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Abstract. The performance of Bayes' estimates is studied under an 
assumption of conditional exchangeability. More exactly, for each 
subject in a data set, let < be a vector of binary covariates and kt q be 
a binary response variable with P {q = I I = j(c). Here, f is an 
unknown function, to be estimated from the data; the subjects are 
independent, and the 5's are iid uniform. Define a prior distribution on 
j as C w k a , E k w , ,  where nk is uniform on the set of j which only 
depend on the first k covariates and w, > 0 for infinitely many k. 
Bayes' estimates are consistent at all f if wk decreases rapidly as 
k increase. Otherwise, the estimates are inconsistent at f = 1/2. 

1. Introduction. This paper studies non-parametric binary regression in 
a Bayesian context. Let q be a binary response variable and ~ E [ O ,  11 
a covariate with P { q  = 1 I t) = f (5). The function f is an infinite-dimensional 
parameter to be estimated from data by Bayesian techniques. At stage n, the 
data consist of n iid pairs ( q , ,  5 (I)), . . . , (q, ,  5 (n)) with 5 (i) uniform over [0, 11. 
Thus, we are assuming that 

(1.1) . Given the covariates, the response variables are independent across 
subjects and P { q ,  = 1 1 5 (i)) = f (5 (i)). 

The function f is assumed to be measurable. 
The main issue to be studied is consistency: does the posterior concentrate 

near the true f as more data come in? For the class of priors we consider, the 
answer is generally yes, but not always. For some priors, the Bayes estimates 
are inconsistent when f = 1/2. 

We next describe the priors to be considered; these were motivated by an 
example of de Finetti [3]. Regard a point x in the unit interval as an infinite 
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sequence of binary dijjts or "bits," to be denoted by x,, . . . , x,,. Our priors are 
"hierarchical" or "nested." We begin with a prior n;, supported on the class of 
functions f that depend only on the first k covariates, so tk+, , &+,, . . . do not 
matter in (1.1). 

From the perspective of nk, P (qi = 1 1 ( (01 depends only on (, (i), . . . , tk (9. 
Let Ck be the set of strings of 0 s  and 1's of length k. So, the prior x, is defined 
by the joint distribution it assigns to the 2k success probabilities 8,, s E C,. Here, 
8, = P { q  = 1 I {) for subjects with ({,, .. ., l,) = s. One simple choice for nk 
takes 8, independent and uniform over'C0, If, as s varies over Ck; that is the 
example to keep in mind. 

We treat k as an unknown "hyperparameter," putting a prior weight wk 
on k. Thus, om prior is of the form 

where 
m 

(1.2b) w, > 0 for infinitely many k and C wk < oo . 
k = O  

Our results apply to a more general class of "T-uniform" n,, to be defined 
now. Fix 0 < b < 3 < co and a finite subset F of (0, 1). Consider the class r of 
all densities y on [0, I] with b < y < 3. Let g, = j fly, (0)dO. By assumption, the 
g, all lie in the finite subset F of (0, I), which was given a priori. We require nk 
to make the 2, success probabilities 0,, s E Ck , independent, with densities in the 
class r. Furthermore, we require the choices to fit together as k varies, in the 
following manner: There is a continuous function g, (x), which takes values in 
F ,  such that for all n > no and all s E C,,, g, = g, (x) provided the first n bits of 
x agree with s. (Of course, if a continuous function on sequence space takes 
only finitely many values, it must be piecewise constant.) This completes the 
definition of r-uniformity. If b = B = 1 and I: = (1/2), we get back to the 
uniform priors. 

To define consistency, we need to topologize the-parameter space of 
functions J: Let C, = (0, 1)" be the space of sequences of 0's and l's, so 
f maps C, into [0, 11. Write Am for coin-tossing measure on C,, which makes 
the bits of x E C, independent, each being 1 with probability 1/2 and 0 with 
probability 112. By definition, the parameter space 8 consists of all measurable 
functions from C, to 10, 11; functions which are equal a.e. are identified. Put 
the L,-metric on O. (The same topology is given by L, for p 2 1, or 
convergence in measure.) A typical neighborhood N (f, 6, E) of f is defined as 
fol~ows: 

(1.3) If ~ E O  and 6, E > 0, let N ( f ,  6, r )  be the set of h ~ 8  with 

Ilm(x: X E C ,  and Ih(x)-f(x)l < E) 2 1-6. 



Binary regression with random couariates 245 

If K is a prior probability on 0, the posterior probability f,, on @ is the 
conditional law of f, given the data at stage n; this will be computed explicitly 
in Section 2. The prior .R is consistent at f if ii, {N (f, 6, E)} + 1 almost surely as 
n+ oo. Here, the data ate generated in accordance with (1.11, so f is the "true" 
regression function. 

At stage n, there are n subjects, indexed by i = 1, . . . , n. Each subject i has 
a response variable q i  = tj ( i )  and an infinite sequence of covariate bits 

In addition to (1.1), we are assuming 

(1.4) The t(i) are independent and have a common uniform distribution. 

The main results can now be stated. 

(1.5) THEOREM. Suppose (1.1) and (1.4). Moreover, suppose that the TC, are 
r-unqorm, the prior K is hierarchical in the sense of (1.2), and f + g,. Then n is 
consistent. 

I (1.6) THEOREM. Suppose (1.1) and (1.4). Moreover, suppose that the rt, are 
I r-uniform, the prior w is hierarchical inrhe sense of (1.21, and f = g , .  Let 1 be the 

smallest k with w, > 0. Write exp (x) = ex. 
(a) Suppose z:=n w, i exp (-i(log2) n2'-d,n23 for ail large n, for some 

6 ,  > 0. Then n is consistent at f. 
(b) Suppose Ckm==n W, > exp I-i(log2) n2'+ SOn2') for inJinitely many n, 

for some 6 ,  > 0. Then K is inconsistent at f. 

Theorems (1.5) and (1.6) show that our Bayes estimates are consistent, 
provided the weights w, fall off rapidly. For example, suppose b = B = 1, so 
that Q makes the success probabilities iid uniform. If w,  = 1/2k, then the Bayes 
estimates are consistent at all f .  On the other hand, if w, = l/(k+ I)', the 
estimates are inconsistent at f = 1/2. 

The present paper extends results in Diaconis and Freedman [8]. That 
paper studies the model (1.1), but with a different sampling design from (1.4). 
The ti) were taken to be balanced, so that at stage n all s E C, occur once and 
only once. The balance condition eliminates some annoying inhomogeneities 
that have to be dealt with here by Poissonization. However, the critical rate for 
consistency depends on the sampling plan: compare (1.6) with Theorems (8) 
and (9) in [a]. 

In [8]  we review the relationship between consistency of Bayes estimates 
and rules for model selection as well as sieves and orthogonal series estimation. 
Also see Diaconis and Freedman 191, where we try to identify the root cause of 
the inconsistency in (1.6b) and suggest that consistency will hold fairly 
generally; we also suggest that Bayesian methods will generally lead to correct 
estimates of the order when the model is finite. 
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The balance of this paper is organized as follows. Sectinn 2 computes the 
posterior. Section 3 has some preliminary estimates, including large-deviation 
results for balls dropped at random into boxes. A proof of Theorem (1.5) is 
given in Section 4, and Theorem (1.6) will be proved in Section 5. The 
arguments are modifications of those in [g] .  

Cofisistency of Bayes estimates is a classical problem going back to 
Laplace [16] and the present paper uses methods introduced by him. A recent 
survey, with emphasis on infinite-dimensional problems, will be found in [6 ] .  
The combinatorial literature on dropping balls at random into boxes is 
surveyed by Kolchin et al. [IS]. A recent treatment using Stein's method 
is in [I]. Entry-points to the large-deviation literature are [11] or [17]; 
papers [4] or [ 5 ]  are more recent. The related topic of boundary crossings 
is surveyed in [18J. Foissonization can be traced back to 1121. A modern 
reference is [14] .  

