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ON THE ALMOST SURE APPROXIMATION AND CONVERGENCE
OF LINEAR OPERATORS IN. L,-SPACES

BY
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Abstract. We prove some results concerning the almost sure
approximation of contractions in L, by projections, unitary operators
or partial isometries. In particular, a unitary operator for which no
subsequence of ergodic means converges almost surely is constructed.

1. Introduction. There are several classical theorems concerning the almost
sure approximation in L,. Let us mention here the results on (monotone)
sequences of projections, like theorems on the convergence of orthogonal series
or martingales. On the other hand, it is well known that every contraction
(positive contraction) in an infinite-dimensional separable Hilbert space is
a limit in the weak operator topology of some sequence of unitary operators
(projections) (see [2]). In this paper we discuss the possibilities of ap-
proximation in the following sense. Let A, 4, be bounded linear operators
acting in some L,(X, &, y). We say that A, converges to A almost surely

- {4,— A as.) if the following condition is satlsﬁed

A f > Af u-almost surely for each feL,.

In the sequel, A will be a contraction in L, and for A, we shall take some
“regular” operators like orthogonal projections, partial isometries or unitary
operators. For the sake of simplicity, we shall formulate all the results for the
case H = L,(0, 1) (with the ordinary Lebesgue measure on the unit interval). In
fact, the theorems are true in much more general situations, at least for L, over
a standard measure space.

In the sequel, H = L,(0, 1). Proj(H) is the set of all orthogonal projections
in H. As usual, B(H) will denote the algebra of all bounded linear operators
acting in H.

2. Almost sure approximation. To present some typical methods, we start
with simple results concerning the approximation of positive contractions.
A stronger result is proved in Theorem 2.6.
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2.1. PrROPOSITION. Let A be a positive contraction in H. Then there exist
sequences {P,} of orthogonal projections and {U,} of unitary operators in
L,(0, 1), such that

(@ P,—»Aas. as n— o0,

(i) U,—> A as. as n— 0.

Proof. (i) We define a sequence @, of orthogonal projections by putting

Q =1-0Q,:. f—’X(1/(n+1) 1m Js

where x, denotes the indicator of Z. Let V, € B(H) bea partial isometry such
that

V=0, and VVF=0;.
We put

P,=0,40,+./0,A0,(I—A)Q, V;*
+V,\/0,40,(I—A)Q, + V,0,(I—A)Q,V;*.

It is not difficult to observe that P, is an orthogonal pro_]ectlon in H Moreover,
for any fe H we have

| 0,40,f = Q,Af—Q,AQ; f 22 Af

since )., 110,40, f II2 TARIA12< IfI1? < +o0.
Putting .

B, =./Q,40,(I—-A4)Q, V¥,

we have _
YUB, fI2 < TIVEfI* = T IV f112
=Y IQfIZ < If)? < +c0.

‘ Consequently, B,f — 0 as. Moreover,

supp (¥, /40,0~ A0, f}<[ln+1), Un)
 supp{V, 0 U~ A)Q, VA Y < [1/n+1), 1/n).

Finally, P,f 22> Af.
(i) We define a sequence U, of unitary operators by putting

U, = V0,470, —/0,I— 470, V¥
0,(I1-4%Q, +V,/0,4°0, V;*.

The proof that U, — A as. is similar to that of (i) and can be omitted. =
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2.2. COROLLARY. Let A be a contraction. Then there exists a sequence of
partial isometries {V,} in H such that V,— A a.s.

Proof. It is enough to apply Proposition 2.1 (ii) to the operator |A¥|
= /AA* by putting V, = U,V, where A = |A¥|V is the polar decomposition
of A. =

Let us remark that in [1] we proved more than Proposition 2.1 (i). In [1]
it was shown that the orthogonal projections P, can be taken as finite
dimensional. However, in this case, the proof is much more complicated and is
based on -the following theorem:

THEOREM A (Ciach et al. [1]). Let {A4,} be a sequence of finite-dimensional
self-adjoint operators. Suppose that A,*> A as n— co. Then there exists an
increasing sequence {n;} such that A,,, — A as. as i— .

