed through x i  by writing 
xi,, si:. 

w e  have constructed disjoint (P)-paths d; and df which connect the 
points A, (ufl (A1)), Al (Tfl (A1)), A,  (Ufl (A,)), and A, (Tfl (A,))-within A:. 
Moreover, these endpoints are connected by the new paths in 'the same way as 
by 0's. Next we repeat the same operation in eveiy A f .  

Let us replace all A, [Uff (Ai), Tfi (Al)] and A, [ u ~ ; ( A , ) ,  T? (A,)] ~ t h  
dj's and Qf's and the analogous paths in Af's for j > 1. The original curve 
A will be replaced by a new curve li" and possibly a number of (P)-loops Z i  
corresponding to n is .  

If some loops Z j  intersect, then we combine them into a single loop using 
Remark 2.3. If any of the new loops intersects A, we again apply Remark 2.3 to 
get rid of this loop and incorporate it into li". We may be still left with some 
loops that do not intersect any other loop or Note that such loops must 
contain an dj (or an analogous path in some A:) such that there exist xl 
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and dh with the following properties: x: I> @, X: D dk and fi:, belongs either 
to another loop or to il: By switching the originaI reconnection at the poiit 
xf we will get rid of one loop. A repeated application of the procedure will get 
rid of all loops. 

Let A* denote the path obtained from A by attaching to it all loops. Our 
construction and Lemma 2.7 imply that 

A* [Uy(A*) ,  T: (A*)] n A* [Ug (A*), T ~ ( A * ) ]  = 0. 

Next we approximate A* with a smooth line @just like in the case of A. Then 
we apply Lemma 2.7 to @, , @, and @, in order to construct a new curve A** 
with the property that 

for i #  j, i , j =  I, 2, 3. 

We inductively repeat the procedure each time applying Lemma 2.7 to a larger 
number of @is. 
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