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Abstract. We prove some results concerning the almost sure 
approximation 01 contractions in L, by projections, unitary operators 
or partial isometries. In particular, a unitary operator for which no 
subsequence of ergodic means converges almost surely is constructed. 

1. Introdnction. There are several classical theorems concerning the almost 
sure approximation in L,. Let us mention here the results on (monotone) 
sequences of projections, like theorems on the convergence of orthogonal series 
or martingales. On the other hand, it is well known that every contraction 
(positive contraction) in an infinite-dimensional separable Hilbert space is 
a limit in the weak operator topology of some sequence of unitary operators 
(projections) (see [2]). In this paper we discuss the possibilities of ap- 
proximation in the following sense. Let A, A, be bounded linear operators 
acting in some L,(X, gY I(). We say that A, converges to A almost surely 
(A,  + A a.s.) if the following condition is satisfied: 

A, f + A f p-almost surely for each f E L,. 

In the sequel, A will be a contraction in L, and for A, we shall take some 
"regular" operators like orthogonal projections, partial isometries or unitary 
operators. ~ d r  the sake of simplicity, we shall formulate all the results for the 
case H = L,(O, I) (with the ordinary Lebesgue measure on the unit interval). In 
fact, the theorems are true in much more general situations, at least for L, over 
a standard measure space. 

In the sequel, H = L,(O, 1). Proj(H) is the set of all orthogonal projections 
in H. As usual, B(H) will denote the algebra of all bounded linear operators 
acting in H. 

2. Almost sure approximation. To present some typical methods, we start 
with simple results concerning the approximation of positive contractions. 
A stronger result is proved in Theorem 2.6. 
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2.1. PROPOSITION. k t  A be a positive contraction in H.  Then there exist 
sequences (P,) of orthogonal projections and {U,) of unitary operators in 
L,(O, 11, such that 

(i) P, -, A a s .  as n + a, 
(ii) U, 4 A a.s. as n + a. 

Proof. (i) We define a sequence Q, of orthogonal projections by putting 

Qi = 1 - Q n :  f + x[~/(*+I), ~ / n l f ,  

where X,  denotes tlie indicator of 2. Let V,E B(H) be a partial isometry such 
that 

K*K=Q, and V,V,,*=Qi. 

We put 

It is not difficult to observe that P, is an orthogonal projection in H. Moreover, 
for any f EH, we have 

since C , I I Q ~ A Q ; ~ ~ I I ~  G I I A I I ~ I I ~ I I ~ G  llf1t2 < +m. 
Putting 

we have 

C I B , , ~ I I ~  G C I I V ~ I I ~  = zIIK*e:flr2 

=x llQn'f112 llf1I2 < +a 
n 

Consequently, B, f + 0 a.s. Moreover, 

Finally, P, f % Af: 
(ii) We define a sequence Un of unitary operators by putting 

The proof that U, +A a.s. is similar to that of (i) and can be omitted. 
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2.2. COROLLARY. Let A be a contruction. Then there exists a sequence of 
partial isometrics {T/,) in H such that + A  a.s. 

Proof. It is enough to apply Proposition 2.1 (ii) to the operator IA*l 
= @ b y  putting 1/, = U , E  where A = IA'I V is the polar decomposition 
of A. 

Let us remark that in [I] we proved more than Proposition 2.1 (i). In [I] 
it was shown that the orthogonal projections P, can be taken as finite 
dimensional. However, in this case, the proof is much more complicated and is 
based on -the following theorem: 

THEOREM A (Ciach et al. [I]). Let (A, )  be a sequence offinite-dimensional 
self-adjoint operators. Suppose that A,% A as n + a. Then there exists an 
increasing sequence {n,) such that A,, -+ A a.s. as i + oo. 

The above theorem embraces'as a very special case the following 
well-known result: 

THEOREM 3 (Marcinkiewicz [4]). If {q,) is an orthonormal sequence in 
L,(O, 11, then there exists a sequence {n,] of positive integers., such that the 
subsequence of partial sums 

nl 

S,,(x) = C a,rp,(x) (i = 1, 2, - * 4 
0'1 

converges almost surely on (0, 1)for each sequence {a,] such that zv laVl2 < oo. 
Theorem A is a necessary tool in our further considerations. 
Let us remark that Theorem A implies the following result, the strongest 

one in this direction (cf. Section 3). 

THEOREM C. Let (A,) be a sequence of finite-dimensional operators. If 
A, 5 A, then there exists an increasing sequence {n,) such that A,, 5 A. 