The above theorem embraces as a very special case the following
well-known result:

THEOREM B (Marcinkiewicz [4]). If {¢,} is an orthonormal sequence in
L,(0, 1), then there exists a sequence {n;} of positive integers. such that the

subsequence of partial sums
ny

Su =Y 4,00 (=1,2,..)

v=1
converges almost surely on (0, 1) for each sequence {a,} such that )’ |a,|* <.

Theorem A is a necessary tool in our further considerations.
Let us remark that Theorem A implies the following result, the strongest
one in this direction (cf. Section 3).

THEOREM C. Let {A,} be a sequence of finite-dimensional operators. If
A, *» A, then there exists an increasing sequence {n;} such that A, **» A.

2.3. LEMMA. Let {A,} be a sequence of finite-dimensional operators. If
A% A, then there exist an increasing sequence {n(k)} and a sequence of
finite-dimensional operators {B,} such that

~ Apgy— By ™ A,  (Apgy—B)* > A*, B, *0.

Proof. By assumption, one can define the indices 1 = n(l) < n(2) <.
and finite-dimensional projections P, < P, < ..., satisfying

1) Awgy P, = Apys ”(An(k+1)—A)PkH <27k, P 51,
Let us put B, = A, Pi—;, k> 2. Then, for any feH,

[+ )

Y B f1* = X I AugyPiPi-1 S17° < Y | Augoll 1(Pu—Pr— ) f11 < o0;
k=2 :

k=2 . k=2

thus B f—)o a.s. It is evident that by (1), An(k+1)_Bk+l = An(k'l-l)Pk_)A
*-strongly. m
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Proof of Theorem C. Take C,4) = Anq)—B, as in Lemma 2.3. By
Theorem A, for some {n"(k)} < {n'(k)} = {n(k)}, we have
Crto+Cliay 25> A+ A%, Corogy— Clogy 225 A— A%,
and, finally,
Cogy 224, Apg>A. &
24. COROLLARY. Let {A,} be a sequence of finite-dimensional operators. If

A —»A and A¥ > A"' then there exists an increasing sequence {n;} such that
=2 A4 and A} %>

2.5. EXAMPLE. Let {A} be a sequence of finite-dimensional normal
contractions such that 4,%.4 and A} A* We construct a sequence of
finite-dimensional partial isometries {¥,} in H such that V, > 4 as. and
V¥ — A as. By Corollary 2.4, without loss of generality we may assume that
A,— A as. and AF - A* as. Let

kn
A, f = 3 2P, oMo,
i=1

where {¢{", ..., ¢{?} is an orthonormal sequence, |A{| < 1. Let us denote by
{fi, ..., k‘:’} an orthonormal sequence in the space lin {{", ..., o{"}*. Let us
put, for feH,

V= z L, 00—/ T=WAPE (f, o) £171.

It is clear that V 1s a finite- d1mens1onal partial isometry. It is not difficult to
observe that V, 225 4, V;* 255 g* jf

supp fPc(1/(n+1), 1/n], n=1,2, s =120k,

- It is not hard to show the existence of such a double sequence f. In fact, for

any projections P and Q, we have the relation
P—PAQ~Q'—Q'AP'=Q'—(QVP)

(see [5]), where ~ denotes the unitary equivalence. If Q is a finite-dimensional
projection on the subspace lin {¢{, ..., ¢{’} and P is an infinite-dimensional
projection on the subspace

K = {feH; suppf <(1/(n+1), 1/n]},

then PA Q" is infinite dimensional, as P—P A Q' ~ Q—Q A P*.
Now we shall prove the following general result:

2.6. THEOREM. Let A be a contraction. Then there exists a sequence {U,} of
unitary operators in H such that U,— A as. and U¥ - A* as.

Theorem 2.6 results immediately from the following two lemmas:
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~ 2.7. LEMMA. Let A be a contraction. Then there exists a sequence {W,} of
finite-dimensional partial isometries in H siuch that W,— A a.s. and W — A*
a.s.

