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Abstract. This paper considers maximum likelihood estimation 
(MLE) for MA(1) processes when the moving average parameter is on 
or near the unit circle. The asymptotic theory to be presented allows 
the use of the generalized likelihood ratio test for testing the null 
hypothesis of a unit root. The asymptotic distributions of the MLE 
and the largest local maximizer, the estimator which yields the local 
maximum closest to the unit circle, are shown to be different. The limit 
distributions of two estimates provide a very accurate approximation 
to the finite sample size and power of the tests considered. A compari- 
son is made of the power of four tests of the null hypothesis that the 
moving average parameter is equal to one versus the alternative that it 
is less than one. The four tests are based on the MLE, the largest local 
maximizer, the generalized likelihood ratio test and Tanaka's score 
type test. The use of the generalized likelihood ratio test is recommen- 
ded overall since it always dominates the tests based on the MLE and 
the largest local maximizer and dominates the score type test for close 
alternatives to the null hypothesis. For alternatives very close to the 
unit circle the score type test has slightly higher power but this is 
evident only in the third decimal place. 

- 

I. Hotrodaction. In this paper we consider the moving average of order one, 
or MA(1) for short, generated by 

where { E * )  - IID(0, oZ) ( {E,}  is a sequence of independent and identically 
distributed random variables with mean 0 and variance aZ) with EE; < m and 
l6,l < 1. We will consider cases in which 8, is at or close to 1. Davis and 
Dunsmuir [4] review the applications in which inference about 8, close to or 
on the unit circle is likely to arise. 
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In cases where l8,l = 1 the standard asymptotic normal distribution 
theory (see, e.g., [l]) does not apply. Also when (8,l is near to unity, this 
standard theory gives a very poor approximation (see [4] for illustration of 
this). A much better approximation is found by deriving the asymptotic 
distribution of the MLE for a sequence of true parameter values which 
converge to the unit circle at rate 1/1: 

We use the parameterization 8, = 1 -PIT, where 8 3 0 and T is the 
sample size. Inference about B, and hence 8, will be based on the observations 
Y, , . . . , YT which come from model (1.1) with true parameter 8, = 1 - y/K 
where y 2 0. 

This paper gives a rigorous derivation of the convergence in distribution 
of the maximum likelihood estimator the value of 0 which maximizes the 
likelihood over the interval 8 E [- 1, 11. In [4] the asymptotic distribution for 
the local maximum estimate kM, defined as the local maximizer of the 
likelihood closest to 0 = Jr 1, is established. Somewhat surprisingly, these two 
estimators are not equivalent asymptotically. 

The main idea in our derivation is to show that the sequence of processes 
given by L,(jI) - L,(O) = l,(l -PIT)- 2,jl) converges in distribution on 
C[O, a) to a process Zy(B), where 1,(6) is the log-likelihood of the observations 
Yl, . . . , YT. By this result, we show that the maximizer of L,(.) converges in 
distribution to the maximizer of Z,t), which then furnishes the desired limit 
distribution of the MLE. These results are presented in Section 2 with the 
details of the arguments relegated to the appendix. 

Since "the distribution of the MLE of 8 under H,: 8 = 1 is unknown even 
asymptotically," Tanaka [lo] was "reluctant to use such tests as likelihood 
ratio tests or Wald tests." Saikkonen and Luukkonen [9] echo this view and 
state "the asymptotic distribution of the maximum likelihood estimator of 
a non-invertible moving average parameter is not known.. . The development 
of likelihood ratio tests and Wald tests is therefore intractable." As a con- 
sequence these authors propose tests, such as "score type" tests and Lagrange 
multiplier tests, which only require estimation of the model under the null 
hypothesis or at a fixed alternative value. The asymptotic-results of Section 2 
can now be used to develop a test of H,: 6 = 1 based on Qm, gMLE, or the 
generalized likelihood ratio (cutoff values are given in Section 3). InterestingIy, 
the asymptotic operating characteristics of these three tests are different. The 
test based on the MLE is dominated by the test based on the largest local 
maximizer which in turn is dominated by the GLR (generalized Iikelihood 
ratio) test. In Section 4, the GLR test is compared with Tanaka's LBIU (locally 
best invariant and unbiased) score type test. While the LBIU test has a slight 
edge (in the third decimal place) in power for 8's very close to 1 (i.e. y < 3, the 
CLR test dominates the LBIU test by a wide margin for all y's greater than 5. 
The desirable operating characteristics of the GLR test, together with its ease 
of implementation (most time series analysis software packages compute the 
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value of the likelihood for any 0) make the GLR test a desirable test statistic for 
this problem. 