2. Computing the posterior. Let SZ be an underlying probability space, on 
which the response variables ~ ( i )  and covariates t j( i )  are defined. Recall that 
f E 8 maps C, to [O, 11. For f E 9, let Pf be the probability on 5a which makes 
the response variables and covariates distributed so that (1.1) and (1.4) hold. 
The dependence between the data at stage n and stage n + 1 is simple: there is 
one extra subject with covariate sequence 5 (n + 1). The joint distribution across 
n's will matter for some of the arguments here, as opposed to [8]. 

Let 

and write f,(s) for f, (x )  when s E Ck and x, = s,, . . . , x, = s,. 
For now, fix n and k. For SEC,, let N,  be the number of subjects 

i = 1, ..., n such that Cj(i) = sj for j = I ,  ..., k. In other words, N ,  is the 
number of subjects i = 1, . .. , n whose first k covariates are given by s. Of 
course, N, is random; that is the new technical difficulty. Let X, be the number 
of successes among subjects whose covariate sequence begins with s. More 

-. 

formally, q(i) is the response for subject i, and 
n 

X, = (r](i): Cj(i) = sj  for i = 1, ..., n ) .  
i =  l 

Write bin(m, p) for the binomial distribution with rn trials and success 
probability p. 

(2.3) LEMMA. Assume (1.4). With respect to  Pf: 
(a) {N,: s E Ck) is distributed Iike the result of dropping n balls at random 

into 2k cells. 
(b) Given (N,:  s E Ck), the random variables X, are independent as s ranges 

over C,, each being bin [N, ,  fk ($1. 
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As usual, K, can be extended to a probability on 8 x P by the formula 

% T k A x B )  = i P f { B ) n k ( d f  1, 
A 

where A is a measurable subset of 0, and B is a measurable subset of P. The 
proofs of Lemmas (2.3) and (2.4) are omitted as routine. In (2.4) and similar 
contexts, 7tk is viewed as a probability on O x  62. 

(2.4) LEMMA. Suppose zk is r-un$orm. With respect to x,, the N, have the 
ball-dropping distribution given by (2.3). Given (N,: s E C,}, the pairs (O,, X,) are 
independent as s ranges over C,. The parameter 8, has density y,~r. Given N,, 
and 6, the number of successes X, is bin(N,, e,). 

For y ~ r ,  m = 0 ,  1 , 2  ,..., and j = O , l ,  ..., m, let . 

where the normalizing constant is 

In particular, $(O,  0, y )  = 1 and y (0, 0, *) = y (9). 

Let EkSn be the posterior distribution of J; computed relative to nk, given 
the data from a design of order n. 

(2.6) LEMMA. Suppose Q is r-unifarm. According to the posterior EkSR, the suc- 
cess probabilities 6, are independent as s ranges over Ck, and 8, has density 
y,(N,, X,, -) with respect to Lebesgue measure on [O, 11. 

To compute the posterior relative to n, the nk-predictive probability of the 
data is needed. To set up the notation, recall the normalizing constant 4 from 
(2.5b). Let 

If N, = 0, the corresponding factor in ek,, is taken as 1. By (2.4), g k ,  is the 
qpredictive probability of the data given {N, ) .  

Turn now to the posterior f n ,  computed relative to K. Informally, the 
"theory index" k in (1.2) is a parameter which has a posterior distribution 
relative to n. Let 

Now, K, {data)/n {data) = +k,,/xkm=, %,n- So 
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(2.10) LEMMA. Suppose 7c is hierarchical in the sense of (1.2), and the nk are 
r-unijbrrn. Given the data f-iom a design of order n, the posterior is 

The proof is omitted as routine. Of course, it, can be written as 

3. Some estimates. 

(3.1) LEMMA. Let 0 < p < 1. k t  X be bin (m, p)  and Y = ( X -  ~ ~ ) ~ . / r n .  If m = 0, 
or m > 0 but p = 0 or 1, lee Y= 0. Then: 

(a) P (X 6 mp- &} < enp (-rx) for. all x > 0. 
(b) P { X  2 n t p + & E }  < exp(-tx) for a11 x > 0. 
(c) Y is stochastically smaller than ~;+21og2. 

Proof. Suppose m > 0 and 0 < p < 1. Claim (a) follows from Bernstein's 
inequality. For example, use (4) in [13] to see that 

To get claim (b), write q = 1 -p, and observe that X 2 mp + & iff (m- X) 
C q-&. Now use (a). For (c), 

(3.2) LEMMA. Suppose the random variable < has a Laplace transformfor h < h,, 
where h, is positive. k t  X be the class of random variables Y for which 
E {[Y-E Y] j )  < E ( [ j )  for j 2 2. Then there are positive finite aZ and h, , 
depending only on 9 ,  such that 

provided the x's are independent, 5 E X  for all i, and 0 -c y < h, rn. 
Note. This lemma is set up to give one-sided bounds. In some cases, of 

course, it can also be applied to {-  Y}. Then a lower bound can be obtained in 
the same way with a slightly smaller o. More detailed results can be obtained 
by matching variances or Esscher tilting, but these refinements will not be 
needed here. See [ll], Section XVI.6. 

Proof. Assume without real loss of generality that EY = 0. Let 
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The sum is bounded above by 

where sZ is a suitable positive finite number, slightly larger than the second 
moment of c. For 0 < h 6 h', 

1 2 2  d,(h) < 1.+*a2h2 and log$,(h) < h . 
The constants cr2 and h' depend on 5, not Y or h. 

We afe assuming that E {F) = 0. Chebyshev's inequality can be applied to 
bound P (exp (h(Y, + . . . + Y,)) 2 ehY] : 

Put k = y/aZrn. We require h < h', i.e., y 6 h'a2m: set h ,  = h'c2. gl 

(3.3) LEMMA. Suppose IUI is sto~h~sticully smaller than V Then IU-EUI is 
stochastically srnalkr than V+ E F.: 
(3.4) COROLLARY. Let ni be non-negative integers and 0 G pi < 1. Let X i  be 
independent bin (n,, pi) and 8 = (Xi - nipi)'/n,. Then there are universal positive 
constants o2 and h, such that 

m 

P(Yl+ ... +Y, 2 pi(l-pi)+y) < exp(-y2/2azm) 
i - l  

provided 0 < y < h, m.  

P r o  of. Combine (3.1)-(3.3). 

(3.5) LEMMA. Let N, be Pois(A), i.e., Poisson with parameter 1. If N, = 0, let 
log (NJ = 0. Let z > 0. Then: 

(a) P { f i ( l o g ~ , -  log A) 2 z) < exp(-$z2) for all z > 0. 
(b) P {fi(log N,- logl) < -z) < exp (-tz2 [(I - e-&)/cI2) 

provided 0 < z < s&. If s  = 1/2, then an upper bound is exp (-z2/4). 

Proof. This follows from Bernstein's inequality: see (4) in-[13]. Some 
auxiliary calculations are needed to estimate the function in (9) of that paper. 
We claim: 

(3.6) u -P (eu - 1)'/u2 e" is strictly convex with a minimum at u = 0. 

Indeed, the function in (3.6) is ((e"12 -e-~~')/u)', which is readily expanded 
in even powers of u, with positive coefficients. 

(3.7) IZ(~/' ' -  ~)~/e"/' > z2 for A > 0 and z > 0. 

(3.8) u +(l -e-")u is strictly decreasing for u > 0. 

(3.9) ~ ( l - e - " " ) ~ > z ~ ( ( l - e - ~ / s ) ~  for ~ < z < s f i .  
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(3.10) COROLLARY. Let Ni = N, if N, > Ae- 'I2, else let = le-112. Let 

Then 2: is stochastically smaller than 41og2+2~2. 

(3.11) COROLLARY. There are $nite positive constants cr2 and h, such that 

provided the Zi are independent, each Zi is distributed as Z,, in (3.10), and 
0 < y ,< h,m. 

Note. As A+ a, the law of 2, tends to the standard normal. The bound 
in (3.5b) can be improved, but there is mass P{N,  = 0) = e - I  at 
z = -x 1 logl; no upper bound of the form exp(-6z2) can be valid for 
large A. 