2.3. LEMMA. Let (A,) be a sequence of finite-dimensional operators. If 
A,% A, then there exist an increasing sequence {n(k)) and a sequence of 
finite-dimensional operators (B,} such that - 

P r o  of. By assumption, one can define the indices 1 = n(l )  < n(2) < . . . 
and finite-dimensional projections PI 6 P ,  < ,. ., satisfying 

Let us put B, = A , ( k ) ~ t - l ,  k 2 2. Then, for any f E H, 

thus B, f + 0 a.s. I t  is evident that, by (I), An(k+ l )  - Bk+ = Anlk+ l)Pk + A 
*-strongly. a 
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Proof  of Theorem C. Take Cl(k)= AnIkl-Bk as in Lemma 2.3, By 
Theorem A, for some (nU(k)) c (nl(k)) c (n(k)), we have 

Cnyk, + C,*.(, % A +A*, C,,*jck) - C$'(k) % A -  A*, 

and, finally, 

2.4. COROLLARY. Let {A, }  be a sequence of $nite-dimensional operators. If 
A, % A and. A,* 5 - A * ,  then there exists an increasing sequence {nil such that 
A", % A  and Ati %A*.  

25. EXAMPLE. Let {A,) be a sequence of finite-dimensional normal 
contractions such that A, 4 A and A,* 5 A*. We construct a sequence of 
finite-dimensional partial isometrics {I.',) in H such that + A as. and 
T/,* -,A a.s. By Corollary 2.4, without loss of generality we may assume that 
A, + A  a.s. and A,* + A *  a.s. k t  

where {rp$), . . . , cpe) is an orthonomal sequence, 1;1?)/ d 1. Let us denote by 
(fl"), . . . , an orthonormal sequence in the space lin{ql;), . . . , q~Z",'}l. Let us 
put, for f EH, 

k- 

j= 1 

It is clear that is a finite-dimensional partial isometry. It is not dificult to 
observe that % A ,  K* * A* if 

s~ppfi (~)c(I / (n+l) , l /n] ,  n = 1 , 2  ,...; j = 1 , 2  ,..., k,. 

It is not hard to show the existence of such a double sequenceh("). In fact, for 
any projections P and Q, we have the relation 

(see [5]), where - denotes the unitary equivalence. If Q is a finite-dimensional 
projection on the subspace lin{cpy), . . . , qt)) and P is an infinite-dimensional 
projection on the subspace 

then P A QL is infinite dimensional, as P- P A Q' -- Q - Q A pL. 
Now we shall prove the following general result: 

2.6. THEOREM. Let A be a contraction. Then there exists a sequence (U, )  of 
unitary operators in H such that U,, + A a.s. and U,* -, A* a s .  

Theorem 2.6 resuIts immediately from the following two lemmas: 
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2.7. LEMMA. Let A be u contraction. Then there exists a sequence (W,) of 
jinite-dimensional partial isornetrim in H such that W, + A a s .  and Wz A* 
a.s. 

Proof. Let (A,) be a sequence of finite-dimensional contractions in 
H such that A, 5 A and A: % A*. By Corollary 2.4, without loss of generality 
we may assume that An % A and A,* %A*. Let A, = IAzlK be the polar 
decomposition of A, and let 

K,= (f EH; suppf'c(l/(n+l), l / n ] ) .  

Suppose ' that H ,  c Kn A ranfl~,*l)-~, dim ran(lA,*l) = dim H,,, and let T,* T, 
= P,, T,p = Q,, where P,, and Q, are the orthogonal projections onto the 
spaces ran(iA:I) and H,, respectively, and T, is a partial isometry. It is not 
difficult to observe that 

sn = IA:I+T. , /FEY 
is a finite-dimensional partial isometry since 

IISnpnfI12 = l l 1 ~ . * 1 f 1 1 ' +  I I  T.P. JWZ 'F~~~~I I '  
= (IA.*I2P,f, Pnfl+(U-IA,+121P,f, P, f) = HP, f I I Z  

and S, P ~ S  = 0. 
Finally, W, = S, is a partial isometry since % V,* = P, and S: S, = P, 

and, for any f EH, we have 

K / =  s ,v .~= (IA:I+T. J W ) w  
= A,,~+T. Jm~f=+~f 

since supp(x ,/= f ) c ( l / ( n +  1), l / n ]  . Moreover, 

~ * f =  ~ * s : f =  R(IA:~+ Jm y ) f  

= A:f+K* J m ' p f  % A:f - 
because 

2.8. LEMMA. Suppose that P,, Q,  E Proj(H) and P:, Q: arefinite dimensional 
for n = 1 ,  2, . . . Then there exists a sequence (S,) of partial isornetries in H such 
that 

S,*S,=Q,, S,S,*=P, and S,%O, s,* % 0. 

