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Abstract. For a symmetric a-stable random vector (XI, .. ., X,, X,+ ,) 
with 1 < a < 2 and spectral measure r, we find a necessary and 
sufficient condition in terms of r for the conditional variance 
Var(X,+l 1 XI, . . . , XJ to be finite. We express the conditional vari- 
ance in terms of r, and we develop an additivity property when 
X,, . . . , X, are independent. These results are then applied to stable 
processes: scale mixtures of Gaussian processes, harmonizable and 
moving averages. 

b INTRODUCTION 

For jointly normally distributed rando-m variables, conditional expec- 
tations are always linear and conditional variances are always constants 
(is., degenerate random variables). Here, we consider random variables 
XI, . . . , X,, X,+ that are jointly symmetric a-stable with a < 2 (E = 2 
corresponds to the normality). In this case, conditional expectations do not 
always exist (when 0 < a < I), and when they do, they are not always linear. 
Existence (when 0 < cl < 1) and linearity (when 0 < E < 2) of conditional 
expectations have been considered for the bivariate case n = 1 in [4], [5], [9] 
and for the multivariate case n 3 2 in [2], [7]. Here, we consider conditional 
variances, which are not always finite and when they are, they are not generally 
constant (i.e., degenerate); we focus on the case where 1 < a < 2. 

We give a necessary and sufficient condition for E(X;+, I XI, .. . , X,) to 
be finite, and we express the conditional second moment in terms of the joint 
spectral measure (Theorem 1). The bivariate case n = 1 was considered in [3], 
[9], [lo]. We also relate the finiteness of E(X,2+, I XI ,  ..., X,) with that of 
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E (X:, , ( Xh, k = 1, . . . , n (the Corollary). When the random variables 
XI,  . . . , X, are independent, we show that Var (X,+ 1 XI,  . . . , X,) is a sum of 
n terms, each depending on X, and proportional but not equal to 
Var(Xn+l 1 Xk), k = 1 ,  ..., n. 

Several examples of stable processes are considered in Section 3. For scale 
mixtures of Gaussian processes, conditional variances are shown to be always 
finite and they are expressed in terms of a fixed functional form (Theorem 3). 
Harmonizable stationary processes are also shown to always have finite 
conditional variances (Theorem 4); this extends a more special result in [6] 
which was established for all 0 < a < 2. Finally, for moving averages, necessary 
and sufficient, and, simpler, sufficient conditions are given for finiteness of 
conditional variances, and they are shown to be satisfied by the two-sided 
Omstein-Uhlenbeck process (Theorem 5). 

All proofs are collected in Section 4. 
Throughout the paper, points in Rn are denoted by x'") = (x,, . . . , xJ, the 

usual inner product by (x("), y(.)) = xi=1 xkyk, and the Euclidean norm by 
Ilx'n1112 = {x~"), dn)). We will also denote points in Rntl by xb'l) = (x"), ~n + I), 
where x t " )~Rn .  If X("'l) is a symmetric a-stable (SaS) random vector with 
0 < a < 2, then its characteristic function is of the form 

I1.1) 4 X ( n +  11 (t("+ l)) = Eexp (i {t("+ '1, X1"+ I))) 

where r is a finite Bore1 measure on the unit sphere S,+' = {s(~+')ER"+~:  
Ils["+l)ll = 1 )  of R1"+'), called the spectral meamre of x'"' 'I. 

We also use the bracket power notation = lxjPsign(x) for x€R1; and 
the symbol c for a generic finite positive constant whose value may change 
from expression to expression, while c, denotes a specific constant. 

2. RESULTS - 

When X,+l is independent of X("], or when its conditional distribution 
given Xtn) is stable with index a, then E (IX,, ,IP I X'")) < co a.s. only for 
0 < p < a, so Var(X,+, I X(")) = co. Here are some specific examples. 