Results (3.13)-(3.16) are familiar, but are included for ease of reference. 
The elementary proof of (3.13) is omitted. 

(3.13) LEMMA. Let f be a convex function. Let a,  b > 0 and let the random variable 
X,, take values -a or b and E {Xob}  = 0. Then E { f  (Xob)) increases with b for 
fixed a; likewise, E { f (Xab)) increases with a for fixed b. 

(3.14) LEMMA. Let f be a convex function. Pix A, 3 and p with - co < A < 
< p < 3 < co. Let X be the class of random variables X such that A < X < B 
and E { X )  = p. Let  EX take only the values A, B and E ( 5 )  = p. Then 

E { f  (XI) < E { f  (0). 
Proof. Assume without loss of generality that p = 0. The extreme X have 

two-point distributions and (3.13) applies. 

(3.15) COROLLARY. Let f be convex and increasing. Pix L and E positive andfmite. 
Let X be the class of random variables X such that 1x1 <-L and E ( X )  < - E .  

Let 5 E X take only the values +_ L and E 15) = - E. Then E { f ( X ) )  < E { f (5)).  

(3.16) LEMMA. Define X as in (3.15). There is a Q with 0 < Q < 1, depending only 
on L and E, such that: for independent X i  E X  and y > 0, 

m 

P I C  Xi 2 y for some m) < gY. 
i =  1 

Proof. Define 4: as in (3.15). De Moivre solved the gambler's ruin problem 
by finding the unique r > 1 with E {re) = 1. Continuing his argument, let 
S(m) = xy=, Xi. Then rS(m) is an expectation-decreasing martingale, which can 
be stopped at the crossing time; take Q = l/r. 
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Remark. Lemma (3.16) is easily extended to partial sums of variables X i  
such that the conditional law of Xi gives the past falls in X ;  see [IO], p. 164. 

Lemmas (3.17) and (3.18) are elementary, and proofs are omitted. 

(3.17) LEMMA. Let j be a non-negative integer, and x be a positive real number. Let 
f,(x) = z,m=jxyi!. Thenj;.(x)/x' is continuous, convex, and strictly increasing on 
(0, a), with a limit of l/j! as x decreases to 0. 

(3.18) LEMMA. Let rn be a positive integer and 0 < p < 1. k t  X be bin(rn, p), and 
let j be u. non-negative integer. Then 

(a) P (X = j )  < U!)-l (mpy'; 
Cb) Pix 2jl <f,(nap). - 

(3.19) LEMMA. Assume (1.4). Fix c > 513. Then almost surely, for ail suficiently 
6arge n, for a11 k > clog,n, there are no S E C ~  with Ns 2 4. 

P r o  of. By (2.3a), N, is bin (n, 1/2k). Write il = 4 2 ,  = E {N,) .  So 1 < l/nc-l. 
By (3.17) and (3.18), P { N ,  2 4) < CL4, where C is a suitable positive constant 
(a bit larger than 1/4!). The expected number of s with N, 2 4 is then smaller 
than CZkh4 = CnR3 < C/n3c-4. The chance of having at least one box with 
N, 2 4 is also smaller than C / ~ I ~ ' - ~ ,  by Chebyshevrs inequality. Since 3c > 5, 
the Borel-Cantelli lemma implies that for all suficiently large n, for k the least 
integer exceeding clog2n, there are no S E  C, with Ns 2 3. Finally, for n fixed, 
]{s: S E  Ck and N ,  2 411 is decreasing as k increases. 

Note. We write IS1 for the cardinality of a set S. 

(3.20) LEMMA. Assume (1.4). Fix c > 7/4. Then almost surely, for all suficiently 
large n, for all k > c log2n, 

(i) there are no S E C ~  with Ns 9 4, and 
(ii) there is at most one S E  Ck with N ,  = 3. 

Proof. (i) follows from (3.19), since 714 > 5/3. For (ii), let Qk be the event 
that N, = 3 for two or more S E  C,. Thus, 

Qk= U{N,=3 and N , =  3 1 s, t€Ck and s # t )  

and 

Now Pf IN, = 3) < A3/6 by (3.18a). Given { N ,  = 31, N ,  is bin [ n - 3 ,  1/(2k- I)], 
so 
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Thus 
P(Q,) < 7$22klE6 = &n2A4 < 1/(72r1~'-~). 

The balance of the argument is omitted, as similar to (3.19). m 

(3.21) LEMMA. Assume (1.4). Fix c > 3. Then almost swely, fur all sufzciently 
large n, for all k > c log2n, there are no SE C, with N, 3 2. 

Proof. Only the minimal k needs to be considered, Now Pf IN, 2 2) 
< CrlZ by (3.17) and (3.18), so the expected number of SEC, with N, 2 2 is at 
most C2'"AZ = C ~ a ~ / 2 ~  < Since c > 3, the Borel-Cantelli lemma com- 
pletes the proof. 

Lemmas 3.19-3.21 involve the dependence structure of the balI-dropping 
process as k and n vary. The next result does not. Consider dropping n balls at 
random into b boxes, where rz is much smaller than b: in the case of interest, b is 
of order n2/logn. Let h = n/b, the expected number of balls in each box. 

(3.22) DEFINITION. Let IMJ be the number of multiply-occupied boxes, and T the 
total number of balls in the set of multiply-occupied boxes. Let S, = T-IM( 
with So = 0. Let pj be the conditional probability that ball j drops into 
a previously-occupied box, given the results of dropping the first j- 1 balls. 

Clearly, S, < a-1, where the bound is sharp; n-S,, is the number of 
occupied cells; S ,  = 0; and for n 2 2, S,, = z!=, Xi, where Xj is 1 if ball j drops 
into a previously-occupied box, else Xj is 0. k e c ~  pj from (3.22). Of course, pj 
is itself a random variable, and 

(3.24) LEMMA. Let p = n (n - 1)/2 b. 
(a) If 0 < 6 < 1, then P IS, 2 (1 + 6)p) < exp (-S2p/4). 
(b) Suppose 0 < 6 < 1, and n/b < 6/2. Then 

P { S n  < (1-6)p) < ex~(-6~p/8) .  
- 

Proof. Claim (a) is Bernstein's inequality: see, e-g., (4) in [13], noting that xy= pj s P. 
Claim (b) is similar. Indeed, 

Clearly, p-nS Jb < z=, pj, because Sj increases with j. So 
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Furthermore, S, < (1 - 6/2) j i  - nS,/b iff S,, < olp, where 

Therefore, {S, G (1 - 6) p) c ( S ,  d ap}. r + ~  

Note. The argument shows S,, to be stochastically smaller than xy=, $, 
where the 5 are independent 0-1 valued random variables, and P ( Y j  = 1 )  
= (j- l ) /b .  

(3.25) L b .  Fix j 2 0. k t  NA be Poisson, but conditioned to be j or more. Then 
N, is stochastically increasing with A. 

Proof.  Let &(A) = z,"=j Ak/k!. If i > j, we claim that f i ( A ) / f j ( A )  increases 
with A. This comes down to showing 

However, 

n i - l + X ( i ) .  fi' (A) = - 
( i -  I)! 

So (3.26) in turn reduces to 

which holds term by term. H 

4. The proof of Theorem (1.5). This is proved like (8) in [ a ] ;  only the main 
points are given. Zones are defined in terms of positive integers Ki to be chosen 
later. 

Early zone: 0 < k < K,. 
Lower midzone: K, < k < log, logn + K,. 
Upper midzone: log,logn+K, < k & log,n-K,. 
Endzone: log, n - K, < k < log, n + K, . 
High zone: log, n + K, < k. 
The endzone and high zone have negligible posterior mass; the early zone 

is negligible too unless f =f, for some k. Almost surely, for all large n, for all 
k in the midzone, for most s E C,, N ,  is large and the MLE f ls  = X s / N ,  is close 
to S, (s). Of course, the latter tends to$ see (2.1). Finally, the posterior piles up 
around the MLE by [7]. We turn to details; Lemmas (4.2)-(4.4) do most of the 
work for the midzone. 