Proof. Let R, be an orthogonal projection such that 
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where K, = { f E H; supp f c (I/@+ 11, l / n ] }  and dimR,(H) = dirn(P,,- R,)(W) 
= dim(Q, - R,)(H) = a. Suppose that S; and S: are partial isornetries such 
that 

It is dear that S,, = X+SE is a partial isometry and SZS, = Q,, S,S: = P,. 
Moreover, for any f E H, we have St f % 0 since supp(Sf f )c  (1/(n + I), l/n] 
and &f S O  since CnIISLf112=znIIR,fllZ < 1 1  f1I2 < +a. In consequence, 
S, 3 0. Analogously, S z  % 0. H 

Proof of Theorem 2.6. By Lemmas 2.7 and 2.8 where WOW,* = P: and 
w,*K = Q:, we define U, = W,Q,I+S,Q,. B 

Keeping the notation of Lemma 2.7, we have the following 

2.9. PROPOSITION. Lee us assume that 11 A 1 1  < & The finite-dimemiond par- 
tial isometries W, H A, W,* I+ A* a . ~ .  can be chosen as the canonical linear 
cambinations of four finite-dimensional mutually arthogbnal projections Pik), 
k =  l , 2 , 3 , 4 :  

Proof. Let A = At1' -A(') + iA"'- iA(4), AM > 0, z4 A" $ I ,  and let k =  1 
0 < Aik) ( A f )  finite dimensional) with ran(Aik)) c H, (H, finite dimensional) be 

4 such that A f )  + A(* a.s. as n + m and zk= ! Aik) 4 L By the Naimark Dilation 
Theorem, for every n there exist finite-dimensional Hibert space fin and 
mutually orthogonal projections PLk), k = 1 ,2 ,3 ,4 ,  acting in H , @ K  and such 
that Q,, Pik)Q: _= A$k)ln,, ( k  = 1,2,  3,4), where Q,: H , ~ R ,  H, and 
0,: H,@& + H, are canonical projections. Passing, if necessary, to an 
isomorphic image, we can assume that 

fin c K, = (f E H ;  suppf c ( l / (n+ 11, l / n ]}  

(this is possible because dim Rn < rn and dim H, < ao). 
- 

Let us put 

P j l k ) f = ~ , f = Q n f = O  f o r f ~ ( H , @ f l ~ ' .  

Then 

We conclude this section with the following 

2.10. EXAMPLE. We construct a sequence {U,) of unitary operators which 
is convergent almost surely to the normal contraction A in L,(O, I), where 
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(Af) (A)  = gl4.f (4, f E H ,  for some g ~ L , ( 0 ,  1). Let 

and, for Z c  [ l /n ,  11, let us set F,(Z) = E ( ~ , ( z ) ) ,  where E(A) f = 2, f ,  f E H .  I t  
is not difficult to check that, putting 

where K(-) is an operator measure satisfying K(Z)K*(Z) = F,,(Z), V,,*(Z)&(Z) 
= BIZ), we obtain unitary operators U, such that U ,  + A a.s. 

2.11. Remark. For each sequence {T/,) of partial isometrics in H, + A 
a.s. implies that V,  4 A weakly. Indeed, for anyJ; g E H, the functions (V,  f)g are 
uniformly integrable and (K f )g + (Af)g a.s. This immediately implies that 

+ A weakly. 

3. Sequences having no as. comergent su%rsequences. We start with the 
following observation. Let r, be Rademacher functions on (0, 1) ;  then for 
A, f = (f, r,)r,  we have A, + 0 weakly and ,A,(,) -t 0 a.s. for no increasing 
sequence {n(k)). Thus the assumption in Theorems A and C, concerning the 
strong convergence A, + A, is necessary in a rather obvious way. 