INDEPENDENCE. When X,+l is independent of X("), then 

AR (m) PROCESS. X, - a, X, -, - . . . -amXn-m=Zn,  where (2,; ~ E Z )  is 
an independent S a S sequence of random variables. Then, for n 2 m, X("+') is 
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an SuS random vector and 

ORNSTEW-UHLENBECK PROCESS. X ( t )  = e-"-")dZ(u), t eR ,  where 
Z has independent S u S stationary increments. For any fixed t, < . . . < t ,  
< tn+l,  we can write 

t" t,, + 1 

x ( t n + ~ ) =  1 exp{-.l(tn+l-u))dZ(u)+ 1 exp{-A(tn+l-u))dZ(u) 
- 0 0  tn 

so that the (nonstationary) sequence Y, = eanX (t,) satisfies Yn+ = + Z,+ I, 
where Zn+,={::*'e-""d(u) are independent SaS. It follows that 
E(IY,+,~P]  Y(")) < co a.s. for 0 < p < u and = +a a.s. for u 6 p, and thus 

ONE-SIDED LINEAR PROCESS. A slightly more general example with 
the same kind of behaviour is provided by X, = C z ,  where 
{b, = 1, bn; n E N) is a sequence of constants with CJm=* Ibjla < m and 
(2,; nEZ) is a sequence of independent and identically distributed Sols 
random variables. It may easily be seen that 

On the other hand, when X,+, is dependent on XIn), then 
E (IX,+ I P  I XI") < GO a.s. for all p. So the question arises under what type of 
weaker condition of dependence of X,,, on X(") is it possible to have 
Var(X,+, 1 X'")) < o~ a.s. This question is answered in Theorem 1. 

We will assume that XI, . . ., X,, Xn+ , are linearly independent. As in 
Lemma 2 (due to Samorodnitsky and Taqqu [9]), this implies that 

q5X(n+1)(ttn+1)) < exp {-cIIt ( n + l ) l l a j  

for all t ( " + l ) ~ R " + ~  and some positive, finite constant c, and thus +(t'"+l)) 
EC(R"+') and X("+l) has a continuous probability density function 
fxcm+ (XI"+ I)). The regular conditional second moment of X,+ given 



198 S. Cambanis  and S. F o t o ~ o u l o s  

x(") = x!"' is then given for all x(")E Rn by 

where fXc"r(~")) is the density of x("). Throughout, whenever we write 
E(X,2,, 1 X'") = x'")), we mean this regular version. We first give a necessary 
and suficient condition for the finiteness of the second conditional moment, 
and we express it explicitly in terms of r. 
. .THEOREM 1. Let X I ,  . + . , X, + , be linearly independent and jointly SaS 

random uariables with 1 < os < 2. Then E I X(") = x(")) < HI for all 
xC) E Rn if and only if 

Also, for all x'") E R", 

When n = 1, #,, (x i )  = exp(-o$ Itl(") and the necessary and sufficient 
condition (2.1) becomes equivalent to ~S21y11a-2r(dyl ,  dy2) < oo, as in [lo]. 

When X I ,  . . . , Xn + , have a spherically symmetric distribution: 

&,-+I, (tcn + ' I )  = exp ( -a2 IIt("+')lja) 

and r is surface measure on S,+ ,, then E (X:, ] X1") = x(")) < oo for all 
x(")E Rn if and only if 

as follows from Lemma 3. Since r is surface measure and 2-a < 1, condition 
(2.3) is satisfied. Thus, if in addition to the assumptions of Theorem 1, the r.v.'s 
X I ,  . . . , X,+ have a spherically symmetric distribution, then E (X:+ [ X(") 
= x(")) < oo for all XI") E Rn. 

It follows from Lemmas 2 and 3 that condition (2.3) is suflcient for 
condition (2.1). 

A stronger sufficient condition than (2.3) is obtained from IIyl")II 2 lykl, 
k = 1,  ..., a: 

2 

(2.4) j -  Y n i l  r ( d ~ ( ~ + ~ ) ) < ~  for some k = l ,  ..., n. 
s,+ r l ~ k l ' - ~  



Conditional variance for stable random vectors 199 

This is slightly stronger than the necessary and sufficient condition for 
E(X,2+1 ) Xk = xk) < 03 for all x, = R1, which is expressed below in terms of 
the spectral measure 7 of the full vector ( X I ,  . . . , X,, for comparison 
purposes. 

