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Abstract. The defiition and sufficiency of the likelihood map are 
discussed in detail. It is shown that the likelihood map is sdlicient 
without any restriction on the family of probability measures and that 
it is minimal sufficient subject to weak conditions. The paper provides 
a general foundation for the use of the likelihood function and the 
Iikelihood function map in statistical inference. 

1. INTRODUCTION 

This paper gives the formal definition of likelihood map (see [5], Chap- 
ter 8 in [14], and Chapter 4 in [15]) and shows how this definition avoids 
certain measure theoretic difficulties met with other methods relating the 
concept of likelihood with that of minimal sufficiency. 

Fisher [5]-[8] informally defines the generalized likelihood function 
statistic as L(8, x) = c(x) f,(x), where &(x) is either a density or a probability 
function, and, for each x, c is an arbitrary constant independent of the 
parameter 8. Fisher also relates L(8, x) to his concepts of sufficiency and of 
exhaustive statistic. Several authors who formalized and extended Fisher's 
results (Neyman [23], Halmos and Savage [17], Lehmann and Scheffi [21], 
Bahadur [I]) do not use the term likelihood function presumably because the 
arbitrary constant c makes it difficult to think of L(6, x) as a function of 8 for 
a fixed x; rather, they use the Radon-Nikodym derivative q(x, 6) with respect 
to a finite dominating measure as a key ingredient. 

Barndorff-Nielsen et al. [2] also use q(x, 0) rather than L(0, x), although 
they do use the term likelihood function in reference to q(x, 8); and they provide 
a striking example of the type of measure theoretic difficulty implicit in the 
standard approach. In their example, there exists a real-valued minimal 
sufficient statistic T for a real-valued parameter, but one version of the q(x, 8) 
induces a much finer partition of the sample space than that induced by T. 
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Their partial remedy for this daculty includes a continuity assumption for 
q ( x ,  8) with respect to 0. 

The likelihood map, unlike q ( x ,  8), is uniquely defined, and it pro- 
vides a formalization of L(0, x) and its properties. The equivalence class 
{cf,(x): c > 01 is called the likelihood function corresponding to x ,  where &(x) 
is an almost everywhere uniquely defined Radon-Nikodym derivative called 
probability density, to be defined in Section 2. The likelihood map is the function 
X H  ( c f , (x ) :  c > 0). The measurability of the likelihood map is established in 
Section 3, and its suficiency and minimal sufficiency are proved in Section 4. 
Section 5 records some concluding remarks. 

Let (Po: BEQ} be a family of probability measures on (X, B) dominated 
by a a-finite measure p, and let, for each 8 E 52, f , (x)  be the Radon-Nikodym 
derivative of P, with respect to p. The equivalence class (cf,(x): c > 0) is called 
the likelihood function corresponding to x; two functions of 0 are thus 
equivalent if one is a positive multiple of the other. The likelihood map is then 
defined as the function from X to the space R" which is the set of real-valued 
functions on i-2 and contains all the possible likelihood functions. The term 
likelihood was introduced by Fisher [S]. The definition of the likelihood map 
including its minimal suficiency is given in [9], ClO], [14], [IS], but is implicit 
in Is]. 

In typical cases, the probability density function corresponding to 
a probability measure is not uniquely defined. As a result the likelihood 
function need not be unique and the likelihood map may not be uniquely 
defined nor have nice properties. In view of this ambiguity one questions which 
version of the likelihood map to use among the many possible versions 
available. Section 2.1 addresses this important issue. Consider a Euclidean 
space and let P be a probability measure absolutely continuous with respect to 
Lebesgue measure m. Since P may be regarded as a mass distribution, it is 
natural to consider 

