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Abstract. This paper considers maximum likelihood estimation
(MLE) for MA(1) processes when the moving average parameter is on
or near the unit circle. The asymptotic theory to be presented allows
the use of the generalized likelihood ratio test for testing the null
hypothesis of a unit root. The asymptotic distributions of the MLE
and the largest local maximizer, the estimator which yields the local
maximum closest to the unit circle, are shown to be different. The limit
distributions of two estimates provide a very accurate approximation -
to the finite sample size and power of the tests considered. A compari-
son is made of the power of four tests of the null hypothesis that the
moving average parameter is equal to one versus the alternative that it
is less than one. The four tests are based on the MLE, the largest local
maximizer, the gencralized likelihood ratio test and Tanaka’s score
type test. The use of the generalized likelihood ratio test is recommen-
ded overall since it always dominates the tests based on the MLE and
the largest local maximizer and dominates the score type test for close
alternatives to the null hypothesis. For alternatives very close to the
unit circle the score type test has slightly higher power but this is
evident only in the third decimal place.

1. Introduction. In this paper we consider the moving average of order one,
or MA(1) for short, generated by

(L1) Y, = &—Opti—1,

where {¢} ~ IID(0, 6®) ({¢} is a sequence of independent and identically
distributed random variables with mean 0 and variance o?) with Eg} < oo and
|60l < 1. We will consider cases in which 8, is at or close to 1. Davis and
Dunsmuir [4] review the applications in which inference about 8, close to or
on the unit circle is likely to arise.
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In cases where |0, =1 the standard asymptotic normal distribution
theory (see, e.g., [1]) does not apply. Also when |f,| is near to unity, this
standard theory gives a very poor approximation (see [4] for illustration of
this). A much better approximation is found by deriving the asymptotic
distribution of the MLE for a sequence of true parameter values which
converge to the unit circle at rate 1/T

We use the parameterization 6, = 1—pB/T, where >0 and T is the
sample size. Inference about B, and hence 6, will be based on the observations
Y, ..., Y which come from model (1.1) with true parameter 6, = 1—y/T,
where y = 0.

This paper gives a rigorous derivation of the convergence in distribution
of the maximum likelihood estimator fy; g, the value of @ which maximizes the
likelihood over the interval e[ —1, 1]. In [4] the asymptotic distribution for
the local maximum estimate Opy, defined as the local maximizer of the
likelihood closest to 6 = +1, is established. Somewhat surprisingly, these two
estimators are not equivalent asymptotically.

The main idea in our derivation is to show that the sequence of processes
given by Lp(B)—L,(0)=I,(1—8/T)—1.(1) converges in distribution on
C[O0, o0) to a process Z,(f), where I;.(0) is the log-likelihood of the observations
Y,, ..., Yg. By this result, we show that the maximizer of L () converges in
distribution to the maximizer of Z,(), which then furnishes the desired limit
distribution of the MLE. These results are presented in Section 2 with the
details of the arguments relegated to the appendix. _

Since “the distribution of the MLE of 8 under H,: 6 = 1 is unknown even
asymptotically,” Tanaka [10] was “reluctant to use such tests as likelihood
ratio tests or Wald tests.” Saikkonen and Luukkonen [9] echo this view and
state “the asymptotic distribution of the maximum likelihood estimator of
a non-invertible moving average parameter is not known... The development
of likelihood ratio tests and Wald tests is therefore intractable.” As a con-
" sequence these authors propose tests, such as “score type” tests and Lagrange
multiplier tests, which only require estimation of the model under the null
hypothesis or at a fixed alternative value. The asymptotic-results of Section 2
can now be used to develop a test of Hy: 8 = 1 based on fpy, Ouig, Or the
generalized likelihood ratio (cutoff values are given in Section 3). Interestingly,
the asymptotic operating characteristics of these three tests are different. The
test based on the MLE is dominated by the test based on the largest local
maximizer which in turn is dominated by the GLR (generalized likelihood
ratio) test. In Section 4, the GLR test is compared with Tanaka’s LBIU (locally
best invariant and unbiased) score type test. While the LBIU test has a slight
edge (in the third decimal place) in power for s very close to 1 (i.e. y < 5), the
GLR test dominates the LBIU test by a wide margin for all y’s greater than 5.
The desirable operating characteristics of the GLR test, together with its ease
of implementation (most time series analysis software packages compute the
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value of the likelihood for any 6) make the GLR test a desirable test statistic for
this problem. .