Proof. Let {4,} be a sequence of finite-dimensional contractions in
H such that 4, ®> 4 and A} > A*. By Corollary 2.4, without loss of generality
we may assume that 4, 22> 4 and A¥ 22> 4* Let A4, =|A¥|V, be the polar
decomposition of A4, and let

. K,={feH; suppf <(1/n+1), 1/n]}.

Suppose that H,c K, Aran(|4¥)', dimran(|4¥)=dimH,, and let T*T,
= P,, T,T* = Q,, where P, and Q, are the orthogonal projections onto the
spaces ran(|4¥|) and H,, respectively, and T, is a partial isometry. It is not

difficult to observe that
S, = |A¥+ T, /I—|A}?

is a finite-dimensional partial isometry since
1S, P, f11? = |l 4% /||* + | T, P, /I— 43P P, f]?
= (AX2P,f, PN +{I—|4¥P)P, f, P, f) = P, fI?

and S, P;f=0.
Finally, W, = S, V, is a partial isometry since V,V;* = P, and S}S, = P,
and, for any f € H, we have

W, f=S8V,f=(AN+T,/I-143*)V, f
= A f+ T, JT-TAI V, f 225 Af
since supp(T;,\/I——Mﬁf—lz—V,,f)c(l/(n+1), 1/n]. Moreover,
Wit f= VrStf= V(AN +/I—|AXP TH f
= A+ JI-IATE TXS 22 AL

because

YNVESI= AN T2 < TITH 12 = XN 1 < ISP =

2.8. LEMMA. Suppose that P,, Q, € Proj(H) and P,, Qy are finite dimensional
forn=1,2, ... Then there exists a sequence {S,} of partial isometries in H such
that

StS,=0u SSt=P, and S,%-0, 570,
Proof. Let R, be an orthogonal projection such that

R, (H)cP,(H)NQ,(H)NK,,
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where K, = {f e H; suppfc=(l/(n+1), 1/n]} and dim R,(H) = dim(P,— R,)(H)
= dim(Q,—R,)(H) = co. Suppose that §; and S, are partial isometries such
that :

S*S,=R,, S,S*=P,—R,, Si*S'=0Q,—R, S/Si*=R

It is clear that S, = S;+S, is a partial isometry and:S¥S,=0Q,, S,S¥ =P,.
Moreover, for any f € H, we have S, f 22> 0 since supp(S; f )c(l/(n+1), l/n]
and S’f >0 since ), S, f1% =) IR, fII? < |fI* < +oo. In consequence,
S, 22+ 0. Analogously, S* 225 0. =

Proof of Theorem 2.6. By Lemmas 2.7 and 2.8 where W W* = P, and
WxW, = 0y, we define U, = W.0:+8S,0,. =
Keeping the notation of Lemma 2. 7, we have the followmg

2.9. PROPOSITION. Let us assume that [|A| < 4. The finite-dimensional par-
tial isometries W,— A, W A* a.s. can be chosen as the canonical linear
combinations of four finite-dimensional mutually orthogonal projections P®,
k=1,2,3, 4

W, = PO P@) 4 P —iP®
Proof Let A = AV —-A@P +ig®_jq@ A® > 0, ):k A® < I, and let

0 < 4% (AP finite dimensional) with ran(A”")c H, (H, finite dimensional) be

such that A® — A® a5 as n — 0 and Zk A® < I. By the Naimark Dilation
Theorem, for every n there exist ﬁmte-d1mens1onal Hilbert space H, and
mutually orthogonal projections P®, k = 1, 2, 3, 4, acting in H,@®H, and such
that Q,PWQ¥ =AW, (k=1,2,3,49), where 0,: H,,G-)I?,,-—»H,, and
Q,: H®H, - H, are canonical projections. Passing, if necessary, to an
isomorphic image, we can assume that

H,c K, ={feH; suppf = (1/(n+1), 1/n]}

(this is possible because dim H, < co and dim H, < oo).
Let us put )

POf =Q,f=0,f=0 for fe(H,®H)".
Then
PP =(0,+3,)PP(Q,+3d,)
= 49+ 0,PPQ,+0,PNG,+ 0, PP, 220 AV (k=1,2,3,4). »
We conclude this section with the following

