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Abstract. We prove Edgeworth expansions for degenerate von 
Mises statistics like the Beran, Watson, and Cram&-von Mises 
goodness-of-fit statistics. Furthermore, we show that the bootstrap 
approximation works up to an error of order O(N-''2) and that 
bootstrap based confidence regions attain a prescribed confidence level 
up to the order O(N-'1. 

. 

I. Introduction, main results, md same examples. Let {Q, d,  P) be 
a probability space, and let X: (a, d )  + {A, 9) be a random variable. The 
distribution function of X will be denoted by F. Furthermore, we shall denote 
by XI, X,, ... independent copies of X. 

In this paper we consider various approximations for the (degenerate) von 
Mises statistic 

N N 

V, 4 N - I  H(Xj, X&, 
j=l k = l  

where H: A x A + R is a symmetric measurable function which is assumed to 
be degenerate with respect to P, that is 

Furthermore, we assume 

EIH(X, X)I+EH2(Xl, X,) c +m. 

We use the notation 

Our goai is to investigate the following three closely related problems for 
the statistic VN: 
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1) A bootstrap approximation; 
2) The bootstrap based coverage probabilities; 
3) Edgeworth expansions. 
The bootstrap version of VN we use in this paper is defined (see [17]) as 

follows: 
m n  

where E* denotes the expectation with respect to the empirical distribution 
function F* given the sample XI, . . . , X,. 

We shall use the notation 

The limit distribution of V,, say P, was described by von Mises [43], and 
it is the distribution of the random variable 

where A,, A,, .. . , IR,I 2 lR,l 2 .. . are eigenvalues of the self-adjoint Hilbert- 
-Schmidt operator S: L,(A, F) -+ L,(A, F) defined by 

Here GI, G,, . . . are independent copies of a Gaussian random variable G with 
mean 0 and variance 1. See [31], [47], [49], and [I91 for more details on this 
representation. 

In the same way we may describe the distribution function P z  of the 
random variable V z  ( A  the weak limit, as n + + m, of the statistic V,,* when 
the random variables XI, . . ., X, are fixed). 

If it is not stated otherwise, we shall always assume that the following 
holds : 

The operator S has an infinite number of non-zero eigenvalues ,Ij, and the 
random variables H(X, X )  and H(Xl, X,) have moments of all orders. 

In the sequel we use (( . ( I ,  to denote the sup-norm. 

THEOREM 1.1. We have 

For the general theory of the bootstrap we refer to the papers [20], [13], 
[21], [23, [38], and the monograph [33]. 

Previous results on the CLT for degenerate von Mises statistics (which will 
be discussed below) show that the rate of convergence in the CLT for these 
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statistics might be of order O(N-l+? for any E > 0, and even of order O(Nbl) 
provided some smoothness conditions on the kernel H and the distribution 
function P are imposed. These facts are the main ingredients in the proof of the 
following theorem on the bootstrap based confidence regions; see [32], [8] ,  
and [33] on this topic. In the theorem below we use PE-'(a) to denote the a-th 
quantile of the function P$. 

THEOREM 1.2. For each a ~ ( O , l )  and E > 0 

(1 -2) P{V, 3 P$-~.(u)) = 1 - a + 0 ( ~ - ~ + 3 ,  N +  +a. 

At this point a natural question arises: Does Theorem 1.2 hold with E = 07 
An inspectation of the proof of Theorem 1.2 shows that (1.2) holds with E = 0 if 
the distribution functions P, and P;E have Edgeworth expansions of order 
O(N-l) and O,(N-l-') for some S > 0, respectively. In order to prove such 
a result we need to require more than moment conditions and assumptions on 
the limit distribution. As an example reflecting this fact we formulate the 
following result: 

There exist in$nitely diferentiable and rapidly decreasing functions 
a , ,  . . . , a, such that the asymptotic expansion 

holds with a remainder term R satisfying, for any E > 0 and some constant c 2 0, 

C 
(1.4) sup lxImlR(x)l < + c sup 

XER O S g s r n  N1-ESltlsNk+ I l l ( ~ ) " ~ e x P ~ i t ~ ~ ~ d t  

for all N E N .  

This result appeared in slightly different forms in [24], [26] ,  and [2q; see 
also [7 ]  and the survey paper 161. 