COROLLARY. Let X I ,  . . . , X,, X,+ , be linearly independent and jointly SaS 
with 1 < a < 2, and let k = 1, . , . , A. 

(a) E(X,2+, I Xk = xk) < OC) for ail x;€R1 if and only if 

(2.5) 
2 . . .. - 

r (dy("+ '1) < ao and I - ly"',' j Iyn+l~ar(dy("+lJ) = 0, 
s,+ 1n1yrt01 Iyk12-' Sn+in{m==~l 

(b) in addition, n > l and X I ,  .. ., X ,  are independent, then 
E (Xi+ 1 1 Xk = xt)  < co for all x, E R1 if and only if Xfl+ is independent of X j ,  
j # k ,  j = 1 ,  ..., n, and 

(c) If in addition n > 1 and X I ,  . .., X, are independent but X I , .  .., X,, 
Xn+l are not independent, then at most one of 

may be true, while i fX ,+ ,  depends on more than one of X I ,  . . . , X,, then none of 
(2.7) is true. 

It is clear from this Corollary that E (Xi+ I X(") = x(")) < oo for all x(") E R" 
does not necessarily imply that E ( X i + ,  1 X, = x,) < CQ for all xk E R1 and some 
k = 1, . . . , n. (Of course, in the converse direction, E ( X f + ,  I Xk = x,) < ao 
for al l  X ~ E  R1 and some k = 1, . . . , n always implies that E (X:+ I X(") = x(")) < a0 
for all x(") E Rn, since E (X:+ I X ,  = x,) = [ f,, (xh]  - j,,,-, E (X:+ 1 X1") 
= x'")) fxcm) (x'")) n:= dx,.) When XI, . . . , X n  are spherically distributed, in 
view of the ~ o r o l f a r ~ ,  we have E(X;+, I X(") = x(")) < czl for all x(")ER" and 
E(X%+, 1 Xk = x& < oo for all x,ER' and k = 1 ,  ..., n. 

Whenever the conditional second moment is finite, so is th;conditionaI 
variance whose expression can be found from Theorem 1 via 

Var ( X ,  + 1 x(")) = E (Xi+ 1 X(")) + (E ( X ,  + 1 X(n1)},2, 

and the expression of the regular conditional mean, which is given likewise for 
all x(") ER" by 

ui 
(2.8) E ( X ,  + I I X'* = xb)) = l dttn) exp (- i (t'"), x'"))) $xc.) (tC)) 

(2z)"fx<n, (x'"') p 
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and is not necessarily linear [2]. In general, this is a complicated expression, 
and it would be interesting to know if it can ever lead to a (degenerate) 
constant value; this is never true when n = I, as is clear from [lo]. Now we 
show that when XI, . . . , X, are independent, then .Var (X,+; I XI, . . . , X,) is 
a sum of n terms, each of which depends on Xk, k = 1, .. ., n, and is 
proportional but not equal to Var (X,+ I Xk). 

THEOREM 2. Let XI, . . . , X,, X,, , be linearly independent, jointly SrrS r.v.'s 
with 1 < u < 2, and let X, , . . . , X,, be independent. 
. .(a) E (Xi+ 1 X(") = x'")) < oo for all x'") E Rn if and only i f  

and 

(b) Jf E (Xi+, I X("J = x(")) < co for all x(") E HEn, then 

(2.1 1) Var ( X ,  + I .XI = x, , . . '. , Xn = x,) = D:+ 11k (4 sf (JCJ6k; a) 
k = l  

for all x ' " ) ~  F, where the universal "standard deuiadon"function S, ( x ;  or) is up to 
factor a (a - 1) as in [lo] : 

m 

cos (xt)exp(- t 3  ta-2dt 
(2.12) a) = a(u-1) 0 

j cos (xt) exp ( - P) dt 
0 

and the coeflcients D;+ depend on the joint distribution of X, and X,+ as 
follows: 

and a;: = js ]~~Yr(dy{"+~))  is the scale parameter of X,: &, (t) = exp (-G/tlQ). 
n+ 1 