In a more typical situation, Chant [3] considers testing a null hypothesis
for a parameter on the boundary of the’ parameter space when there are
nuisance parameters (here ¢2) and following on from Moran [6] demonstrates
that when the null hypothesis is simple and concerns a scalar parameter, the
maximum likelihood test and optimal C(x) test, as considered by Neyman [7],
are equivalent. The use of optimal C(x) tests for testing the null hypothesis that
0 = 1 in the present context, while possibly appealing, is not possible since the
test statistic is always equal to zero. The essential reason that we cannot derive
this test here is that the derivative of the concentrated likelihood is zero under
the null hypothesis. For exactly the same reason, the standard score test cannot
be applied which led Tanaka to consider a “score type” test based on the
second derivative of the log-likelihood. Hence in this moving average problem,
the asymptotic equivalence of likelihood tests and related alternative type tests
no longer holds.

2. Asymptotic distribution of the MLLE. Theorem 2.1 of [4] describes the
joint limiting behavior of Ly(f) and L7(f) and establishes that
@ (Lr(B), Lr(B) & (B/2Y,(B), (B/2) Y, (B)+1Y,(B) as T — co, where &

denotes weak convergence on a subspace S of C?[0, o) and

® 4(nik2+yHXE = 4
WO = 2wy R TR
with {X,} ~ NID(0, 1).

(i) If fry =inf{f > 0: L;(f) =0 and L7(B) <0} (ie, fim is the local
maximum of L, (") closest to 0), then

BLM g’ ﬁLM,y:

where
Biu,, = inf{B > 0: BY,(8) =0 and BY;(B)+Y,(B) <0} .
This theorem can be used directly to establish the limit

8
Lr(p)—L(0) S Z,(f) = £ (t/2)Y,(z)de

on C[0, o). The integral can be evaluated in the closed form from which it
follows that

® ﬂz(nz kz +'}12)X2 ] nz kz
Z,B =% 3 22: 2 In| =5 ).

k=1(ﬂ' k*+B°)m’k k=1 n’k*+p
The above convergence suggests that the global maximizer of L, converges in
distribution to the global maximizer of Z,. Of course, in general, convergence
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on C[0, o) does not necessarily imply convergence of the corresponding
maximizers. However, as shown below, the maximum likelihood estimator
converges in distribution to the value maximizing Z,. This is the content of the
following theorem:

THEOREM 2.1. Suppose Y,, ..., Yy are observations from model (1.1) with
0, = 1—y/T for some y = 0. Then

. L (B)—L0) % Z,(B)
on"'C[O, o) and
| T(Owe—1) % — Pus.r»

where Puie,, is the global maximizer of Z.().

Proof of Theorem 2.1. The first convergence follows immediately from
Theorem 2.1 in [4]. Now, set f; = T(1—0y.g), and let fry and fy, be the

values of B which maximize the likelihood L;(B) and_the limit process Z,(f),

respectively, over the inte;val [0, M]. Then
IP(Br < %)= P(Burs,y < )| < Ry (x)+ R, (x)+ Ry (x),
where -
Ri(x)=1PBr <0)—PBru<x), Ry(X)=IP(Brp <0)—P(Py,, <),
R3(x) = |P(By,, < %)= P(Bure., < X)I.

By Theorem 2.1 in [4], it follows that for each M > 0, fr, converges in
distribution to f,, and hence R,(x) converges to zero as T— oo. In the
Appendix, we show that By, < © as. so that Sy, 2% fys, as M - co. It
follows that R,(x) >0 as M —-00. Moreover, since the sequence {f,} is tight

~ (see the Appendix), we conclude that

limsup R, (x) = limsup P(f, > M)»0 as M — 0.
T—oo- T . .