(4.1) Let A = n/2k, so E (N , )  = A .  
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(4.2) L E ~ .  Assume (1.1) and (1.4). Fix any positive integer K. Then almost 
surely [PJ, fur all suficiently large n, for all k with 0 < k 6 log, logn+ K and all 
s f  C,: 

(a) N,  > n/2'" 2 n/(2K+1 logn). 

(b) ~ a , - f ~ ( s j ~  < (2 J2K+'logn)/fi. 
Proof. Claim (a). By (2.3a), Ns is bin (n, 1/2k). Abbreviate C = l/22KC3. 

By Bernstein's inequality (3. la), 

. P (N, d A/2) < exp ( - J2/8n) < exp [- Cn/(logn)']. 
. " .  

The number of strings s E C,  with 0 < k < log, logn + K is 

and 
d) 

(log n) exp [ - Cn/(l~gn)~] c a . 
n =  1 

The Borel-Cantelli lemma completes the proof of (a). 
The proof of (b) is similar. Indeed, by (3.1), 

(4.3) LEMMA. Assume (1.1) and (1.4). Fix any largejnite M and small positive S. 
Then there are positive integers K2 and K, (depending on M and 6 )  such that: 
almost surely [Pf], for all suficiently 'large n, for all k with log, logn+K, < 
< k < log,n-K,, for all but 62, strings SEC,, N, > M. 

Proof. The argument is by Poissonization. For now, fix k. Let N,* be iid 
Pois(A) as s varies over C,. Thus, (N,}  is distributed as (N:), given that 
{xsN: = n}. The conditioning event has probability asymptotic to 1 / F .  
Choose K, so large that 

P {Pois (2K3) < M) < S/2. - - 

The chance that 82, more of the S E C ,  have N: < M is bounded above by 
exp(-~3'2~/8). This follows from Bernstein's inequality (3.lb); also see (3.25). 
Now 2k 2 2=~10gn. Choose K, so large that C = 2K2S2/8 > 1.5. There are 
fewer than log,n theories k to consider, and 

The Borel-Cantelli lemma completes the proof. ra 

(4.4) LEMMA. Assume (1.1) and (1.4). Fix 6 and E positioe but small. Then there are 
positive integers K, and K, such that: almost surely [PA, for all suflciently 
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large n, for all k with log, logn + K ,  6 k < log, n- K,, for all but S2kf1 strings 
Ck? -& (s)I < 

P r o  of. By Chebyshev's inequality, if X is bin (m, p), then 

Choose M finite but so large that l j ( 4 ~ ~ M )  < 6/2. By (4,3), apart from S2k 
strings SEC,, N,  > M. Given {N,), the X, are independent bin [N,, fk(s)] 
random variables. Bernstein's inequality - with no Poissonization needed - 
completes-the argument, as in (4.3): There are other 62, exceptional strings, and 
setting them aside, we obtain fflS-fk(s)l c E. ra 

The early zone: k 6 K,. 
Let 

We also need the entropy function: 

(4.6) 
plogp+(l-p)log(l-p) for O c p c l ,  

for p=O or 1. 

(4.7) LEMMA. Suppose (1.1) and (1.4). Suppose the n, are r-uniform. Fix k. Then 

lim Lk,, = H (f$ dlm almost surely [P,] . 
n + m  

Proof. This is like (4.12) in [8]. Since k is fixed, C ,  is finite. We have 
N ,  w n/2k almost surely by the ordinary strong law: see (2.3a). And 6, +f, (s) by 
the strong law or (4.2b). By (3.2)-(3.3~) in [a], 

n-' log#(N,, X,, Y $ - + ~ - ~ H  [fk(s)l a.s. 

The endzone: log, n - K, < k < log, n + K,. 

(4.8) LEMMA. Suppose (1.1) and (1.4). Suppose the n, are r-uniform. Fix any 
positive integers K ,  and K,. Then there is a positive Q < 1, a finite positive 
constant A, and a small positive 13 (all depending on K, and K,) such that, for all 
n, for all k with log,n-K, < k < log,n+K,, 

P r o  of. The argument proceeds by Poissonization, as in (4.3). For the 
moment, fix k. Recall that I = n/2k. 

(4.9a) Let N,* be iid Pois(l) for SEC,. 
I (4.9b) Given IN,*), let the X,8 be independent bin [N:,  f k ( s ) ] .  
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Let 
1 

(4.9~) x* = 10, j ec (1 - o)N"e~y, (e, de 
0 

It sufices to prove 

(4.10) P(n-' x* 2 j ~ ( f , ) - 6 )  <en. 
S E C ~  

Choose L* with 2 < L* < a. We claim: 

(4.1 1b) there is'a positive E (which depends on L* but not on k or n) such that 
E{K* I N:) 6 N;H(~,(S))-EN,* on (2 6 N$ 6 L*). 

These results follow from (3.8) in [a]. Thus, 

Since 2-K4 6 A 6 F3, P ( 2  < N: < L*]/A is bounded above and below. There 
is a small positive E', which does not depend on k or n, such that 

(4.12) E { %* ) d 1 [H (.k (s)) - E' ]  - 
We can now use Bernstein's inequality (3.2). Indeed, by the definition of 

r-uniformity, y, 2 b > 0 ;  see (7) in [a]. And 

by (3.3d) in [a]. Furthermore, the x* are independent. We take m = 2k, 
5 = Pois (2'9 +2Iog b + 2K3, y = ~ " n ,  where E" is fixed with 

0 < E" < min {E', hl/2K3), 

so E" < E' and y < him. See (3.3) to motivate the definition of 5.  Then 

where r = exp(-Cn/m) and C = d"'/2a2. But n/m = n/2k 2 2-K4. We take 
e = exp (- C2-K4). Combine (4.12) and (4.13): 

(4.14) P ( n - ' C  x* 2 ~ H ( & ) - E ~ + E " )  < Q". 
~ c k  

We take 6 = E' - E" > 0. This proves (4.10). 

(4.15) COROLLARY. Suppose (1.1) and (1.4). Suppose the z, are r-uniform. Fix 
positive integers K ,  and K, .  Then there is a small positive 6 (depending on K, 
and K,) such that, almost surely, for all suflciently large n, for all k with 
log, n - K, < k < log, n + K,, 

This completes our discussion of the endzone. 
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The high zone: log, n + K, < k. 
Let 

The relative entropy function H is left undefined at the corners p = 8 = 0 or 1, 
where it has singularities. 

Let s E Sk iff s E Ck and N, = 1: 'the S is for "singly-occupied." Let 

In other words, Sk,n represents the sum defining Lk,n, extended only over the 
singly-occupied s. Since 0 < q!~ < 1, we have L,,, < S,,,/n. 

From the definition of r-uniformity, given as (7) in [ a ] ,  g, is the mean of 
y,; if k > k, and s E Ck, then g, = g, (s), the function g, being constant on each 
s in C,. 

(4.18) LEMMA. Suppose (1.1) and (1.4). Suppose the n, are r-unijiorm. Then for any 
positive S, there is a positive Q < 1 and a positive integer K, (both depending 
on 6 )  and afinite positive constant A such that, for all n and all k 2 log,n+K,, 

Proof .  The argument is by Poissonization. Define N,*, X,*, and Y,'" as 
in (4.9). It suffices to prove 

where = Y,* when N,* = 1, and = 0 elsewhere. Now, for N,* = I, - r, = x~logg,+(1-X,*)log(l-g$ = Xf logg,(s)+(l-X:)log(l-g,(s)). 

In particular, 

E { E  I N,* = 1) =HCf,(s),g,(s)I. 

Since P {N,* = 1) = i e - 4  and R = n/Zk, we obtain - 

The function g, is bounded between b and B, with 0 c b < B < coy ggain 
by definition. So the random variables E are uniformly bounded, say by C. We 
use Bernstein's inequality (3.2) with 4: = 2Cy y = n6, rn = 2k: 

The condition y < h, m is satisfied if K, is large enough. This proves (4.19), with 
e = exp (- 6'/2a2). 