for all-sequences (S,] of closed spheres of radius r ,  centered at x  with r ,  + 0 as 
n + a, as the mass density at x; for further details concerning existence and 
uniqueness, see, e-g., [3], Chapter 6. Naderi [22] generalized this concept to the 
case of metric spaces and developed a special choice of the Radon-Nikodyrn 
derivative to be used as the probability density; the results are summarized in 
Section 2.1; this covers Euclidean spaces and related manifolds, but instances 
in more general contexts need further investigation. In the remainder of the 
paper, we assume that the probability densities are uniquely determined. 
Although this assumption is required for developing the arguments used 
later in the paper, the way the uniqueness is achieved plays no role in the 
arguments. 
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In Section 2.2 we define more formally the likelihood map, and then in 
Section 3 we show that it is measurable. The term sufficiency was introduced by 
Fisher [6]. In order to check the sufficiency of statistics, various forms of what 
has come to be known as the factorization theorem were established by Fisher 
[ 5 ] ,  [4], Neyman [23], and Halmos and Savage [17]. Sufficiency is defined in 
Section 4.1 and the likelihood map without conditions is shown (Theorem 2) to 
be sufficient in Section 4.2. 

The concept of sufficiency leads naturalIy to that of minimal sufficiency, 
the theory of which was first developed rigorously by Lehmann and Scheffk 
[21] and Dynkin [4]. Pitcher [24] constructed a family of probability measures 
for which a minimal sufficient statistic did not exist. Landers and Rogge [I91 
showed that even for a dominated family of probability measures a minimal 
sufficient statistic need not exist. Minimal suMiciency is defined in Section 4.2 
and the likelihood map is shown (Theorem 3) under weak conditions to be 
minimal sufficient. 

Barndorff-Nielsen et al. [2] show that any statistic Tgenerating the same 
partition of the sample space as the likelihood function is minimal sufficient, in 
the Bahadur [I] sense. In the present generalities, Theorem 4 in Section 4.3 
shows that this is also the case under similar regularity conditions. Moreover, 
we note that Theorem 4 is a direct consequence of Theorem 3. It is interesting 
to note that Theorem 3 covers cases such as the uniform (0, 0) which Theorem 4 
does not. Finally, we note that it is often conceptually useful to approach the 
notion of sufficiency using what could be termed measurable partitions [26], 
E22]. In our context this will simply refer to a partition of the relevant 
measurable space, the elements of which are all measurable (i.e. elements of B* 
as defined in Section 2.1). 

2. DEFINITIONS 

2.1. Definition of probability densities. Let X be a metric space and let B be 
the smallest a-field of subsets of X that contain the open subsets of X. Let p be 
a a-finite measure on B and let p be outer regular in the sense that, for each 
EEB, p(E) = inf{p(G): G 3 E, G open}. Further, let (X, B*, p) be the com- 
pletion of (X, B, p) and let P be a probability measure on B* absolutely 
continuous with respect to p. 

A sequence {En} of sets of B* is said to converge regularly to X E X  if 
there is a number a > 0 and a sequence (S,} of dosed spheres of radius r, 
such that X E  E, c S,, p(E,) 2 &p(S,), for all n 2 1, and r, + 0 as n + m. 
A class V c  B* is said to cover a set E c X in the sense of Vitali if for every 
U E  E there is a sequence of sets in V that converges regularly to a. A class 
V c  B* is said to have the Vitali covering property Cu] if, for any set E c X 
and class V, c Vthat covers E in the sense of Vitali, there is a sequence (En} 
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of disjoint sets in Vo satisfying 
4) 

p ( ~ -  u E $ = O .  
n = l  

The class of closed sets in the Lebesgue completion of the Bore1 subsets of Rk 
has the Vitali covering property [m] with respect to Lebesgue measure m. For 
a proof, see [16] or [25]. 

Let V c  B* be a class that has the Vitali covering property [ p ] .  Let 
P(E,,)/p(E,) = 0 if-&(En) = 0, and define 

where the expression in braces denotes the limit superior (limit inferior) for 
a sequence {En]  of sets in V converging regularly to x, and the supremum 
(infimum) is taken among all sequences of sets in Vconverging regularly to x. 
The probability measure P is said to be differentiable at x with respect to Vand 
P if 

The common value is called the deriuatiue of P at x with respect to Vand p and 
is denoted by D(P, p, V)(x). The following results hold: 

(i) D(P ,  p, V)(x) exists a.e. [p ] .  
(ii) Let f ( x )  = D ( P ,  p,  V)(x)  if P is differentiable at x with respect to Vand 

p, and let f ( x )  = 0 otherwise; then f  is B*-measurable and P(E) = jEf(x)dp(x)  
for every EEB*. 