Since T(Oys—1) = — By, the result now follows. m

3. Comparison of tests based on the MLE, local maximum estimators and
the generalized likelihood ratio. In this and the following section we use
simulation to derive type I error probabilities and power functions for testing

‘'the null hypothesis that Hy: 6 = 1 versus H,: § < 1. Tests based on furg,

Bim and the likelihood ratio are considered in this section. In the next section
the likelihood ratio test (which is shown here to have superior power
performance than the tests based on fy;z and fyy) is compared with the score
type test of Tanaka [10].
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The asymptotic theory of Section 2 also allows us to approximate the
nominal power of the above test against local alternatives of the form

H,: 9=0A; where 0, =1—y/T.

The tests considered all have asymptotic power equal to 1 against any fixed
local alternative. This property is not shared by the procedure proposed in [2].

. To describe the test based on the generalized likelihood ratio let
Z.(B)= L (B)—L(0) be the —2log of the likelihood ratio. Define the
generahzed likelihood ratio statistic as Z, = ZT(EME) Also, let Z Z (EMLE »
denote the limit random variable of Z, when 7y is the true value. The (1 o)-th
asymptotic quantile bgp(®) is defined as

P(Z, > borr(®) = a.

In the results to follow the tests are defined using these asymptotic quantiles to
define the critical region.

To describe the tests based on the MLE and LM pomt estimates we define
the following asymptotic quantile. Let byy(a) and bygg(®) be the (1—a)-th
quantiles defined as

P (EMLE,O,-> bMLE(a’)) =a, P (gLM.o > bLM(GC)) =dad

In order to find the values of bgir(®), bym(®) and by g(x) using the
asymptotic results of Section 2 the following simulation method was used.
The infinite sums required in Z,(f) and Y,(B) are approximated by trun-
cating them at k = 1000. For all results reported below, 100,000 replica-
tions were used when y = 0 and 10,000 replications were used when y > 0.
For each replicate the three statistics were evaluated thereby reducing the
between replicate variability as a component in the companson of the
three methods. For finite sample re- TABLE 3.1. Probabilities of fpu;, and Bue
sults, further details on the methods being zero0 "

used to compute the likelihood based

estimates are given in [4]. Prob- Y Plins =0 | Pz, =0
abilities reported below are accurate 0.00 0.6574 0.6518
to +0.0032 when y =0 and to +0.01 050 | .3-6516 | 06461
when 7>0 with 95% confidence. 193 | oo Py
Since the p-th quantile estimate Ep is 2.00 0.5667 0.5612
approximately N(&,, p(1—p)/nf2(5,). 2.50 0.5312 0.5268
where f() is the pdf and n is the 3.75 04319 0.4264
number of replications, the function 5.00 0.3454 0.3401
. : 6.25 02750 - 0.2695
DENSITY in Splus was used to 750 02214 02145
estimate f(£,) which provides a stan- 875 . 0.1765 0.1706
dard error. estimate of £, 1000 0.1437 0.1362
- Table 3.1 compares the limit prob- 12.50 0.0934 0.0865
abilities that the MLE and LM es- __ 139 0.0633 . 00571
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timates of § are equal to zero (or equivalently that MLE and LM estimates of
0 are 1).

It is clear from this table that the probability of the MLE being at 8 = 1 is
about 0.006 smaller than the corresponding probability for the local maxi-
mizer. However, for the purposes of using these two estimates for hypothesis
testing a comparison of the (1 —«) quantiles of the distributions of the two
estimates is relevant. Table 3.2 provides the required quantiles bg; r(®), bym(®)
and by () for the three tests against selected values of o (estimated standard
deviations given in parentheses). ,

TABLE 3.2. (1—a) quantiles for the distribution of By o Byupo and Z,

Quantiles *

0.01 0.025 0.05 0.1
by (@) 11.25 (0.100) 8.55 (0.056) 6.52 (0.037) 4.75 (0.024)
byyp(@) - 11.93 (0.103) 8.97 (0.062) 6.80 (0.042) 4.90- (0.026)
bgie(® 441 (0.048) 295 (0.030) 1.94 (0.020) 1.00 (0.012)

Table 3.2 illustrates the difference between the asymptotic behavior of the
local and global maximizers. As is expected the quantiles of Sy o are larger
than those for i\ o by a few percent which increases further out in the tail of
the distributions.