17 - PAMS 15 
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- 

(4.22) LEMMA. Suppose (1.1) and (1.4). Suppose the nk are r-unqorm, and f f g,. 
Then there is a small positive 6 and a large positive integer K, such that, almost 
surely [P,], for all suficimtly large n, for all k with log2n+K4 < k, 

Proof. Lk,. < Sk,n/n, and decreases with increasing k, (Eventually, 
SR,. stabilizes). The reason is that S,, the set of singly-oocupied cells, increases 
with k. Thus, it sufices to consider the least k 3 log,n+K4. We must show 
that almost surely, for all sufficiently large n, for the least k 3 log,n+K,, 

We choose d > 0 so small that J H ( f ,  g,)dAm < I H ( f ) d A w - 4 5 .  Nowf,-tf, 
so for K ,  large and k 2 log, n + K,, 

But A = n/2k 4 I /F4;  H is negative; for K, large, 

Now (4.18) proves (4.231, becauye 

Discussion. For this part of the argument, we do not need that F,  the set of 
prior means, is finite; we do need b ,< y < B. We also do not need that g, = g, 
for a11 large k; uniform convergence would be enough, or even convergence in 
measure. Finally, we do not need that g, is finitary, continuous, etc. 

We fix 6 > 0 and choose K, large to control the high zone, by an entropy 
rate argument. For any choice of K, and K,: the endzone goes away. We 
choose K, and K ,  large to control the upper mrdzone, in the sense of showing 
that f k ,  will be close to f,, and hence$ see (4.3)-(4.4). This may be inefficient, 
because the upper midzone is probably irrelevant. For any K,, we get 
consistency in the lower midzone by (4.2); and likewise for the early zone if 
f =A. Details are omitted because they parallel [a]. This concludes our 
discussion of Theorem (1.5). 

The proof of Theorem (1.6). The argument is more delicate; the rate of 
convergence of g, to g m  matters, and so does the behavior of g,. For 
simplicity, we assume that 

(5.1) f , = f = p  for all k and g , = g m = p  for k > k , .  
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The high zone splits as follows: 

Early high zone: 

log,n+K, < k < 210g2n-log210gn-K,. 

Middle high zone: 

21og,n-log,logn-K, 6 k d 210g2n-log210gn+ 

Late high zone: . . 

Very late high zone: 
3.110g2n < k. 

We now give some heuristics for the early zone, lower midzone, and upper 
midzone, that is, for k G log,n-K,: 

(5.2a) 

and 

where qi is the response of subject i ,  

and 

(5.3b) 

Furthermore, 

(The expression n/2k represents the number of observations per parameter.) To 
sum up, 

logek,,, A nH (p) + T,-4 2k log ( ~ 4 2 ~ ) .  

The class of theories k with k < log,n- K ,  is dominated by the smallest k with 
positive prior weight, namely, theory I.  (In the upper midzone, another 
nuisance term appears in the expansion; but the argument goes through 
anyway.) The endzone goes away by previous arguments. The early and middle 
high zones can also be eliminated. 
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The late and very late high zones remain, and the term in 2klog(n/2k) 
drops out: 

Therefore, late theories compete - on entropy grounds - with theory I. It 
is the rate of decay of the theory weights w, which decides the issue. The 
competitive late zone starts more or less at k = 210g, n, when there are l/n data 
points per parameter. In [8], the cutoff was 1 data point per parameter; the 
extra randomness in N, helps the Bayesian statistician and changes the critical 
rate for w, from 1/2k/2 to l/2k!4. 

Now for the details. We begin by showing that Q,,, is small relative to 
2klog (n/2,) provided k < log, n - K, . 
(5.4) LEMMA. Define Qken by (5.3b). For each n, Qk,n increases with k. 

Proof.  Use Jensen's inequality. rn 

(5.5) LEMMA. Assume (1.1), (1.41, and (5.1). Suppose the 71, are r-uniJurm. Let K, 
be an arbitrary positive integer. Then almost surely [PA, for all suflciently large 
n, for all k d K, ,  

Q,, < Z k  a 2.  log logn. 

Proof.  Use the law of the iterated logarithm. EI 

(5.6) LEMMA. Assume (l.l), (1.4), and (5.1). Suppose the n, are r-uniform. Define 
n2 and h, as in (3.4). Fix B > 2. Then there is a large positive integer K, 
(depending on B) such that: almost surely [Pf], for all suficiently large n, for alI 
k with log, logn + K, 6 k B log, n, 

Proof.  This is immediate from (3.4), with rn = 2k and y = 0 Jn. 
The test sum for the Borel-Cantelli lemma is at most 

2 (log, n)/nBI2 < co . 
n 

And the condition y < h,m is satisfied if K, is large enough. B 

(5.7) LEMMA. Assume (1.1), (1,4), and (5.1). Suppose the zk are r-uniform. Fix 
6 > 0. Choose K ,  as in (5.6). Then there is a large positive integer K ,  (depending 
on 6) such that: almost surely [Pf], for ail seciently large n, for aII k with 
log,logn+K, < k < log,n-K,, 

P r o  of. Suppose first that log, logn + K, < k < log,n. Write a, < bn iff 
aJb, +O. Then 

p(1-~)2k+a J ' <  + ~ ~ l o g ~ n  B 2klog,(n/2S. 
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Suppose next that +log, n < k < log, n - K, . Then 

p ( 1 - ~ ) 2 ~ i - t ~  Js 6 G2klog,(n/2k) 

prdvided K, is large. Indeed, p( l  - p )  < 1/4 and log, (n/2k) 2 K, which is large, 
taking care of the term p (1 - p) 2k. Finally, r J- 4 2k. rn 

(5.8) LEMMA. Assume (1.1), (1.4) a d  (5.1). Suppose the nk are r-unijiiform. Fix 
S > 0. Choose K, as in (5.6). Then there is a large positive integer K ,  (depending 
on 6) such -that: almost surely [P'], for all suficiently large n, for all k with 
K, G k <.log, logn + K,, 

Proof.  Let k, be the least positive integer which is log, logn+ K ,  or more. 
Now 

Qk.n Qk,,n by (5-4) 

< p(l  - p ) 2 k * + ~  J- by (5.6) 

< (p (1 -p) 2K2t1 + r Jv) Iogn < 62k log, (n/2") 

for k with K, < k < log,logn+K, provided K, is large. (The 1st and 3rd 
inequalities hold for all n; the 2nd and 4th for n large.) s 

(5.9) COROLLARY. Assume (1.1), (1.4), and (5.1). Suppose the nk are r-un$orm. Pix 
6 > 0. Choose K ,  as in (5.7). Then almost surely [Pf], for all suficiently large n, 
for all k with k < log, n - K,, 

Note. From here on, K, is forced large; but K, and K, are free again. 

Proof.  Combine (5.5), (5.7), and (5.8). FS 

This completes the discussion of Q,,,, and we turn to the term-~s,c,logNs 
in the expansion (5.2a) of loggk,, . The sum is [l + o (l)] 2k log A, where A =  n/2k 
as in (4.1). The main technique is Poissonization, to approximate the 
ball-dropping distribution (2.3a). Unfortunately, there are zones which do not 
quite match those previously defined. We begin with k < (log,n)/4. 

(5.10) LEMMA. Assume (1.4). Fix S > 0. Then for all n, all k < (log2n)/2, and all 
SE Ck, 

(a) Pr ( N J A  > 1 + 6) < exp (- S2 fi/2), 
(b) P, {N,/L 6 1 - 6) < exp ( - 6, &/2). 

Proof.  As (2.3a) shows, N, is bin(n, 112'). Now use (3.1). Of course, 
A2/2k = n2/23k 2 f i  since k < (log2n)/2. s 
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(5.11) LEMMA. Assume (1.4). Fix 6 > 0. Then almost surely [P'], for all 
suficiently large n and all k < (log,n)/2, 

P r o of. By (5.10) and the Borel-Cantelli lemma, 1 - 6 < NJh < 1 + 6 for 
all s E Ck and all k < (log, n)/2, for all sufficiently large n, almost surely: the test 
sum is bounded by 

Finally, k G (log2n)/2 entails 

2, (log (1 + 8)( < 2" log ( ~ 4 2 ~ ) .  tm 

We turn now to larger k; the lower endpoint of the range is not material, 
but log,logn is a convenient cut-point. 