For a detailed proof see, e.g., [22]. 
Now let m be Lebesgue measure. As the probability measure P may be 

regarded as a mass distribution, it is natural to consider 

for all sequences {S,} of closed spheres of radius rn centered at x with r, -, 0 (as 
n -, a), and view it as the mass density at x. By the above results, f(x) exists 
a.e. [m]. In fact, as the class of closed sets has the Vitali covering [m], if 

for all sequences (En)  of closed sets converging regularly to x, then, by the 
above results, f ( x )  exists a.e. [m]. 

This motivates us to give a formal definition of probability density in 
a metric space X; in particular, this avoids non-uniqueness. Let F be the class 
of all closed sets in B*, and assume that F has the Vitali covering property [A; 
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then D(P, p, F) exists a.e. [b]. We put f (x) = D(P, p, F ) ( x )  if defined, and 
f (x) = 0 otherwise, and we infer that f is measurable and PIE) = j, f (x)dp(x)  
for every E €3'. This f is said to be the probability density of P with respect 
to p. Note that a local limiting operation has been used to define a unique 
determination of the Radon-Nikodym derivative of P with respect to p; this is 
called the probability density of P with respect to p. Under the usual definition 
of probability density, any Radon-Nikodym derivative of P with respect to p is 
a probability density of P with respect to p and there is non-uniqueness quite 
generally with this usual definition. 

2.2. Definition of the likelihood map. Let Rq be the class of all functions 
from B to R+ = LO, m), and let Rg be defined by 

where R(g) = {cg:  c > 0). Elements of Rf: are rays from the origin in R y .  Note 
that, for every a > 0, R(ag) = R(g). For each XEX, &(x) is in Ry ; thus R(S,(x)) 
is a ray in R t .  It is called the likelihood function corresponding to x or, simply, 
the likelihood function. The likelihood map is a function from X to R$ which 
maps a point x in X to the likelihood function corresponding to x. As indicated 
in the Introduction we are assuming that there is b well-defined determination 
of the probability densities; correspondingly, the likelihood map is we11 
defined. 

3. MEASURABILITY OF THE LIKELMOOD MAP 

Let L be the likelihood map from X to R:, and let R:, be the class of all 
subsets E of R: with L-'(E) E B*. Then L is measurable B*/R:,. The following 
theorem shows that R t ,  contains the class of all sets of the form 

C = (R(g): g E A) ,  

called measurable cone cylinder sets with base, A, where A is a measurable 
cylinder whose base lies in the class of all finite-dimensional open, closed-open, 
and open-closed intervals. 

THEOREM 1. (i) Let T be a transformation on the class of measurable 
cylinders defined by , 

T(A)  = 0 (ca: a€  A ) ,  
c > O  

and let A, be the class of all measurable cylinders whose bases lie in the class of 
all finite-dimensional open, closed-open, and open-closed rectangles. If A E  A*, 
then T(A)€a(A,),  where a(A,) is the minimal a-field over A,. 

(ii) Let L be the likelihood map $-om X to Rg = {R(g): g~ R t ) .  If C is 
a measurable cone cylinder with a base in A,, then L-'(C)EB*. 

20 - PAMS 15 
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Proof. Let A = {g E R y  : (g,, , . . . , goJ E I )  be a measurable cylinder with 
base I of the form I  = I, x . . . x I,, where I, = (a,, pi ] ,  0 < ai < Pi < co, 
i = 1, ... , k. Further, let I, = r I  = rI, x . . . x rI,  for some rational number 
r > 0, and let A,? be a measurable cylinder with base I,. Then T (A) = Up AIp. 
For let XETIA). Then x = cog0 for some co > 0 and g0€A. Hence 

O, I - (ai, #?J, i = 1 Sef i -  , . . . , k, and thus g:,lBi G 1 and &/ai > 1, i = 1, . . . , k, 
where gt</bi = 0 for pi = a, gjJai = co for ai = 0. Let g:/cti = 
i = 1, . . . , k, where E: E (0, co], and define E = min(si, i = 1, . . . , k). Then 