It is clear from this table that substantial differences exist between the
asymptotic quantile for the two estimators and that it is not safe to assume that
the quantiles for the largest local maximizer provide adequate approximations
to those of the MLE. _

The next table indicates that the use of asymptotic quantiles gives very
accurate values of the size of the test for sample size T = 50.

TaBLE 3.3. Achieved significance levels using the asymptotic quantiles of
Table 3.2 for T =50

Finite sample power o
of LM, MLE and GLR tests 0.01 0.025 0.05 0.1
P(By > by @y = 0) 0.010 | 0024 | 0050 | 0.099
P(Pyie > byps(@ly = 0) 0010 | 0025 | 0049 | 0.098
P(Z, > b @]y =0) 0011 | 0025 | 0051 | 0.102

Figure 1 compares the finite sample power (T = 50) for various test
statistics. Quite clearly, the maximum likelihood estimator is dominated by
the local maximizer, and the generalized likelihood ratio test dominates both
of these. This is also the case for the asymptotic values shown in Figure 2.
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For more detailed reference these power values are also presented in Tables 3.4
and 3.5.

It is clear from Table 3.5 that the use of the local maximizer yields a test
with greater power than that based on the MLE. This result also holds (results
not given here) when the type I error probability varies between o = 0.01 and
a=0.1.

Also evident from Table 3.5 (and similar results for o = 0.01 to a = 0.1) is
the better power performance of the generalized likelihood ratio test. As a conse-
quence, the GLR test is recommended. Interestingly, although the asymptotic
distributions of fyg x and fyy differ somewhat (see below), the asymptotic powers,

TABLE 3.4. Comparison of the finite sample (7" = 50) power of LM and
MLE tests with the GLR test for o = 0.05

b4 P (ELM > bLM(“)W) P (EMLE > bMLE(a)W) P (ZT > bGLR(“)W)
0.50 0.052 0.051 0.053
1.25 0.060 0.057 0.070
2.50 0.096 0.092 0.123
3.75 0.167 0.155 0.215
5.00 0.262 0.244 0.317
6.25 0.375 0.353 0.427
7.50 0.482 0458 0.524
8.75 0.581 0.559 0.625
10.0 0.655 0.643 0.695
15.0 0.872 0.866 0.872

TABLE 3.5. Comparison of the limiting power of LM, MLE and GLR
tests for a = 0.05

Y P(Bimy > bim(@) | P(Pure., > bure@) | P(Z, > borr(®)
0.50 0.050 0.050 0.052
1.00 0.056 0.055 0.060
125 0.060 0.057 0.067
2.00 0.076 0.073 0.092
2.50 0.096 0.092 0.122
5.00 0.258 0.243 0315
6.25 0.365 0.348 0422

10.0 0.647 0.634 0.666
12.5 0.771 0.765 0.779
15.0 0.849 0.847 0.847
20.0 0.938 0.940 0.933
25.0 0974 0.975 0.970
30.0 0.987 0.989 0.986
40.0 0.997 0.998 0.997
50.0 0.999 0.999 0.999
60.0 1.000 1.000 1.000




Inference for MA(1) processes 235

of the GLR test using either estimate are almost identical (results not
presented). This implies that the calculation of asymptotic power of the GLR
test can be done reasonably accurately (to the third decimal place) using the
value of ﬁnm.y rather than [?MLEJ. However, in the next section the simulated

distribution Of. Z (ﬁ MLE,) 1S TABLE 3.6. Comparison of the limiting power and exact
used as the basis for compar-  power of the GLR test using quantiles from Table 3.2.
ing the asymptotic performance Exact values are computed via simulation
of the GLR test with Tanaka’s
S statistic. . . 0,
Power- estimates agalnst
various alternative values of 0.7 |exact 0797 0840 0872 0900
0 using the asymptotic theory limit 0767 0810  0.845 - 0.886
are compared with the exact 08 |[exact 0.566 0.636 0.695 0.761
values in the next table. Both limit 0538 0610 0666 0734
the asymptotic estimates and 0.9 | exact 0.176 0.247 0.317 0412

h limit 0.176 0.246 0.315 0411
the finite sampl Its use
Ssample rest ts the 0.95 | exact 0.041 0.076 0.123 0.201

o
0.01 0.025 0.05 0.10

asymptotic quantiles presented imit 0041 0076 0122  0.198
in Table 3.2. Clearly, the as- 99 | cvact 0011 0027 0054  0.104
ymptotic theory provides very Imit 0011 0027 0052 0102

accurate approximations for al-
ternatives as low as 6 =0.9. For values of 6 < 0.9 the asymptotic results
continue to provide very useable approximations.