In a more typical situation, Chant [3] considers testing a null hypothesis 
for a parameter on the boundary of the' parameter space when there are 
nuisance parameters (here c2) and following on from Moran [6] demonstrates 
that when the null hypothesis is simple and concerns a scalar parameter, the 
maximum likelihood test and optimal C(E) test, as considered by Neyman [7], 
are equivalent. The use of optimal C(a) tests for testing the null hypothesis that 
0 = 1 in the present context, while possibly appealing, is not possible since the 
test statistic is always equal to zero. The essential reason that we cannot derive 
this test here is that the derivative of the concentrated likelihood is zero under 
the null hypothesis. For exactly the same reason, the standard score test cannot 
be applied which led Tanaka to consider a "score type" test based on the 
second derivative of the log-likelihood. Hence in this moving average problem, 
the asymptotic equivalence of likelihood tests and related alternative type tests 
no longer holds. 

2. Asymptotic distribution of tbe RaEE. Theorem 2.1 of [4] describes the 
joint limiting behavior of ET(P) and E;(P) and establishes that 

(i) (ET(B), E;.(B)) 4 ((PI21 Y,(B), (P/2) Y;':(PI*I- i T[P)) as T + 03, where 5 
denotes weak convergence on a subspace S of C2[0, a) and 

with (X,) - NID(0, 1). 
(ii) If fiLM = inf(B 2 0: ET(B) = 0 and E;(P) < 0) (i.e., &,, is the local 

maximum of L,(.) closest to 0), then 

AM % A . M , y ,  

where ' 

$LM,~ = inf{j 2 0: PYyO = 0 and PT(B)+ < 0) .  - 
This theorem can be used directly to establish the limit 

on C[O, a). The integral can be evaluated in the closed form from which it 
follows that 

The above convergence suggests that the global maximizer of L, converges in 
distribution to the globa1 maximizer of 2,. Of course, in general, convergence 
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on C[O, a) does not necessarily imply convergence of the corresponding 
maximizers. However, as shown below, the maximum likelihood estimator 
converges in distribution to the value maximizing 2,. This is the content of the 
following theorem: 

THEOREM 2.1. Suppose Yl , . . . , YT are obsertlations from model (1 .1 )  with 
8, = 1 -y /Tfor  some y 3 0. Then 

. - LT(B)-LT(W ZyVl 
OH C[O, w) and 

where FhbLEBy is the global maximizer of Z,(.). 

P r o  of of T h e  o r e rn 2.1. The first convergence follows immediately from 
Theorem 2.1 in [4]. Now, set fl, = T(l  -OM,), and let J,,, and p,., be the 
values of #? which maximize the likelihood LT(B) and the limit process Zy(/3), 
respectively, over the interval [O, MI. Then 

where 

By Theorem 2.1 in [4], it follows that for each M > 0, fl,,, converges in 
distribution to BM,,, and hence R,(x) converges to zero as T+ ao. In the 
Appendix, we show that BMLE,? < co a.s. so that PM,, % B",,,,, as M + co. It  
follows that R,(x) + 0 as M + a. Moreover, since the sequence ($,.I is tight 
(see the Appendix), we conclude that 

Since T(&,, - 1) = -JT, the result now follows. 

3. Comparison of tests based on the MILE, local maximum estimators and 
the generalized likelihood ratio. In this and the following section we use 
simulation to derive type I error probabilities and power functions for testing 
the null hypothesis that H,: 8 = 1 versus H A :  8 < 1. Tests based on BmE, 
bLM and the likelihood ratio are considered in this section. In the next section 
the likelihood ratio test (which is shown here to have superior power 
performance than the tests based on JMLE and bLM) is compared with the score 
type test of Tanaka [lo]. 
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The asymptotic theory of Section 2 also allows us to approximate the 
nominal power of the above test against local alternatives of the form 

H A :  8=8 , ,  where 0,= 1-y/T.  

The tests considered all have asymptotic power equal to 1 against any fixed 
local alternative. This property is not shared by the procedure proposed in [2]. 