For let y ~ [ l ,  I+&). Then, for each i, 1 < i < k, we have gE/#?i < 1 < < I + &  
< 1 + ei = ggt/ai. Hence 

There exists a rational number r, such that c, < ro < c,(l +E). Define 
a non-negative function h on CJ by hod = c,g~,lro, i = 1, .. . , k. Since 
rO/cO E [I, 1 + E), it follows that 

k 

~ O / C O  E n C di/Bi, gii/mi). 
i= l 

Thus h,, E (a,, Pi], i = 1, . . . , k. Therefore 

Hence x E AIro, and thus x E U, Air. Now let x E U, A ~ ~ .  Then x E A," for some 
rational number q > 0. Hence (x,,, . . . , x, , )~  Iq  = qi, and thus 
xei €qIi = q(a,, Pi], i = 1, . . . , k. Therefore ui < x,Jq 6 Pi, i = 1, . . . , k. Define 
a non-negative function y on D by y = x/q. Since u, < yOi < pi, i = 1, . . . , k, it 
follows that (ye,, . . . , yo,) E I. Hence y E A, and thus x = qy E T (A). Therefore 
T(A) = U p  A,=. Then, since A,? is in A, and A, generates%(A,), the preceding 
implies that T(A) E o(A,). 

A completely analogous argument shows that, for every measurable cylin- 
der A E A* with a base in the class of a11 finite-dimensional closed-open rectangles 
or with a base in the class of all finite-dimensional open rectangles, T(A) E a (A,). 

To prove (ii), let L, be a function from X to Ry which maps every x in X 
intof,(x) in RR,, and let L, be a function from RT to R: which maps every g in 
R? into R(g) in R:. Further, let L be the likelihood map. Then it is obvious 
that L= L,oL,. If A = {g: (g,,, ..., ~, , )EI)  is a measurable cylinder in A,, 
then the set 
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lies in B*, since for each 6 ,  1 < i < k, f,,(x) is B4-measurable. Since A, 
generates cr(A,), it follows that the function L, is measurable B*/a(A,). 
Further, if C = {R(g):  A)  is a measurable cone cylinder with base A E  A,, 
then the set 

Lii(C) = (cg: c > 0, ~ E A )  = { U  cg: ~ E A )  
C W O  

lies in a(A,) by (i). Since L-'(C) = L;'(Ljl(C)), it fdows that L-'(C) E B*. The 
proof of (ii) is complete. 

4 SUFFICIENCY 

4.8. Backgroussd. The term slggiciency was introduced by Fisher [6]. The 
factorization theorem was proved in various forms by Fisher [6], Neyman 
[23], and Halmos and Savage [I73 Following Halmos and Savage, we define 
measurable function s(x) to be sufficient if for each E in B* there is 
a determination of the conditional probability P,(Elt) which is Sfree. 

4.2. Snffnciemcy of the likelihood map. We now proceed to prove that the 
likelihood map from (X, B*) to (R:, Rz,) is sufficient. 

THEOREM 2. The likelihood map is suficient for P, = {P,: 0 E a). 
P r o  of. Since the family P, of probability measures is dominated by p, 

there is a countable subfamily PO, = {P,: 13~8,) of P ,  which is equivalent to 
P ,  (see [17]). Let Q, = {8,8) c a, and define a probability measure P on B8 by 

Let f(x) be the probability density of P with respect to p. Then 

m 

f (x) = P,: (x)/2" for every x E N i  , 
.. .. . .. 