Figures 1 and 2 also show that for the purposes of testing the null
hypothesis that § = 1 it is better to use the GLR test for all alternatives. For
this reason we will now turn to a comparison of the GLR test and the S test of
Tanaka.

4. Comparison of the GLR test and the S test of Tanaka. The score type
test of Tanaka [10] is demonstrated to be locally best invariant unbiased.
Hence it will provide a benchmark against which the performance of the
generalized likelihood ratio test can be judged. The next two tables provide
additional details to that found in Figures 1 and 2. Table 4.1 compares the
finite sample performance of the GLR test and the score type test while
Table 4.2 gives an asymptotic comparison.

A few observations on Table 4.2 are:

1. The asymptotic values are very good approximations to the finite
sample values (compare Tables 4.1 and 4.2).

2. The above results reported for Tanaka’s S test are computed exactly
using Imhof’s procedure [5] since the distribution of S; is equal to the
probability that the sum of a linear combination of independent chi-squares is
positive.

3. Clearly, Tanaka’s Sy, based on Tables 4.1 and 4.2 (see also Figures 1
and 2), has a very small edge on the GLR test up to y = 5 or so. Thereafter,
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TABLE 4.1. Comparison of the finite sample TABLE 4.2. Comparison of the limiting power
(T = 50) power of Tanaka’s score type test Sp of Tanaka’s score type test Sy with the
with the limiting power of the GLR test for = limiting power of the GLR test for a = 0.05
o = 0.05
p Power of S;  P(Z,> boa(®)
v Power of S;  P(Z; > bowr(9)]7)
0.50 0.053 0.0522
0.50 0.053 0.053 1.00 0.062 0.0599
1.25 0.069 0.070 1.25 0.069 0.0669
250 0.129 0.123 2.00 0.099 0.0923
3.75 0221 0.215 2.50 0.127 0.1218
5.00° 0.320 0.317 5.00 0.311 0.3146
6.25 0.412 0427 6.25 0.402 04218
7.50 0.492 0.524 10.0 0.611 . 0.6664
8.75 0.560 0.625 12,5 0.705 0.7791
100 0.618 0.695 150 0.772 0.8473
150 0.773 0.872 20.0 0.866 0.9329
25.0 0919 - 0.9700
30.0 0.949 0.9855
40.0 0.979 0.9970
500 0.991 0.9993
60.0 0.996 0.9999

the GLR test increasingly outperforms S, by a wide margin. The case y =5
corresponds to the alternative that 0 = 0.9 when T = 50. As seen from Figure
1, the power functions for the tests based on fiy and fyr dominate the power
function of S, test for values of y > 8 and y > 8.5, respectively.

4. Overall we recommend the use of the GLR test.

Appendix
PROPOSITION. (a) The sequence {fi} is tight.
(b) ﬁMLE,y < 00 a.s.

Proof. (a) First note that since f; = T(1 —Oyyg) and Oy g is strongly
consistent (see [8]), we have f,/T— 0 as. Thus to prove (a), it suffices to show
that for all >0 -

I
e

A1) lim limsup P(M < f, < ¢T)

M—-w T—-w

Now for & > 0 fixed and small, if M < f; < eT, then supM<ﬁ<ETLT(B) >0, so
that (Al) is implied by

(A2) lim limsupP( sup L(f)>0)=0.