To describe the test based on the generalized likelihood ratio let 
Z,IB) = L,(/3)-L,(O) be the -21og of the likelihood ratio. Define the 
generalized likelihood ratio statistic as 2, = zTUmE). Also, let zy = z ~ @ ~ ~ ~ , ~ )  
denote the limit random variable of 2, when y is the true value. The (1 -a)-th 
asymptotic quantile boLR(a) is defined as 

In the results to follow the tests are defined using these asymptotic quantiles to 
define the critical region. 

To describe the tests based on the MLE and LM point estimates we define 
the following asymptotic quantile. Let bLM(uj and bM,(ol) be the ( 1  -m)-th 
quantiles defined as 

In order to find the values of bGLR(u), bEM(a) and bM,(a) using the 
asymptotic results of Section 2 the following simulation method was used. 
The infinite sums required in Z,(/3) and Y,(j3) are approximated by trun- 
cating them at k = 1000. For all results reported below, 100,000 replica- 
tions were used when y = 0 and 10,000 replications were used when y > 0. 
For each replicate the three statistics were evaluated thereby reducing the 
between replicate variability as a component in the comparison of the 
three methods' For finite re- T ~ a m  3.1. Robabilities of Bur, flmE,7 
sults, further details on the methods being zero 
used to compute the likelihood based 
estimates are given in [4]. Prob- 
abilities reported below are accurate 
to t-0.0032 when y = 0 and to f 0.01 
when y > 0 with 95% confidence. 
Since the p-th quantile estimate f p  is 
approximately ~ ( 5 , ~  dl- p)l(nf (sJ)), 
where fc) is the pdf and n is the 
number of replications, the function 
DENSITY in Splus was used to 
estimate f(5,)  which provides a stan- 
dard error estimate of 5,. 

Table 3.1 compares the limit prob- 
abilities that the MLE and LM es- 
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timates of /I are equal to zero (or equivalently that MLE and LM estimates of 
0 are I). 

1t is clear from this table that the probability of the MLE being at B = 1 is 
about 0.006 smaller than the corresponding probability for the local maxi- 
mizer. However, for the purposes of using these two estimates for hypothesis 
testing a comparison of the (1-a) quantiles of the distributions of the two 
estimates is relevant. Table 3.2 provides the required quantiles bGLR(~),  bLM(a) 
and bMLE(m) for the three tests against selected values of a (estimated standard 
deviations given in parentheses). 

TABLE 3.2. (1-a) q d t e s  for the distribution of LM.,, p,,,, and z,, 
I 

Table 3.2 illustrates the difference between the asymptotic behavior of the 
local and global maximizers. As is expected the quantiles of BMLE,O are larger 
than those for hPO by a few percent which increases further out in the tail of 
the distributions. 

It is clear from this table that substantial differences exist between the 
asymptotic quantile for the two estimators and that it is not safe to assume that 
the quantiles for the largest local maximizer provide adequate approximations 
to those of the MLE. 

The next table indicates that the use of asymptotic quantiles gives very 
accurate values of the size of the test for sample size T = 50. 

TABLE 3.3. Achieved sipnificance levds using the asymptotic quantiles of 
Table 3.2 for T = 50 

Figure 1 compares the finite sample power (T = 50) for various test 
statistics. Quite clearly, the maximum likelihood estimator is dominated by 
the local maximizer, and the generalized likelihood ratio test dominates both 
of these. This is also the case for the asymptotic values shown in Figure 2. 

Finite sample power 
of LM, MLE and GLR tests 

p ( b u  > ~ L M ( ~ ) I Y  = 0) 
'(JMLE > b,E(a)f~ = O) 

P(2, > b,(4ly = 0) 

a 
0.01 

0.010 
0.010 
0.011 

0.025 

0.024 
0.025 
0.025 

0.05 

0.050 

0.049 
0.051 

0.1 

0.099 
0.098 
0.102 
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- LM 
---a- MLE 
............. GLH 

LBlU 

GAMMA 

Fig. 1. Power curves based on LM, MLE, GLR and LBIU tests for T = 50 

GAMMA 

Fig. 2. Limiting power curves based on LM, MLE, GLR, and LBIU tests 
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For more detailed reference these power values are also presented in Tables 3.4 
and 3.5. 

It is clear from Table 3.5 that the use of the local maximizer yields a test 
with greater power than that based on the MLE. This result also holds (results 
not given here) when the type I error probability varies between a = 0.01 and 
a = 0.1. 