Note that the dependence coefficients Df+llk(a) differ crucially from 
the dependence coefficients Ci+ ,(,(a) in the expression of Var(X,+ I X,) 
= C;+ (a) S, (X Jo,; a) given in [lo] only by the constraint yk # 0 in the first 
integral within brackets. This is crucial because, according to the theorem, 
without the constraint yk # 0 we obtain the coefficients C,2+11k(a) whose value 
is infinite! 
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3. APPLICATIONS TO STOCHASTIC PROCESSES 

3.1. Scale mixtures of Gaussian processes. These are defined by X ( t )  
= A ' / ~ G ( ~ ) ,  t  E T, where A is totally right skewed (a/2)-stable, 0 < a < 2, i.e., 
positive with Ee-"A = e ~ ~ ( - u " / ~ ) ,  u 3 0, independent of the Gaussian pro- 
cess G ( t) ,  t  E with mean 0 and covariance function R ( t ,  s). With X'"+') 
= (X ( t  ,), . . . , X it,  + we have 

(3.1) . . &("+ = Eexp {i {s'"+'), X'"+ >I 
= E exp {iA1I2 {dn+ '1, G'"+ l))} 

when In+,  = { R  (t!, tj)); Jf ,, so the finite dimensional distributions are SaS. 
We will assume, w~thout loss of generality, that X ( t , ) ,  ..., X(tn)  are linearly 
independent, i.e., the covariance matrix E, is positive definite. It was shown in 
121 that, for all 0 < cx c 2, multiple regressions exist: 

and are linear: 

E { X ( t n + l )  I X ( t l ) ,  ..., X( t , ) )  = a ,X( t , )+  ... +a,,X(t ,J,  

and the regression coeficients are those of the Gaussian process: 

Here, we show that multiple conditional variances are also finite when 
1 < u < 2 and we derive their expression. The case n  = 1 was considered in 
1101. 

THEOREM 3. With the notation above, when 1 < a < 2, we have 

E ( X 2  (tn+ I X  (tl) = x,, . . . , X (t,J = xn) < ca for all x ( ~ ) E  Rn 

and 

(3.2) Var (X ( t ,  + 1) I X i t , )  = 3 - . ., X (tn) = x,) 
n)  112. 

= [ R ( t n + l ,  t n + l ) - ~ n + 1 , n ~ ~ 1 ~ k + ~ , n I S R 2 ( ( ~ ( n ) ,  ) 3 4, 
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where & + I ,  = (R(t,+l, t,), .,., R(t,+l, t,)) and, for n 3 2, 
m 1 

j T"'"-~ e ~ ~ ( - v " ) d r ~ ( s i n 8 ) " - ~ ~ o s ( f i x r c o s 9 ) d 0  
a 0  

(3.3) s: (x; 01) = - 
0 

j rn-l e ~ ~ ( - ~ d r ~ ( s i n ~ ~ - ~ c o s ( ~ x ~ c ~ s 8 ) d 0  ' 
0 0 

whereas S: (x; a) .is as in (2.12). 

Notice that the conditional variance in (3.2) is proportional to the 
corresponding conditional variance of the Gaussian process G and depends on 
xfn) via the quadratic form (x["), ~,x (" ) )  and the fixed function S,Z (.; u). 

3.2. Harmonimble stationary prwesses. These are represented by 

where Z has complex, independent, rotationally invariant, a-stable increments 
and finite control measure my and their finite dimensional characteristic 
functions are given by 

n + 1  ca n + 1  

(3.5) E exp { skX (t,)} = exp { - I 1 s, exp (itkil)lQ) dm (A)  
k = l  - m  k = l  

where Z,, , (A) = (cos [(tk- tj) rl])i,;l It was shown in [2] that for all 
0 < u < 2 multiple regressions exist : E (IX ( t ,  + I X (t,), . . . , X (tJ) < co as.; 
however, their (nonlinear) expression is not currently known when n 2 2. Here 
we show that multiple conditional variances are also finite when 1 < a < 2. 
The case n = 1 was established in [lo], and the case n = 2 with special times 
t, - tl = t, - t, and a11 0 < a < 2 was established in [6]. 