M-ow T-ow M<pg=<eT

We only give the proof for the case where y = 0; the case y > 0 follows in much
the same way.
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From equation (2.4) in [4] we have

C
Lr(p) = 5203 (B = Az(F)S (B,
where
Ar(B) = » 24,
T (T-f-l)2 11—4d +(ﬁ2/(2T2))a(ﬁ, T)d
PRI B 2d,(1-d)U?;
B = e 2 1 (1—d,+(B2/2T2) a(B, T)d,)*
. L (1 dt)UtT
520 = ; +(BH2T?)a(8, T)d,
CT(B)=§(TT“)2<1—£) 6, T),
2 \-1
a(f, T) = (1 —§+2§,2) , d,=cos (Tnj— 1),
and

s [Tt
Usr= \/T+ (1=d,)” /Z\/— <T+1)

A straightforward calculation shows that

(A3)
EU?r =1, Var(U};)<C,, and Cov(Uir, U2p) < C,(T+1)

for all 5 # t, where C, and C, are constants independent of s and ¢. Now since
Cr(B)/St(B) >0 for all e[M, ¢T], it suffices to show that

(Ad) lim limsupP[ sup B(f)—A(B)Sy(B) > 0] = 0.

M—-w T-w M<B<eT
For f, < B, large we have

(A5)

P[,, Sl;Pﬂ Br(B)—A7r(B)Sr() > 0] < P[ sup By(B)—Ar(B) > —&r(B,)]
o<B<p1 Bosp<p

+P[ sup Ap(B)[1—Sr(B)]>er(B))],

Bospsp
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where ¢;(") is a sequence of positive constants to be specified. Now since A;(f)
and B (f) are nonincreasing in f, the first term on the right in (A4) is bounded
by

Var[Br(B,)]
[—er(By) +AT(ﬂ1)"EBT(ﬂO)]2.

Setting f, = rf, where re(l, \/5 ) is a fixed constant and choosing

e<i |2(1-M M0 "
T ' 2T2

P[Br(Bo)—Ar(By) > —er(B)] <

for T large, we have
Ar(B,)—EBr(By)

_ v (/T?Hd(1—d)[2p3a(Bo, T)—Bia(B,, TN +(d: B5/2T")a*(Bo, T)
1T +12(1—d,+(BYQTH)a(By, TVE)(1—d,+(B32T)a(Bo, T,

LY (1/T2d2(1 —d)[2B3a(Bo. T)—Bia(B,, T)]
=1 (T+1)*(1—d,+(B3/2T)a(B,, T)d,)(1—d,+(B3/2T>)a(B,, T)d,)*
% Cyd2 B2 14,

3 : ,
=1 (T +1)*(1 —d,+(B2/2T?)a(B,, T)d,)" (1 —d,+(B3/2T?)a(B,, T)d,)
where

2p3a(Bo, T)—PBia(B,, T)
> Bi(2r2a(M, T)—a(eT, T)) = C,$; for some C; >0,

" by the choice of & Since

(A6)
x2 x2 T n2t? n?t?
<l—cosx <= for 0<x<- and <(T+1)*(1—d) <—,

the sum above is bounded below by
.T/4 “2 IZ

CuBt Yy @R

t=1

where C, > 4C, cos®

T
HT+1)

Evaluation of a suitable integral approximation to this sum gives a lower
bound of C;f7? for B, > 16, and hence

(A7) Ar(B1)—EBp(Bo) = Ce/B, for B, > 16.
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Next, we write
Var(B;(B,) < 9(S(1, T/4)+S(T/4+1, T/2)+S(T/2+1, T)),

where, using (A3),

S(Tla TZ)
T T 4d,d,(1—~d)(1—d)Cov(U?r, Uiy)

= Z Z " 5 N 2 2 2 2
s=T1e=Ts (T +1)*(1—d, +(B/2T?)a(Bo, T)d,)' (1 —d, +(B3/2T*))a(Bo, Td,)
T2 4C, d?

<Y 3
=T (T + 1)*(1—d, +(B3/T?)a(B,, T)d,)

ac, (I d, :
+ T+1( ) '
T4 (T +1)2(1—d,+(B3/2T)a(Bo, T)d)

Using (A6) and an integral approximation, we obtain the bounds

T/4 C7 CB T/4 1 2
S(1, T/4) <
(. T/4) t;(n2t2+ﬁ%)2+T+1(,§1n2t2+/3%)

< C9ﬂ63+C10(T+1)_1ﬁ62 < K1ﬁ(;3,

S(T/4+1, T/2)

’f Cy; C12< ey 1 )2
< +
=t (T (1—/2/22  THI\md@er (T+12(1—/2/2)