Also evident from Table 3.5 (and similar results for o! = 0.01 to cr = 0.1) is 
the better power performance of the generalized likelihood ratio test. As a conse- 
quence, the GLR test is recommended. Interestingly, although the asymptotic 
distributions of B- and flLM differ somewhat (see below), the asymptotic powers, 

TABLE 3.4. Comparison of the finite sample (T = 50) power of LM and 
MLE tests with the GLR test for u = 0.05 

TABLE 3.5. Comparison of the limiting power of LM, MLE and GLR 
tests for a = 0.05 
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of the GLR test using either estimate are almost identical (results not 
presented). This implies that the calculation of asymptotic power of the GLR 
test can be done reasonably accurately (to the third decimal place) using the 
value of a,,, rather than PMLE,?. However, in the next section the simulated 
distribution of z@MLE,"~) is TABLE 3.6. Comparison of the limiting power and exact 
used as the basis for compar- power of the GLR test using quantiles from Table 3.2. 
ing the asymptotic performance Exact values are computed via simdation 
of the GLR test with Tanaka's 
ST statistic. @A 

Power estimates against - 
various alternative values of 0.7 

0 using the asymptotic theory 
are compared with the exact 0.8 

values in the next table. Both 
the asymptotic estimates and 0.9 

the h i t e  sample results use the o,ss 
asymptotic quantiles presented 
in Table 3.2. Clearly, the as- 0.99 
ymptotic theory provides very 
accurate approximations for al- - 

0: 

0.01 0.025 0.05 0.10 

exact 0.797 0.840 0.872 0.900 
limit 0.767 0.810 0.845 0.886 

exact 0.566 0.636 0.695 0.761 
limit 0.538 0.610 0.666 0.734 
exact 0.176 0.247 0.317 0.412 
limit 0.176 0.246 0.315 0.411 

exact 0.041 0.076 0.123 0.201 
limit 0.041 ' 0.076 0.122 0.198 

exact 0.011 0.027 0.054 0.104 
limit 0.011 0.027 0.052 0.102 

ternatives as low as 8 = 0.9. For values of 0 < 0.9 the asymptotic results 
continue to provide very useable approximations. 

Figures 1 and 2 also show that for the purposes of testing the null 
hypothesis that 8 = 1 it is better to use the GLR test for all alternatives. For 
this reason we will now turn to a comparison of the GLR test and the ST test of 
Tanaka. 

4. Comparison of the GLR test and the ST test of Tanaka. The score type 
test of Tanaka [lo] is demonstrated to be locally best invariant unbiased. 
Hence it will provide a benchmark against which the performance of the 
generalized likelihood ratio test can be judged. The next two tables provide 
additional details to that found in Figures 1 and 2. Table 4.1 compares the 
finite sample performance of the GLR test and the score type test while 
Table 4.2 gives an asymptotic comparison. 

A few observations on Table 4.2 are: 
1. The asymptotic values are very good approximations to the finite 

sample values (compare Tables 4.1 and 4.2). 
2. The above results reported for Tanaka's ST test are computed exactly 

using Imhofs procedure 151 since the distribution of ST is equal to the 
probability that the sum of a linear combination of independent chi-squares is 
positive. 

3. Clearly, Tanaka's ST, based on Tables 4.1 and 4.2 (see also Figures 1 
and 2), has a very small edge on the GLR test up to y = 5 or so. Thereafter, 
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TABLE 4.1. Comparison of the finite sample T m L E  4.2. Comparison of the limiting power 
(T = 50) power of Tanaka's score type test ST of Tanaka's score type test ST with the 
with the limiting power of the GLR test for limiting power of the GLR test for a = 0.05 

a = 0.05 

y 

0.50 
1.25 
2.50 
3.75 
5.00 
6.25 
7.50 
8.75 
10.0 
15.0 

the GLR test increasingly outperforms S, by a wide margin. The case y = 5 
corresponds to the alternative that 6 = 0.9 when T = 50. As seen from Figure 
1, the power functions for the tests based on fiLM and BMLE dominate the power 
function of S T  test for vaIues of y > 8 and y > 8.5, respectively. 

4. Overall we recommend the use of the GLR test. 

y 

0.50 
1.00 
1.25 
2.00 
2.50 
5.00 
6.25 
10.0 
12.5 
15.0 
20.0 
25.0 
30.0 
40.0 
50.0 
60.0 

Power of S, ~(i, > bCtLR(a))IY) 

0.053 0.053 
0.069 0.070 
0.129 0.123 
0.221 0.215 
0.320 0.317 
0.412 0.427 
0.492 0.524 
0.560 0.625 
0.618 0.695 
0.773 0.872 

Appendix 

PROPOSITION. (a) The sequence {BT)  is tight. 
(b) P A , ?  < a a.s. 