(5.12) LEMMA. Assume (1.4). For s E C,, let N,* be independent Pois (A) variables. 
Let fl, = N: when N,* > le-l/,, else let N!, = b-'/'. 

(a) Fix B > 2. Then there is a positive integer K, so large (depending on B) 
that, for all n and all k 3 log,logn+K,, 

(b) Fix 6 > 0 and C > 2. Thela there are positive integers K, and K, so 
large (depending on S and C) that, for all n and all k with log,logn+K, < 
< k < log,n-K,, the chance that N,* d Ae-1/2 for S2k or more indices S E  C, is 
bounded above by l/nc. 

Proof.  Cla im (a). This follows from (3.1 1) with m = 2k, all li = A = r ~ / 2 ~ ,  
and y = Bad=. The condition y < hlm is satisfied if K, is large. 

Claim (b). By (3,5b), PIN,* < Ae-'''} < e-Af16 < Sj2 provided K ,  is 
large; indeed, 2 3  F3. The chance that 62k or more of these unlikely events 
occur can be bounded above by (3.lb). The bound is 

exp (- S22k/8) < exp (- S22K2 -3 logn) 

because 2k/8 2 2K2-3 logn. 

(5.13) LEMMA. Assume (1.4). Let Ns = N, when N, > Ae-lt2, else let N: = he-'I2, 
Fix S > 0, choose K, and K ,  m in (5.12). Then: 

(a) Almost surely [P'], for all suficiently large n, and all k with 

log, logn + K ,  < k d log,n- 1, 
we have 

I (logNL - logA).)l < 62k logl. 
d k  
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(b) Almost surely [PI], for all suficiently large n, and all k with 
log, logn + K, G k G log, n - K,, 

Proof. Claim (a). We de-Poissonize (5.12a): 

By (5.14) and the Borel-~aitelli lemma, almost surely, for all sufficiently large 
n, for all k with log, logn +K, < k < log, n - 1, 

indeed, the test sum is bounded above by 

Since k < log, n - 1, we have 

~ a 2 ~  ,/- 4 2" log, (nj27. 
Now use (3.12). 

Claim (b). We de-Poissonize (5.12b). Let s E S, iff S E  C, and Ns < Ae-'I2: 
the S is for "small." Write IS,I for the cardinality of Sk. Now Pf (IS,I 2 ~ 3 2 ~ )  
< ~ j n ~ - * . ~ .  There are at most log,n indices k to consider, and 
C ( l ~ ~ , n ) n ~ - ' . ~  < m because C > 2. Thus, almost surely, for all saciently 
large n, for all k with log, logn + K, < k < log,n-K,, ISkl < 62k. 

If s 4 Sk, then N: = N,. Now suppose s E Sk. If N ,  = 0, then logN, = 0 by 
definition. Thus, 

Consequently, 
- 

0 < (logNL-log N,) < IQ,l logrl < 62klogrl. rn 
S E C ~  

(5.15) Remark. Assume (1.4). Fix L > 6. Then almost surely, for all suficiently 
large n, for all k with k < log,n - log, log n - l, and all s E Ck, Ni = N,. 

P r o  of. This follows from (3.5b) and Poissonization: 

P { N , < b - 1 i 2 } < ~ & e - ~ ~ 1 6 < A j n c ,  where C z 2 .  

The test sum for the Borel-Cantelli lemma is bounded above by 
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' 

(5.16) COROLLARY. Assume (1.4). Fix 6 6 0. Then almost surely [PJ, for all 
suficiently large n, for all k with k G log,n-K,, 

P r o  of. For k with log, logn + K, < k G log2 n - K3, use (5.13). For 
k~log, logn+K,,  use (5.11). 

In the early zone and lower midzone, k < log, logn+K; then j ,  is near- 
ly p: see (4.2). In these zones, we can estimate logg,, as follows. 

(5:17) PROPOSITION. Assume (1.1), (1.4), and (5.1). Suppose the n, are r-uniform. 
D@ne T, by (5.3a). Fix S > 0 and K < a. Then almost surely, fop all suficiently 
large n, for all k with 0 6 k 6 log, logn + K, 

llogek,. - nH (p) - T, + 4 Zk log (r1/2~)( < 6 2k log (1x/2~). 

Proof. We estimate logek, by (3.3) in [8], making (5.2a) rigorous by 
adding 0 (2,) = o (2k log (n/2'")). Now 

can be expanded around p by (3.14) in 181. The lead term is nN (p). The linear 
term gives T, after a bit of algebra. The quadratic remainder is negligible 
by (5.9). Finally, 

3 C logN, 
S E C ~  

can be estimated by (5.16). te 

In the upper midzone, Ns may be 0 for some s. The corresponding terms 
contribute 0 to the sum defining Iog~,,,. Even if N ,  > 0, may be 0 or 1. This 
necessitates some additional nuisance terms in the expansion of logek, because 
the approximation to 4 (m, j, y) changes when j = 0 or m. See (3.2) and (5.4) 
in [S]. 

(5.18a) Let N, be the number of SEC, with N, > 0 and X, = 0 or N,. 

(5.18b) Let s E G, iff 0 < X, < N,. 

(5.18~) k t  4 ,  = - f log (n/zk) N, + z,. log Jm. 
All terms in Ek, are negative because 0 < @, < 1. 

(5.19) PROPOSITION. Assume (l.l), (1.4), and (5.1). Suppose the R, are r-uniform. 
Fix 6 > 0 and K c oo. Define K, as in (5.16). Then almost surely [Pf], for all 
suficiently large n, for all k with log, logn +K < k G log, n - K,, 

Proof. This is argued like (5.17). 
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This completes the discussion of the early zone and midzone. The endzone 
goes away by (4.15), and we turn to the high zone. 

The early high zone. The early high zone is defined by the condition 

K ,  defines the right edge of the endzone, but from our perspective, it is a free 
parameter: (4.15) imposed no condition on K,. For present purposes too, K, is 
not really material; we can set K, = 3. We will prove: 

(5.21) PROPOSITION. Assume (1.1), (1.4), and (5.1). Suppose the nk are f-ungorm. 
Fix a Earge positive number L. Then there is a large positive integer K, such that: 
almost surely [P'], for ail suficiently large n, for all k satisfying (5r20), 

Suppose S E  C,. As in (4.17), let SES~, ,  iff N, = 1; likewise, S E M ~ , "  iff 
N, > 1. The S is for "single occupancy," and M for "multiple occupancy"; the 
dependence on n will matter later. Write i E s iff' tj(i) = sj for 1 < j < k; in other 
words, the first k covariates for subject i agree with s. Suppose k is so large that 
g, p: see (5.1). A bit of algebra shows 

(5.22) If SE SASn, then log # (N,, X,, yJ = H ( p ) +  (qi - p )  W ( p )  for the unique 
i E S. 

For O < j < m  and m 2 2 ,  let 

For SEM~,., let A, = #J,(N,, X,, y). By (5.22) and a bit more algebra, 

logen., = nH(p) + T, + C A,. 
~€Mk,n 

To prove (5.21), we must estimate ~s.Mk,nAs. The main technique is 
Poissonization, and here are some preliminaries. Recall from the definition (7) 
in [S] of f-uniformity that y ~f entails y 2 b > 0. The next result is immediate 
from (3.3d) in [8]. 

(5.25) LEMMA. I&,(m, j, y){ < [1+ IH' (p)l] m + llogblfor y E r with lower bound b. 

(5.26) DEFINITION. Fix k. For s E C,, let N,* be Pois(l), where A = n/2k. Given 
(N,*}, let {X?) be independent bin (N:, p). Let A t  = 4, (N:, X,*, y,). Let M* 
be the number of SEC, with N: 2 2. 