THEOREM 4. With X(t), as in (3.4)-(3.5), and 1 < or < 2, we have 

At present, the functional form of the conditional variance is not known 
when n 2 2. The case n = 1 was developed in [lo]. 

33. Moving average processes. These are stationary SaS processes of the 
form 

where the process Z has stationary independent SuS increments and ~ E E ,  
so that the finite dimensional characteristic functions are, with X("+l) 
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(3.7) m n + 1  

., (s("+l)) = E exp (i (s'"' ' I ,  X(m+l))) = exp { - I I f ( t , - ~ ) l " ~ ~ ) .  
-m k = l  

THEOREM 5.  For a moving average process as in (3.6)-(3.7), with 1 < or < 2 
and (X (t,), k = 1, . . . , n+ 1) lineariy independent, we have 

E{X2(tn+,) I X(t,) = x,, ..., X(t,) = x,,} < a~ for all x(")ER~ 

if and only if 

m n " f2(tn+~-v)du 
(3.8) ddn) exp ( - j ( s,f (t, - u)ladu) I c 00 

RR -a, k = l  - m Iz= 1-f ( tk-v)la 

Spec$cally, for t, < . .. < t, < t,+, and the stable two-sided Ornstein-Uhlen- 
beck process X ( t )  = jrm e-Alt-uldZ(u), we have 

V a r ( X ( t n + i ) ) X ( t l ) = ~ l ,  ..., X(tn)=xn)<co for alIx(")~R". 

The functional form of the conditional variance, when it is finite, is not 
known even for n = 2. 

4. PROOFS 

Proof of Theorem 1. This follows the line of the proof in [lo]. The 
regular conditional ch.f. of X,+, given X(") = xln) is expressed in terms of the 
joint ch.f. $I,(.+ 11 (t("+ I)) as follows: 

11/ (tn + ; x")) A E (exp (itn + 1 X, + 1) I X'") = x'")) 

- 1 J exp ( - i (t("), x'"))) $x(n + I, (PI, tn + l) dt(") 
( 2 ~ ) "  f x ~ n ,  (x~" ) )  Rtt 

for all t, + , E R1 and x(")E Rn (Zabell [Ill). It follows that 

E (Xi+ 1 Xtn) = x(")) < co for all xCn) E Rn 

if and only if 
1 

lim r { 2 - $ ( t n + l ;  ~ ( ~ ) ) - $ ( - t ~ + ~ ;  dn))J 
t,+l-+Otn+l 

exists and is finite for all E Rn. 
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We can write 

A 1  
I(t,+,; x'"') = - 2 ( 2 - $ ( ~ n + l ; ~ ( ~ ) ) - $ ( - t ~ + 1 ; ~ ( ~ ) ) }  

t n +  1 

- - 1 1 exp ( - i (t(n)y xfn)})) 
(2 E)" ~ x ( " I  (x")) nn 

- 1 
- j exp ( - i {t("), x'"))} $,(. + (t'"), 0) (3,  (t("+l)) 

(2 @ fxcn, (x'")) , 

A 
= Il (tlr+l; x("))+12(tn+1; x'"))~ 

where 

We first show that the limit of 1, (t,, + ; x'")) as t, + + 0 always exists and is 
finite for all x(")ER". By Taylor's expansion, we have 

1 - A (t(" + I)) -exp { -A (t(" + '1)) = -I z A2 (t(,+ I)) exp (-0 (t@+ 1))) , 

where 10(t(n+l))l < lA(t(n+l))l. Also, by Lemma 1, we have for It,+,l < 1, say, 

lA(t'"'l))l < S ( I t l r + l ~ n + ~ l ~ + ~ I ~ t ( " ) ,  ~ ( ~ ) ) l ~ - ~ I t n + l ~ n + ~ i ) r ( d y ( " + ~ ) )  
S,+ 1 

< c ( l +  llt(")lla-1)9 

and using Lemma 2 we obtain the following upper bound: 
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which is in L? (Rn) as a function of t'"). The elementary argument on pp. 90-91 
of [10] gives 

t (n) lim J1 (t(" + I)) = lim { A  (t , t,+ l) + A (t'"), - tn+ 1)) 
t n + l + O  t n + i + O  t,+l 

Thus, the dominated convergence theorem gives 
. . 