<k, T3
and

T T

Cis Cia 2 _

S(T2+1, T) < 13 (T+1)"2 <, T3,
‘ :=T§.+1(T‘|‘1)4 T+1(:=7%+1 ) 3

so that
(A8) Var(Br(B,)) < x4/B3.
Combining the bounds in (A7) and (A8) and choosing &.(8,) = C4/(28,), we
obtain :
. 2 2
(A9)  PL sup Br(A—Ar(B)> —er(B)] < mabi Kshh

Bo<B<p1 Cips B3
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To handle the second term in (AS), we have

P[ sup Arp(B)[1-5:(P] > er(8y)]

Bospspy

2 TS 1-d,+(B3/2T?)a(B,, T)d, ” 24,(8)

P[l L7 (1=d)UZr x(By) ]

1 1 T er(By)
P =% UZp > 11
[2 TM%H “T 7 24,(Bo)

say. To obtain an upper bound for P, observe that

1% (1-d)Uir )
V —
ar(T t; 1—d,+(B1/2T%) a(By, T)d,
C T/2 (1 dt)z

ST S(1—d,+(B/2T?)a(B,, T)d)

.G (Tf 1-d Cis
T*T+1) ,=11—d,+(ﬂf/(2T2))a(ﬁ1,T)d,> ST

and
1_E[1 L (1-d)UZr ] 12 (B3/2T¥)a(B,, T)d,
2 =1 1—d,+(B3/2T?) a(B,, T)d, T:—ll—d,+(,8f/(2T2))a(ﬂ1,T)d,’

 which, after splitting the sum up into two pieces and bounding the summands,

is bounded by

i 8 1 5 (1 )sz 1
=Y 1+5 <64(z—6)=——.
Z 2T3, 210 —cos(n(dT+1)/(T + 1) 27 %) 2 1—cosns
Since (x/2)cosx < 1—cosx < x2/2 and d, <0 for t = T)2+1,..., T,

T/2 1

Ar(Bo) < Cye Z z—tzm < C14/B,-

‘Now choose 6 >0 and & > 0 sufficiently small so that

2(1—cosnd) 8Cy,r
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Then
5r(ﬂ1) > Cﬁﬁo — C6
2AT(ﬁO) 4C17B1 4C177"
and hence
C -2
A10 P,<C T‘l(BT(ﬂl) =6 ) <218
(A10) 1S CsT ) 8Cor) ST

Turning to P,,

1 T 2 Cl‘ T CZ L 2 C]_g
Var(T Z Ut,T) ‘ T2 z 1 + TZ(T+ 1)( Z 1) T

t=T/2+1 t=T/2+1 t=T/2+1
and :
1 Z 1
(Tr=1'/22+1 “T 2
so that
, C19(2Ar(ﬂo)>2 Czo
All P ———] <—.
(alh) ST\ o) ) ST

Putting all the pieces together, we have

P[ sup By()—A(B)S7() > 0]

M<EB<eT
log,eT : .
< Y P[ sup Br(B—A;(p)S+B >0]
nzlogeM ALt

logreT

< Y PL sup Byf)—Ar()> —er("Y)]

nZzlog M gt

log,eT - : L . .
+ ¥ P[ sup  Ap(B1-S(B)] > &Y,
nzlog M m<pgEm+l
which, by using the bounds from (A9){(A11), is less than or equal to
logreT In+2 ,
Ksr Cig+Cso _ M\ log,eT
< _
> ( =t T ) (const) [M (1 T + =

nzlog,M r

—(const)M~™! (as T - o0)
-0 (as M- ).
This completes the proof of (A4), and hence part (a) of the Proposition.

16 — PAMS 15
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(b) The weak convergence of Ly to Z;, given in Theorem 2.1 implies that,
for M, and M, fixed positive constants,

P( sup Zy(B)>0)<limsupP( sup Ly(B)>0).
Mi<p<M2 T Mi<p<eT

Now, taking the limits M, — oo, and then M; — oo, we have from (A2) the
relation

lim P(Byie, > M) < lim P(sup Z}()>0)=

Mi—w. . . Mi—»o® Mi<p

and ‘hence fyg, < 0 as. =
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