In Theorems A and C, the assumption that the operators A, are finite 
dimensional cannot be omitted (in Theorem B of Marcinkiewicz this assump 
tion, for A, = z:=,(-, q$q,, is automatically satisfied). To show this, we 
construct a s@table counterexample based on the following idea of Menshov 
(cf. [3], Lemma 1, p. 295): 

3.1. LEMMA. There exists a constant c, > 0 such that, for any N = 1, 2, . . . , 
one canfind an orthonorlvaal seqtaence {I):),= of functions on (0, 1 )  such that 

j 1 
~ ( o  ~ ( 0 ,  1): max 1 $:(o)l > coN1/' log2N) 3 

1 6 j b N  ,=I 

and, moreover, 

where 
N 

(2) DN = ( C a s ~ ( { s -  I)/N.s,N); C) 
s= 1 
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3.2 COUNTEREXAMPLE. There exists a sequence of projections P, P I such 
that, for any increasing sequence {n(k)), one can choose a vector f such that 
Pntk) f does not converge a.s.; moreover, P,,(,., f does not converge on a set of 
kebesgue measure 1. 

3.3. LEMMA. Fix 8 0. There exists N(E)  such that, for any N 2 N(&) and 
k  2 1, one can find an orthogonal sequence 

{fly ..., fN) Dwnn~: ,  

with . . .  Dk defined in (2), such that 

J fi = 0 and fi is stochastically independent off for j = 1, . . . , N, f gok. 
P r o  of. Choose N(c)  satisfying (co log,~(s))' > l/e. In Lemma 3.1, let 

N > Nk) and let Gj be an extension of $7 with a period 1 on the whole R. Let 
us write 

All the required properties of fj, j = 1, . . . , N, are rather obvious. o 

Const ruct ion  of Counterexample 3.2. Fix E, > o , ~ ~ , E ~  < a. Let 
N, > N(E,), N, 7 oo, according to Lemma 3.3. Denote by 9, the set of all 
increasing sequences of indices of length N,. Let (ci)  be the sequence 
exhausting all elements of S,uY2u . . . , i.e., c i €  $P,,) and 

for any i = 1,2,  . . . Using Lemma 3.3, one can define by induction indices k ( l )  
= 1, k(i + 1)  = 4NNi, k(i), and orthogonal sequences (fi(", . . . , f#'?,,,) satisfying 
the following c~nditions:J(~) and#') are orthogonal and independent for i # i', 
and 

i 1 Nrit) 

Denote by f the projection I., fill f 11') f for any 0 # f E H, and let 

according to (3). Let now an increasing sequence (n(k)} be given. Obviously, 
{n(k)] can be divided into finite sequences of lengths N,, N,, . .. : 
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with r(i(1)) = 1, r(i(2))  = 2, . . . For the vector 

we have 

Let 

Then I(Z,) 2 $ and Z,, Z , ,  . . . are independent. Thus, by the Borel-Cantelli 
lemma and by (4), {Prig, f} does not converge on a set of Eebesgue mea- 
sure l. rn 

I 

I It is well known that, in general, the individual ergodic theorem does not 

I hold for an arbitrary unitary operator U in L,(O, 1) .  The natural question 
arises whether, for such an operator U, there exists an increasing sequence 
{n(k)) of indices such that 

i n[k)-1 

for any f E L2(0, 1). The answer is negative. As an important application of our 
Counterexample 3.2, we construct the following 

3.4. COUNTEREXAMPLE. There exists a unitary operator U in L2(U, 1) such 
that, for every increasing sequence {n(k)} ,  there exists a vector f E L2(0, 1) such 
that a,(k,(U) f does not converge a.s. 

I We start with two simple observations 

By induction, we can define  IT/^ = S(1) > 42) > . . . > 0 and N(1) < 
c N(2) < . . . , satisfying 

1 R 1 2 < for rn > N(h),  6(h) < d < -, 
m 1=0 2 
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m-  1 1 
for 1 < rn d N(h),  0 < S < 6(h+1) ,  

for any h = l , 2 ,  ... We define 

where P,  = 0, and P l y  P,, . . . is the sequence of orthogonal projections from 
Counterexample 3.2. 

Fix an increasing sequence {n(k)).  Then there exist a subsequence 
( r n ( k ) } c  {n(k)) and an increasing sequence {h(k) ) ,  such that 

By Counterexample 3.2, the sequence 

(8) {Phfk,  f) does not converge a.s. 

for some f E H. It is enough to prove that, according to (5), a,,,,,(U) f does not 
converge a.s. 

It is clear that 

Thus, as P, +. 1 strongly, we have 

Inequalities (6) and (7) imply 

1 m(k)- 1 
- C ei6fs) l  < 2-2h'k) < 2-2k 

l for 1 < s G h(k), 
m(k) ,=o 

and we have 
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~ h u s  D,.,,(~,(U) f - ~ j & +  l )  f + 0 a.s. as k -r m and o,(k)(U)f does not converge 
as. by (8). 
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