n = l  

where N, is a set of p-measure zero. Let N o  = (x: f (x) = 0). Then 

Since P(No) = 0, and P is equivalent to P,, it follows that P,(N,) = 0 for every 
0 ~ 8 .  Let N = N,uN,. Then, since p dominates P ,  and N, is a null set for P,, 
N is a null set for P,. For each BEQ, define the function g,(t) on R: by 
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Let a ~ L - l ( t ) n N '  and note that L-'(t)nNc is the set of all points x in Nc 
for which there is a function h(x,  a )  # 0, independent of 0, such that &(x) 
= h(x ,  a)f , (a)  for all 0 E Q. Hence, for every x E NcnL- l (t) ,  

and thus f,(x)/ f(x) =f,(a)/ f (a). Therefore the function g,(t) is well defined. The 
function ge(t) is Rz,-measurable. For let B E u ( R  +), where a(R+) is the minimal 
LT-field over R, ,  and define the function h, on N" by h,(x) = & ( X I /  f (x). Then 
g , o L  = he, and LU1(gr1(B))  = hgl(B). Since h, is B*-measurable, it follows 
that h i  l (B) E B*. Hence L-I (g, '(3)) E B*, and thus g i  ' (3)  E Rt,.  Therefore 
g,(t) is R:,-measurable. Moreover, f,() = g,(L(x)) f ( x )  for any x E NC. Hence 
f,(x) = g , ( ~ ( x ) )  f (x) a.e. [p], and thus L is sufficient for P ,  by the factorization 
theorem (see, e.g., /20]). 

43. M i h a !  sufficiency. The theory of minimal sufficiency was initiated as 
exhaustiveness by Fisher [6] and followed later by Lehmann and Scheffi [21] 
and Dynkin [4]. A sufficient statistic s(x) is said to be minimal suflcient if it is 
a function of any other sufficient statistics a.e. (with respect to (P,:  8 E a)). We 
now examine the minimal sufficiency of the likelihood map: 

THEOREM 3.  Assume that 52, is a countable subset of 4 and that for each 
0 € 5 2  there is a sequence (0,) of points in (Q,) satisfying one of the following two 
equivalent conditions: 

(i) fe, + fe in p-measure, 
(ii) fen +fe in L1. 
Then the likelihood map L from X to R? is minimal suficient for 

P ,  = (P,:  0 E a), and the partition of X induced by L is measurable. 

Let Po denote the class of probability measures indexed by a,. The proof 
can be divided into several steps: L is minimal sufficient for Po; L is sufficient 
for P; every null set for Po is a null set for P; L is minimal sufficient for P; the 
partition of X induced by L is measurable. The proof follows the pattern used 
by Lehmann and Scheffk [21] in their construction of the minimal sufficient 
statistic for a dominated family of probability measures. For details in the 
present notation see the more genera1 framework by Naderi 1221. 

If X is a Euclidean space, then the class of a11 real-valued integrable 
functions on X is a separable metric space with distance defined by d ( g ,  h) 
= J, Ig - hl dp(x).  Since every subspace of a separable metric space is separable, 
the class .of probability densities is a separable metric space. Thus, in this case, 
the assumptions of Theorem 3 are satisfied. The next result is a direct 
consequence of Theorem 3. The assumptions, however, are stronger than those 
of Theorem 3 and do not cover, for example, the uniform (0, O), OEO. 
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THEOREM 4. Let Q be a separable metric space, and let, lor each x E X,f , (x)  
be continuous in 0. Then the likelihood rnap L from X to R:, where Qi is any 
countable dense subset of 9, is minimal suficient for P ,  and the partition of 
X indumd by L is measurable. 

Proof. For each 8~ a, there is a sequence (0,) of points in cP which 
converges to 8. Since S, is continuous in 8, it follows that An(x) +&(XI for all 
x E X. Hence f," +So a.e., and thus .fOn jf, in p-measure, and the results follow 
from Theorem 3. 

. . 
5. CONCLUDING REMARKS 

The concept of sufficiency has played a central role in the area of statistical 
inference. There has, unfortunately, been some confusion surrounding the 
existence of a best or minimal sufficient statistic. In this article, we have 
provided results which show the existence of such a statistic under very broad 
conditions. In particular, we give a rigorous foundation connecting sufficiency 
with the notion of the likelihood map. The key element here is an appropriate 
definition of likelihood based on a precise definition of a probability density. 
Finally, we note that since our results are derived in the context of general 
metric spaces, they may be applied to many problems arising in the study of 
inference for stochastic processes. 

We express our appreciation to many readers for helpful comments on 
two earlier drafts. Partial support by the Natural Sciences and Engineering 
Research Council of Canada is gratefully acknowledged. 
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