- tx2 
lim I, (t, + ; xcn)) = j exp(-i<t("), x('))} $X[n+l)(P), 0) 

t" + i-'O (2 n)" f,cn, (x")) R" 

Since this limit exists and is finite for all x(") E R", it follows that E (Xi+, I X'") 
= xln') exists and is finite for all x(")EW if and only if the limit of I, (t,,,; x(")) 
as t,, +0 exists and is finite' for all x(") E R". 

Assuming first that lim,,, + , ,,, I ,  (t, + l; x(")) exists and is finite for all x(") E F, 
we obtain by Fatou's lemma (since, by Lemma 1, Ix + yla+ Ix- yI"-21x1' 2 0 
for all x, y E R1), 

Thus, condition (2.1) follows. - 
Now assume that, conversely, condition (2.1) is satisfied. Using Lem- 

ma 1 (ii) with r = 2, we have 

so the integrand of I ,  ( t ,  + l; xcn)) is upper-bounded in absolute value for all 
tn+1 by 

~ 4 ~ ( ~ + l , ( t ( " ' ,  0) 1 ](t("), y(n))[a-2y,2+1r(dy(n+1)), 
S n +  I 

which is in L! (R") as a function of 6") in view of condition (2.1). Thus, the 
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dominated, convergence theorem gives 

(2 7 ~ ) "  fXw (x(")) lim I ,  (t, + ; ~ ( " 1 )  
zn+1-'0 

= J exp ( - i (t(n), x ( ~ ) ) )  bXcn + I (t("], 0) { lim 4 ( t fn + ' 1 ) )  dt("1 
R " fn+ 1-0 

= a (a - 1) 1 exp { - i ( t fn) ,  x'"')) &,(, + (ttn,, 0 )  
am 

x { J l{P, y{"'>Im- y:+ (dy("+I))} at'"), 
Sn+1 

i.e., this limit exists and is finite, leading to E(X;+, I X("' = < m. In this 
case we have 

E(x:+ I x(") = x(")) = Iim I(t,, l ;  x(')) = lim { I ,  (tn+ ,; x(")) + I,(t,+, ; xtn))), 
t.+1+0 t,+ 1-0 

which gives the final expression (2.2). 

Proof of the  Corollary. (a) From Theorem 1 w [lO] we know that 

E ( x , ~ + , ~ X , = X , ) < ~  for all x k f R 1  

if and only if 

where rknn+ is the spectral measure of the joint distribution of X,, Xn+,  in 

The relationship between rk,,+, and r is 

r,," + = f o h- l ,  where f (tiy(" + l))  = (y; + Y:, l ) " 2 ~ ( d y ( n + 1 ) )  

and h maps Sn+1n{y,2+y,'+l > 0 )  onto S, b y  h(y("+l)) = Cy,, y,+,) 
x (y,2 + y:+ ,)-'I2 (= (u,  t))). NOW condition (4.1) is equivalent to 

(b)  Note from Miller [7] that X I ,  . . . , Xn are jointly independent if and 
only if they are pairwise independent, if and only if the joint spectral mea- 
sure r of X I ,  . . ., X,, X,,, is concentrated on the n circles yZ+ y:+, = l ,  
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k = I ,  . . . , n, of S, + Then the second condition in (2.5) is written as 

which is equivalent to saying that on each punctured circle y j  + yf+ = I ,  
yj, # 0, we have y , + ~  = 0 a.e. [g, i.e., that X j  and X,+ are independent. Also, 
the first condition in (2.5) is equivalent to (2.6). 