2.10. ExampLE. We construct a sequence {U,} of unitary operators which
is convergent almost surely to the normal contraction 4 in L,(0, 1), where
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(ANYA) = g(A) f(A), feH, for some geL_(0, 1). Let

1 1 1 1 A—1
e

and, for Z< [1/n, 1), let us set F,(Z) = E(y,(Z)), where E(A)f =y, f, feH. It
. is not difficult to check that, putting o

I g(dE(R) + I g(A)dF,(3)

im 1/n

1 1
+ [ V1-lg@? AV, () -V () +E (0, ——] ;
i/n : n+1
where V() is an operator measure sétisfying V(Z)VZ) = F,,(Z), V¥(Z)V,(Z)
= E(Z), we obtain unitary'operators U, such that U,—» 4 as.

o2, 11. Remark. For each sequence {V,} of partial isometries in H, V, —» A
a.s. implies that ¥, —+ 4 weakly. Indeed, for any f, g € H, the functions (V, f)g are
uniformly 1ntegrable and (V,f)g = (Af)g as. This immediately implies that
V,— A weakly. .

3. Sequences having no as. convergent subsequences. We start with the
following observation. Let r, be Rademacher functions on (0, 1); then for
A f =(f, ry)r, we have 4, —>0 weakly and A, — 0 as. for no increasing
sequence {n(k)}. Thus the assumptlon in Theorems A and C, concerning the
strong convergence A4, — A, is necessary in a rather obvious way.

In Theorems A and C, the assumption that the operators A4, are finite
dimensional cannot be omitted (in Theorem B of Marcinkiewicz this assump-
tion, for 4, = Zk G qok)qok, is automatically satisfied). To show this, we
construct a sultable counterexample based on the’ followmg idea of Menshov
(cf. [31, Lemma 1, p. 295):

3.1. LEMMA. There exists a constant c, > O such that, forany N =1, 2, ...,
one can find an orthonormal sequence {yiY}=,, . n of functions on (0, 1) such that

j
Mwe(0, 1): IIB;EKNI Y, Y¥(w)| > coN'*log, N} > y
TISHN g=1

and, moreover,

Y¥(w)eDyy, | YY(@dw=0, s=1,...,N,
(0,1)

where

@ . Dy = {Z Oy X((s—1)/N,s/N)> OCSEC}.

s=1
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3.2. CounTEREXAMPLE. There exists a sequence of projections P, » I such
that, for any increasing sequence {n(k)}, one can choose a vector f such that
P, f does not converge as.; moreover, P,y f does not converge on a set of
Lebesgue measure 1.

3.3. LEMMA. Fix ¢ > 0. There exists N (g) such that, for any N > N(c) and
k> 1, one can find an orthogonal sequence
{fls ey fN}CD4NknDlJc-’
with D, defined in (2), such that

J 1 N
MHoe©, : max |3 fe) > 1} >3, ,Zl I <e

{ f;=0 and f; is stochastically independent of f for j=1,..., N, feD,.

Proof. Choose N (¢) satisfying (colog, N (e)) > 1/e. In Lemma 3.1, let
N > N(¢) and let l/l be an extension of ) with a period 1 on the whole R. Let
us write

f) = ¥ (ke)/coN*2 log, N, w€(0, 1).

All the required properties of f;, j=1,..., N, are rather obvious. m
Construction of Counterexample 3.2. Fix e, > 0, Z _1 & < oo. Let

N, > N(g,), N, 7~ o, according to Lemma 3.3. Denote by &, the set of all
increasing sequences of indices of length N,. Let {c;} be the sequence
exhausting all elements of £ LU, u ..., ie, ;e Z,; and

(3 ¢ =, ..., n,,)

foranyi=1, 2, ... Using Lemma 3.3, one can define by ind_uction indices k(1)
=1 k(i+1) = 4N,.(,,k(:), and orthogonal sequences {f{", ..., f{?,} satisfying