Relationships (5.27)-(5.30) are obvious: 

(5.27) M* =x sEck I,*, where I,* is 0 if N: < 2 and I: is 1 if N,* 2 2. The I,* 
are iid. 
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(5.28) 3 ,I2 (1 - 1) < [I - (1 + 1) e - 9  l $ A 2  for all R. 

(5.29) E {M*) = 2k [I -(I + A) e-']. 

(5.30) 1 nI(1  -A) < E (M*)  < inrl for all A. 
(5.31) LEMMA. Fix B with 0 < 8 < 1. Suppose 0 < R < 612. Then: 

(a) P { M *  2 (1+6)nI/2)  < exp(-J2nL/8); 
(b) P (M* 6 (1  -6) nd/2) < exp (-S2nA/16). 

Proof. Claim (a). This is Bernstein's inequality. Theorem (4) in [13], 
coupled with the estimate (5.30) for E(M*], gives the bound 

because 0 < 6 < 1. 
Claim (b) is similar. By (5.30), 

nd/2 3 E { M * )  and E ( M * )  - ( l -  8)  nA/2 2 nA(6 - 4 / 2  > 6nA/4, 

so the ' bound is 

Note. Lemma 3.1 is quite inefficient for- small p, when ,/& would 
- ideally - be replaced by &. Hence the resort to other estimates. 

(5.32) LEMMA. For i = 1,  2, . . . let Ji be independent and distributed as A,*, given 
N,* >, 2. Defrne E, > 0 as in (3.8) of [8]. Suppose 0 < I < 1/2. Then: 

(a) E (4) < - E ~ .  

(b) There is an E > 0 and a2 with 0 < a2 < oo such that: 
(i) for all A with 0 < 1 < 1/2 and all m = l , 2 ,  . . . 

(ii) P {CsEck 2 -EM*) < exp ( - E ~  nI/8 rr2). 

Proof. Claim (a). By (3.8) in [ a ] ,  E{Af ( N,* = m) < -mcm for m 2 2. 
So 

E (4) = E (AX ( N,* 2 2 )  < -2e,P ( N z  = 2 ) / P  {N,* 2 2)  

with the help of (5.28). 
Claim (b). Let = Ilogb(+ {I + ]H ( p ) J  + IH' ( p ) / )  N ,  where N is Pois (1/2) 

conditioned to be 2 or more. By (5.25) and (3.25), 141 is stochastically bounded 
by 5, so Lemma (3.2) applies. Compute rr2 and h ,  according to that lemma. 
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Let E = rnin {hi,  ~ ~ / 2 )  and Q = exp (- z2/2a2). Now 

The first inequality holds because E(Ji"i) -28; the second, by (32): the 
condition y, < h, m holds because E < hi .  This proves (i), and we turn to (ii). 

Conditional on M4 = m, the sum is distributed as x:=, 4, giving the 
bound 

. . E {exp (-E' M*/2a2)) < exp [-E' E ( M * ) / ~ G ~ ]  

by Jensen's inequality. But R < 1/2, so E {M*} > n44 by (5.30). 

Note. In the proof of(b), if you just think of zsE, Af If as the sum of Zk 
terms, (3.2) gives the disappointing bound 

Recall that M , ,  = (s: SE Ck and N, 2 2). 

(5.33) LEMMA. Assume (1.1), (1.41, and (5.1). Suppose the K, are r-ungorm. Fix 
6 with 0 < S < 1/2 and suppose 0 < 1 c 6 / 2  Choose E > 0 as in (5.32b). Then: 

(a) Pr {lMk,J 2- (1 + 6) nA/2} < A& exp (- b2 n2/8); 
(b) P, JIMk,.l < (1 - 6) n1/2) < Afiexp (- G2nA/16); 

(4 PI (C.ruk," A, 2- -& IMk,nl] < AJ;;exp (- &"nU8a2). 
Proof. Claims (a) and (b) follow from (5.31) by de-Poissonization. 

Claim (c) is similar, starting from (5 32). 

(5.34) COROLLARY. Assme (1.1), (1.4), and (5.1). Suppose the x, are r-uniform. 
Suppose k and n satisfy (5.20). Then: 

(a) Pf ( \Mk,J < (1 -6)n3112) < A/nC-0.5 with C = 622K5-4; 
(b) P, (zsE,k,n A, 2 - E IMkcl] < A/nD-O.' with D = &IZY5- '/sf. 

Proof of Proposi t ion  (5.21). Fix 6 < 1/2 in (5.34a);-we require 
2-K4 < 6/2, so A < 6/2 in (5.31). Choose E as in (5.32b). Choose K, so large that 
C > 2 and D > 2 in (5.34). There are at most log2n theories in the zone. So, 
almost surely, for all ~ ~ c i e n t l y  large n, for all k satisfying (5.20), 

lMk,,l > (1 -6) nA/2 > 2K5 -2  logn, 

A, < - E IM,,"l < - ~ 2 ~ ~ - ~  10gn. BI 

S E M ~ , ~  

Remark. We have assumed in (5.1) that the mean of y, equals p for SE C, 
and k > n,. Suppose that y, is constant, say at y E T with 1 By (0) dB = p. Then 
(A,*:  SE Mk,n) are iid for each k, with E {A: )  = E {#, ( N , ,  X, 7)); N, is Pois (A) 
conditioned to be 2 or more; given N ,  = m, X is bin (m, p); see (5.23) and (5.26). 
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The argument for (5.33) shows that 

This completes our discussion of the early high zone. 

The middle high zone. The middle high zone is. the most delicate of ad the 
zones. It is defined by the condition 

(5.35) 2 log, n -log, logn - K, G k G 21og2n-log2 logn +K,, 
. . 

where K, and K, are large positive integers: K, is needed to control the early 
high zone, and K, will control the late high zone. 

(5.36) .PROPOSITION. Assume (1.1), (1.41, and (5.1). Suppose the Q are r-uniform. 
Then there is a small positive so (depending an K5 and K,) such that: almost 
surely, for all suficiently large n, for all k satisfying (5.35), , . 

log qk,, < nH (p) + T, - E ,  logn. 

At stage n of the trial, we have data on n subjects; let D,,, be the set of 
S E C ~  with N,  = 2; the D is for "doubly occupied." The main difficulty is 
showing that IDk,[ w n11/2. The dependence on n matters, and is displayed in 
the notation. Since nl is of order logn, exponential bounds must be supplemen- 
ted by passing to geometric subsequences, and the 6 for de-Poissonization 
cannot be afforded. We solve the latter problem first. 

(5.37) LEMMA. At stage a, let DA,, be the set of s E C,  with N ,  = 2, and let Mk,n be 
the set of S E C ,  with N ,  2 2. Fix 6 with 0 < 6 < 1. Fix positive integers K, 
and K,. Then almost surely, for all suficiently large n, for all k satisfying (5.33, 

(a) (1 -8) nA/2 < IMk,,l < (1 + 6) 4 2 ,  
(b) (1 - 6) nh/2 < IDkn( c (1 + 6) nA/2. 

Note. A depends on k and n, and nL = n2/2k; see (4.1). 

P r o of. C 1 aim (a). Fix r slightly bigger than 1 and consider the sequence 
9. For each k, IMk,,,J increases with n. As n increases from 9 to # + I ,  nh 
increases from r2j/2k to r2j+2/2k, i.e., only by a factor of r2. Thus, it suffices to 
prove claim (a) for n of the form ri. Recall S, from (3.22). By (3.20), lMk,?l = S, 
or S,, - 1; and it is enough to prove the claim for S, and n of the form rJ.  That 
is immediate from the Borel-Cantelli lemma and (3.24) with n = 9 and 
b = 2k. 

Claim (b) follows from (a), because IDk,,I = IMk,"I or lMk,nI-l by (3.20). 

Recall the function 4, (m, j, y) from (5.23). Let X be the class of random 
variables distributed as $,(2, X, y), where X is bin(2, p) and y ~ r .  If YE%, 
then Y is uniformly bounded by (5.251, and E ( Y )  < - 2 ~ ,  < 0 by (3.8) in [a]. 
As (3.2) shows, 
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(5.38) LEMMA. There are positive constants h ,  altd a2, depending only on X,  such 
that: if Y;- E if are independeut for i = I ,  . . . , m and 0 < y < h, my then 

Recall A,, as defined for (5.24). Given Dk,", {As: s  ED^,,) are independent; 
and A, E X .  