Proof  of Theorem 2. (a) Assume that E(X;,, I X("' = x(")) < oo for all 
x(")E W1, SO that condition (2.1) in Theorem 1 is satisfied. It follows that for 
almost every ~("'ER" 

Thus, 

Then in view of the independence of XI, .. . , X,, the integral in (4.2) over 
S,+,n(y(")#0} may be partitioned into U:= ,S ,+~~($+~?+~ = 1, yk #O), 
leading to 

1 2 

I Y n + l  i7=-i -r(dp+lq < m,  
= I  I r + ~ n q + ~ : + , = l , ~ ~ r o }  I~tl"'. 

and thus to the conclusion. 
Conversely, if (2.9) and (2.10) hold, then the double integral in condition 

(2.1) of Theorem 1 equals 

(b) Using the independence of XI, . . . , X,, we can simplify the expressions 
appearing in (2.2) of Theorem 1 as folows: 
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Also, using the inversion relation: 

and Om (t("9 = n;=, exp (- c~:,rlt~l~), we can write (2.2) of Theorem 1 in the 
form 

m 

x I exp (-itkxk)exp (-ailtklQ) It,l'-' dt, 
-a, 

m 

x j exp (- it,x,)exp(- ~;,"lt,l")t,2("-~)dt~ 
- w  

In order to simplify further, note that .from (2.12) we have 

1 m 1 1 exp(-itkxlc) exp(- c~;:It,(")t,("-~ dt, = - S ,  (xk/crk; a) a;-". 
2 K f x k  (%I - , a(u- 1) 

Using (exp(--o"ltlQ))' = -exp(-cfltlQ) and integrating by parts, we 
obtain 

1 m 

j exp (- itkxk) exp(-61tklQ) ti-' dtk 
2 n f ~ k  (x$ -, 

Also, integrating out (exp (- aa(tl"))" = exp (- a" ltl")202at2(a-1)-exp(- aaItf") 
x a(a- l)a"ltlQ-* and using integration by parts twice, we find 

uz m 

exp (- it,xk)exp (- ai(tkjQ) dt 
2 K f ~ k  ( ~ k )  - m 

k 

( - 1 )  1 w - -- 1 exp ( - it,xJ exp (- 6;:ltkIa) JtklQ-2 dtk-xk/ak 2 2a 

2 ~ f x k  (xk) - m 
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It follows that 

Likewise, the expression (2.8) for E (X, + I X(") = xl")) can be simplified as 
follows: 

m 

x J exp ( -  i tkxk) exp(-Gltkl")tkCa-'>dtk ' 
- m  

Now (4.3) and (4.4) imply (2.1 1) and (2.13). 

Proof of Theorem 3. From (3.1) we have 

and differentiating twice with respect to s , , , ~ ,  we find: 

where En+ ,,. is the (n + 1)-st row of En+ ,, and 

14 - PAMS 15 
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Putting s , + ~  = 0, we find that the left-hand side of (2.1) is upper-bounded by 

which is shown to be finite as in (4.3) of [2] .  This establishes (2.1). 
To find the expression of the conditional second moment and variance in 

this case, we may use a direct argument as follows, instead of (2.2). We have 

and for the Gaussian process G: 

E(G2(tn+l)l  G(")) = Var(G(t.+,)l G U ) ) + [ E  ( ~ ( t . + ~ ) l  ~ ( ~ ) f l ~  
= CR(t,+l, t , + l ) - ~ R + I , n ~ i l ~ : + l , n l + < ~ ( n ) ,  G(n')2- 

Thus, 

and 

(4-5) Var {X ( t n  + 1 )  I X(n)]  = [R  (tn+ I 9 tn+ 11- En + 1 , n X  Z+ 1,nI E ( A  I *"))- 
To find E ( A  1 X(")) we now use a standard argument. For all u 2 0 and d"' E Rn 
we have 

E exp { - uA + i (v'"), X(")) )  = E exp ( - uA + iA1I2 (v("), G("))) 

= E exp { - uA -4 A (vtn), Z,u("))) = exp { - [u + 3 (v'"), Z , V ( " ) ) ] ~ / ~ ) .  

Dzerentiating with respect to u and putting u = 0 we obtain 

a 
E { A  exp {i (v'"), X'"))))  = - [+ <u("), C, v (") ) ]" /~  - exp { - [$ (v (" ) ,  Z,,V("))]'/~) . 