-the following conditions: /¥ and f}*? are orthogonal and mdependent fori# 1,

and
Nty

Mwe(0, 1):  Jnax [Z [Ow)>1} > 7 Z 1£P11% < &y

LjSNey 5=1

Denote by f the projection (-, f/||fII?)f for any 0 # feH, and let

P~ T goea- T 09
1 S1<Nrm 1 s}’s}v,(l-,
HJ<II
according to (3). Let now an increasing sequencé {n(k)} be given. Obviously,
{n(k)} can be divided into finite sequences of lengths N,, N,,...:

@ {n(k)} = {niD, ..., niD; '@, ., ni®; ..}
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with r(i(1)) = 1, (i(2)) = 2, ... For the vector

f= 2 (T4 L+,

r=1

8

we have

= o]
IflI?< ), & < oo,
r=1 .

Mo; max’ |(Pu urm— ni(r))f((l))l>1} ,l{cu, max |Z(f("'+”)(w)|>1}

1<j€<Np sy 1<j€Nrt1 g2
Let
Z,={w; max |(Pue+n—Puo)f(@)> 1}.
1€ Nrs1 r
Then A(Z,) > % and Z,, Z,, ... are independent. Thus, by the Borel-Cantelli
lemma and by (4), {P.)f} does not converge on a set of Lebesgue mea-
sure 1. &

It is well known that, in general, the individual ergodic theorem does not
hold for an arbitrary unitary operator U in L,(0, 1). The natural question
arises whether, for such an operator U, there exists an increasing sequence
{n(k)} of indices such that

1 n(k)—l

for any f € L,(0, 1). The answer is negative. As an important application of our
Counterexample 3.2, we construct the following

3.4. CoUNTEREXAMPLE. There exists a unitary operator U in L,(0, 1) such
that, for every increasing sequence {n(k)}, there exists a vector f € L,(0, 1) such
that ,4)(U) f does not converge a.s.

We start with two simple observations

2 1

&l < = — , O0<é<m,
llgo | |1—e”  |sin(8/2)]
1 m_1 o
2 el — sin?I, 0<md<é, <m.

By induction, we can define n/2 =4(1)>d(2)> ... >0 and N(1) <
< N(@2) < ..., satisfying
lm 1

(6) Z el < —; for m> N(h), 6(h) <4 <

<=
2’
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1m—1

1 el 1
m zzo

<% for 1<m<NMh),0<d<dh+1),

0

for any h =1, 2, ... We define

a0
U=} e*P,—P,_y),

s=1

where P, =0, and P,, P,, ... is the sequence of orthogonal projections from
Counterexarnple 3.2

Fix an increasing sequence {n(k)} Then there exist a subsequence
{m(k)} = {n(k)} and an increasing sequence {h(k)}, such that

N(r(k)) < m(k) < (h(k+1)).
By Counterexample 3.2, the sequence
®) {Pnayf} does hot converge a.s..

for some f € H. It is enough to prove that, according to (5), 6,y (U) f does not
converge a.s.
It is clear that

) m{k)—1
onnO)f = 3 [ 5% o |e-ps

Thus, as P;— 1 strongly, we have

||0'm(k)(U)f—Ph(k+1)f||

ta(s)l
Y ® IZ e :I(P —P,_

h(k+1)|: 1 m)-1

+

© l: 1 m(k)—1 5 )1 :I
eos (P,—P,—
s=h(k;1)+1 m(k) 12

Inequalities (6) and (7) imply

1 mk)—1 a0 )l
'm(io & <

<270 <272 for 1< s < h(k),
) 1 m(k)—1 . 2
- i) |
l(m(k) P ) :

and we have

<27MB <272 for s> h(k+1),
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Z ||0'm(k)(U)f—PIJT(H1)f||z
k=1

o hik) h(k+1)
< Y A(X 27— P-) 12+ X IP—Ps-) fII?
k=1 s=1 s=h(p+1
+ Y 27H(P,—Pe-)fIP) < 0.
s=h(k+1)+1

Thus 6,4y (U) f—P},l(,;H) f—0 as. as k— oo and Omay(U) f does not converge
as. by 8). m
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