(5.39) LEMMA. Define e, as in (3.8) of [8]; hl and a2 as in (5.38). Let 
0 < E < minCh,, 4. Then almost surely, for all sutciently large n, for all n and 
k satigyilig (5.351, 

Proof.  First, consider only n of the form 2'. By (5.38), 

Then 

E I ~ X P  (-&' IDk,n1/2f12)) < exp (- 8' E {IDk,n1}/2a2) 
and 

E (IDk,,l) w 2kd2/2 = r1'/2~+ > ( 1 0 ~ n ) / 2 ~ ~ + '  > j / 2K6C2 .  

The Borel-Cantelli lemma shows that almost surely, for all sufliciently large 
n of the form 21 for all k satisfying (5.35), {A , :  s E < - E IDk,J. Indeed, 
the test sum is bounded by 

(1 + K, + K,) x exp (- C,j) < a, where C ,  = c2/2"" + n2. 
j 

Finally, use (5.37) to bound JDk,J, noting that nl 2- ( l0gn)2~~.  

We must now interpolate between 2j and 2j+l; the argument is only 
sketched. Fix k. Then ( A , :  s E DkPl} is below - E (10gn) /2~~+~,  say, when 
n = 2j. As n increases from 2j to 2Jf I, 2j additional balls are dropped at 
random into the 2k boxes, perturbing the sum. We claim that almost surely, for 
all sufficiently large n, the perturbations will amount at most to ~ ( l o g n ) / 2 ~ ~ + ~ ,  
so we have x { A , :  S E  Dk,,} < -~ ( logn) /2~~ '  

for all n and k satisfying (5.35), with 2' < n < 2j+l, provided j is suficiently 
large. 

There are four kinds of perturbations: 
(i) an additional doubly-occupied box is created, adding an independent 

term A, E X ;  
(ii) a triply-occupied box may be created; 
(iii) more than one triply-occupied boxes may be created; 
(iv) a box may become more than triply occupied. 
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Perturbations {iii) and (iv) do not occur for large n, by (3.20), and need not 
be considered further. Perturbation (ii) changes the sum by a uniformly 
bounded amount; see (5.25). 

We must now bound the effect of perturbations of type (i), showing they 
amount to less than C,log,n = Coj, where C ,  = ~ / 2 ~ ~ + ~ ;  this leaves more 
than enough to absorb perturbations of type (ii). Now, dropping in 2j balls 
increases DArn from (essentially) 22j/2k+1 to 2Zj'2/2k+1, by (5.37); i.e., from cj to 
4cj. But, adding this number of A's - or any other - .crosses the C,j  
boundary with probability at most ej, by (3.16). m 
. . 

P r  o of of Proposi t ion  (5.36). Use (5.241, (3.20), and (5.39). 

Re rn a r k. We have assumed in (5.1) that the mean of y, equals p for s E C, 
and k > n, . Suppose that y, is constant, say at y E T with J 0y (0) dB = p. Then 
{A,: S E D ~ , . }  are iid with E (A,} = E (4, (2, X, y) } ,  X being bin (2, p); see (5.23). 
The argument for (5.39), pushed a little harder, shows that 

the idea is to split along the geometric sequence r" with r just bigger than 1. 

This completes our discussion of the middle high zone. 

The late high zone. The late high zone is defined by the condition 

(5.41) 2log,n -log2 logn + K, G k < 3.1 log, n. 

(5.42) PROPOSITION. Assume (1.1), (1.4), and (5.1). Suppose the x, are r-uniform. 
Fix E > 0. Then there is a large positive integer K, (depending on E )  such that: 
almost surely, for all suficiently large n, for all k satisfying (5.411, 

Proof. By (5.24), it is enough to bound {A,: s E M,,}. But (3.20) shows 
that M,,, (the set of multiply-occupied cells) differs from Dk,, (the set 
of doubly-occupied cells) by at most one triply-occupied cell. So it is 
enough to bound C {A,: S E D ~ , ~ } ,  and hence IDk,J by (5.25). For each n, ID,,I 
decreases as k increases, so* it is enough to consider k just larger than 
2log,n -log2 logn + K,. Now (5.37) shows that almost surely, for all sufficient- 
ly large n, 

IDk,,( < nl = n2/2k < 2-K6 logn. rn 

The very late high zone. The very late high zone is defined by the condition 
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(5.44) PROPOSITION. Assume (1.1), (1.4), and (5.1). Suppose the nk are r-uniform. 
Then almost surely, for all suficienely large n, for all k 3 3.110g2n, 

Proof. This is immediate from (3.21) and (5.24). 1 

Proof of Theorem (1.6). Claim (a). By (5.171, with 6, any small 
positive number of our choice, 

(5.45) - .  G!, > w, exp [nW(p) + T, -4 2' log (n/2') - 5,2' log (n/2')]. 

The random term T, was defined by (5.34, and is of order d- or less. 
We must now eliminate theories in the endzone and high zone. 

Theories in the endzone (log,n - #, to log, n + K,) are negligible relative 
to theory I, by (4.15). The S there depends on K ,  and K,; but no matter what 
that B is, the endzone has entropy rate H ( p ) - 6  < H ( p ) .  

The early high zone is defined by (5.20). For such theories, by (5.211, 

< exp 
log2 

by using the condition of the theorem - with log,n = (logn)/log2 in place 
of n. (The sum of the high-zone weights starts at log2n.) In total, the early high 
zone has neghgible posterior weight, relative to theory I, provided 

But L can be made large by choosing K, large. 
We combine the middle high zone, late high zone and very late high zone, 

i.e., we consider all theories 

The posterior weight in this combined zone is by (5.361, (5.42), and (5.44) at 
most 

Now 
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Again, this zone is negligible relative to theory I if we choose 

260 2' 
& + a 1 2 1 < -  . 

log 2 

The 6 ,  in (5.45) is the 6 of (5.171, and is at our disposition. The E in (5.46) 
comes from (5.42). To make it small, we have to choose K, large. Choosing 
K, and K, large makes the E, in (5.36) small. However, the value of E, does 
not matter. 

The balance of the argument for claim (a) is omitted, being very similar to 
the argument for Theorem (1.5) in this paper, or Theorems 8 and 9 in [a]. 
Basically, posterior mass shifts into the early zone or midzone, where there are 
lots of observations per parameter. 

Claim (b). Consider only n with 

We combine theories in the late and very late high zones, so 

By (5.42) and (5.441, the total posterior weight in these two zones is at least 

E is a small positive number, at our disposition; 6, is fixed by the conditions of 
the theorem. Of course, 

By comparison, the total posterior weight in the early zone and midzone 
(k < log,n-K,) is by (5.17) and (5.19) at most 

log211 - K3 
(5.50) (w, - exp [nH (p) + T, - $ 2k log ( F J / ~ ~ )  + 6 ,  2k log (n/lk)]) 

k = l  

m 

< ( w,) exp (nH ( p) + T, - 2' log (42') + 6,2' log (42')) .  
k=I  

6 ,  is a small positive number, at our disposition. The term Ei,n in (5.19) was 
dropped, being negative; see (5.18~). The displayed inequality holds by (5.17) 
in 181- 

Compare (5.48) and (5.50): the early zone and midzone are negligible 
relative to the late and very late high zones, provided 6,2'+ E c 26,2'/log2. It 
is the minor bit of algebra in (5.47) and (5.49) that seems to determine the 
critical rate of decay for the w's in Theorem (1.6). 

The endzone goes away, as usual; the early high zone can also be 
eliminated. We do not know (or need to know) how much posterior mass is in 
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the middle high zone. Informally, posterior weight shifts so far out that there 
are only O(logn/n) observations per parameter. The argument can be com- 
pleted as in (5.18) in [a]. 
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