Power of ST ~ ( 2 ,  > b,,R(a)) 

0.053 0.0522 
0.062 0.0599 
0.069 0.0669 
0.099 0.0923 
0.127 0.1218 
0.311 0.3146 
0.402 0.4218 
0.61 1 0.6664 
0.705 0.7791 
0.772 0.8473 
0.866 0.9329 
0.919 0.9700 
0.949 0.9855 
0.979 0.9970 
0.991 0.9993 
0.996 0.9999 

Proof.  (a) First note that since BT = T(l -om,) and 8,, is strongly 
consistent (see [8]), we have &/T+ 0 a.s. Thus to prove (a), it suffices to show 
that for all E > 0 

(A11 iim Iim sup P(M < BT < ET) = 0. 
M + m  T - t m  

Now for e > 0 fixed and small, if M c & < ET then supMsbsET Mfl) > 0, SO 

that (Al) is implied by 

(A21 lim lim sup P( sup > 0) = 0. 
M + m  T+m M ~ B G E T  

We only give the proof for the case where y = 0; the case y > 0 follows in much 
the same way. 
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From equation (2.4) in [4] we have 

where 

and 

A straightforward calculation shows that 

for all s' # t, where C, and C, are constants independent of s and t .  Now since 
CT(B)/ST(B) > 0 for all BE [M, &TI, it suffices to show that -- 

(A4) lim lim SUP P [ SUP BT(/3)-AT(b)ST(p) > 01 = 0. 
M - m  T + m  M < @ < & T  

For p, < large we have 
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where E ~ C )  is a sequence of positive constants to be specified. Now since AT(P) 
and B,(fl) are nonincreasing in 8, the first term on the right in (A41 is bounded 
by 

Setting 8, = rp,, where r (1, f i} is a fixed constant and choosing 

for T large, we have 

AT(P1)-EBTIflo) 

where 

2Bia@,, T)-B:a(Pl, T> 
2 P i ( 2 r - 2 a ( ~ ,  7 ' ) - ~ ( E T ,  T ) ) ~ C , P :  for some C , > O ,  

by the choice of E. Since 

(Ah) 
x2 x2 n n2 t2  n2 t2 < 1-cosx <- for 0 < x <- and 

4 4 ip <(T+1)2(l-dl}<- 
2 f i  2 '  

the sum above is bounded below by 

TI4 n 2 t 2  nT 

"" zl (n2 t2  + fl:)3 ' where C, 2 4C, cos2 --- 
4(T + 1)' 

Evaluation of a suitable integral approximation to this sum gives a lower 
bound of C,B; for PI 2 16, and hence 
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Next, we write 

VarP~(Bo1) G 9(s(l, T/4)+S(T/4+ 1 ,  T/2)+S(T/2+ 1 ,  T)) ,  

where, using (A3), 

S(T1, T2) 

Using (A6) and an integral approximation, we obtain the bounds 

G u , T - ~  

and . 

so that 

Combining the bounds in (A7) and (A8) and choosing = CS/(2Pl), we 
obtain 
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To handle the second term in (AS), we have 

say. To obtain an upper bound for Pi observe that 

and 

which, after splitting the sum up into two pieces and bounding the summands, 
is bounded by 

Since (x2/2)cosx<l-cosx<x2/2 and dt<O for t = T / 2 + 1 ,  ..., T, 

Now choose 6 > 0  and E > 0  ~ ~ c i e n t l y  small so that 
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Then 

and hence 

Turning to P, ,  

and 

so that 

Putting all the pieces together, we have 

which, by using the bounds from (A9)-(A11), is less than or equal to 

-+ (const) M - (as T + co) 

-0 (as M +  m). 

This completes the proof of (A4), and hence part (a) of the Proposition. 

I6 - PAMS 15 
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(b) The weak convergence of E ,  to ZS, given in Theorem 2.1 implies that, 
for M, and M, fixed positive constants, 

P(  sup ZiIB) > 0) 6 limsupP( sup Z,IS) > 0). 
M I  dB<Mz T- tm M j Q f l d ~ T  

Now, taking the limits M, + m, and then M, + a, we have from (A21 the 
relation 

lim P(~ME,, > MI) < lim P( sup Z',(/?) > 0) = 0, 
; .M1-'m . . M1-m 

and 'hence hLE,? < m is. 
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