2 

Since the left-hand side can also be written as E {exp {i (v("), x("))) E ( A  1 x'"))), 
it follows that 

E ( A  I X(") = x@"'). = 
1 J exp ( - i (v("), x("))) 

(2 ~)"fx<m> (x")) R n  

Like wise, 
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so, finally, 

E { A  1 X'"' = xtn)) 

Now let +En = B'B be a full rank factorization and put u(") = Bv(") and 
r = Ilu(")ll. The above expression is then written as follows: 

a j exp { - i (3- l u"), x(")) - r 3  r"- 'd~(~) 
(I) - - Rn E(i4 I-x("'= x ) - 

2 jm exp { - i { B  - uIn), XI")) - P)  dutn) 
' 

Changing variables from ~(" 'ER" to r 3 0 and v(")ES,, we have, with i, being 
surface measure on S,, 

- 
aj :  drrn+"-'exp(-flS, y,,(dv("')exp(-ir ( B - ' V ~ ,  x'"')) - - 
2 1; dmn - exp ( - ra) jsm yn (dv'q exp { - k {B - v'"), x'*)} ' 

Finally, changing coordinates with y@) = r(B-l)'xt"), we have for n = 1 

leading to the expression of the conditional variance in [10] and in (3.2), {3.4), 
and for n 2 2 

ff 

(4.7) 1 exp { - i (v("), y("))) y, (dotn)) = j exp { - i I l  yt")ll cos8) (~ine)"-~dfl 
sn 0 

where lly(")IIZ = 2r2 (x'"), C;lx(nl}. The final expression (3.2)-(3.3) in Theo- 
rem 3 follows from (4.6) and (4.7). 

Proof  of The orem 4. Following the same steps as in the proof of 
Theorem 3 leads to 

Then, condition (2.1) of Theorem 1 may be shown by applying the same 
arguments as in the proof of Theorem 3 in [2]. 

Proof of Theorem 5. By (3.7) we have 
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Differentiating twice with respect to sn+ , and plugging in (2.1), we obtain (3.8). 
Now the linear independence of X (t,), k = 1,  . . . , n, b y  Lemma 2 implies 

4xcm, (~("1) < exp ( - c 11 s(")ilQ) for all d'" E Rn. 

Thus, a sufficient condition for (3.8) is 

and going to polar coordinates this reduces to (3.9). 
- When f It) = e-4'1, in order to check condition (3.91, it suffices to check the 
finiteness of the integrals over ( -  m, tn+ I - t,J and (tn+ - t,, m), the remaining 
integrals being clearly finite. But 

m e - 'Iu du 

n m 

= { e ~ ~ { 2 1 ( t ~ + , - t ~ } ~ ~ - ~  j e-"Aud~ < m, 
k = l  tn+ 1 - t i  

and likewise for the integral over - 00, t,+ 1 - t,). 

5. AUXILIARY RESULTS ' 

Now we collect all the lemmas which are used in the proofs of the theorems. 

LEMMA 1 ([2],  Lemma 4). For all 1 < a c 2, a < r c 2 and Z E R ,  the 
following inequalities are true: 

(i) 111+z1"-11 6 aIzlQ+alzl, 
(ii) 0 < 11 +zIa+]1 -21"-2 < cllzlr, 

where c, is a positive constant depending only on a. 

The following property of multivariate SuS characteristic functions is 
used. 

LEMMA 2 (Kg], Lemma 2.1). If X I ,  . . ., Xn are linearly independent, i.e., for 
aEE t(") E Rn, 

(s'") E Sn : (t'"), Se)) # 01 > 0, 

then for all t("+') = (t'"), t , + l ) ~ R " + l ,  

for some positive constants c,, c,; and JRn I # X n +  1 (t("), tn+ at("' < for all 
tn+ I 

LEMMA 3. Let a E (1 ,  21 and 
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where CE@, a), Then I < cn for I E [ O ,  a ] ;  I < c~ fpr r ~ ( u ,  a+1) ifand only $ 

and I = GO for r E [a f 1 ,  GO). 

P r o  o f, Using Fubini-Tonelli's theorem we can write 

Rotating the axes in R" so that one of them is along f", and thus 

and using polar coordinates in the inner integral over R", we obtain 

The Q integral is finite if and only if n - 1 .- r +a > - 1, and likewise the 
19 integral is finite if and only if r-a < 1. Also the integral over is 
automatically finite when 0 < r < a. The result then follows. 
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