Thus our further task is to investigate which assumptions on H and the 
distribution of the X yield bounds like 

sup I ( d / d t ) " E e ~ p ( i t V ~ ) I = O ( N - ~ ) ,  N-r+oo,  - 
Itl ae(N) 

with some function e :  N + [0, + oo) such that e ( N )  + + oo for N + + oo, and 
for every L 2 0. 

We assume that A = Rd, and that the random variable X has a non-zero 
absolutely continuous component. This means that for some a ~ ( 0 ,  11 the 
distribution function F of the X allows the representation 

where F, and F1 are distribution functions, and F, is absolutely continuous. 
We use Y, Y', . . . , Y, to denote i.i.d. Rd-valued random variables having the 
distribution function F,. 
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We use 9f (x) to denote the gradient of a function f at a point a E Rd. Also, 
if 4: is a random variable, let denote a symmetrization of 5. 

THEOREM 1.3. Let rn E N u { O )  a d  

k t  B and C be some cubes in the space Rd such that 

Let Z,, Z,, . . . be independent Rd-valued random variables having the distribution 
function F, ( . I  B). Put 

Furthermore, assume that for every s > 0 there exist numbers AER, K > 0, and 
v > 0 such that A, K ,  v < E and such that for every D 2 O the following three 
conditions hold: 

(1.9) sup NDP(sup IlgSN(x)ll 3 l /N")  < + a; 
NeN TEC 

(1.10) SUP NDP (SUP SUP I19SN(x)-9SN(y) 1 1  2 1/(2dNK)) < + KI 7 
NGN j GMJ 

where Cj, j = 1, . . ., [NVtdld are the subcubes of the cube C such that Vol(C,) 
= Vol(Cj) for all j = 1,  . . . , [NvJdjd, and ( ( . ( I  denotes the Euclidean norm in the 
space Rd. ?hen, for every E > 0 and L 2 0, 

(1.1 1 )  sup I(d/dt)"E exp {itVN)l = O(N-L) ,  N + + m . 
t:lrl3 N= 

Some simple corollaries to Theorem 1.3 are given in Section 5 (see 
Corollaries 5.1-5.3 below). Let us note that in some special cases the validity of 
the bound (1.11) was investigated by Sadikova [48], Yurinskii [55], van Zwet 
[58],  CsorgCi and Stach6 [18], Giitze 1263, Zitikis [56], 1571, Helmers [35], 
Bentkus et al. [?I, etc. See also the survey paper by Bentkus et al. [6]. 

We shall now discuss applications of Theorems 1.1-1.3 to some good- 
ness-of-fit statistics. Let A = (0, I), and let X = U, where U denotes a (0, 1)- 
-uniform random variable. 

Beran's statistic Bi .  Let b,, b,, .. . , b; < + CO, denote the Fourier 
coefficients with respect to the basis (ei2"'", 1 EZ) of a probability density f on 
the circle Si of unit circumference. If the function H is given by 
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then VN is Beran's statistic 3;; see [9], [lo]. Further investigations of the 
statistic B i ,  and more general ones as well, are done by Mardia [41], Gin6 
[23], Brentice [46], and Baringhaus 14). 

STATEMENT 1.1. Assume that the number of non-zero coefzcients boy b,,  . . . is 
inJinite and x,"=, bf  I2 < + a. Then 

(i) Theorems 1.1 and 1.2 hold for Beran's statistic 3;. 
(ii) For every $xed m E N u  (01, L 2 0 and E > 0 the bound (1.1 1) holds for 

all t E R such that It1 3 NE. 
(iii) There exist infinitely d@erentiable and rapidly decreasing functions 

a,, a,, . . . such that, for every $xed k and m E Nu(O), the asymptotic expansion 
(1.3) holds with the remainder term R satigying 

In the range N1/2+% It1 G clN for some c ,  and any E > 0, the bound 
(1.1 1)  is given in [40$ 

Thus, in view of Statement 1.1 (iii) it follows that for Berm's statistic 
B i  the bound of Theorem 1.2 holds with E = 0 as well. 

Watson's statistic Wi.  Here the function H is given by 

where I ( x ,  v) 4 I { x  < v )  -v-E(l{x < U)- U). Thus VN is Watson's statistic 
W; (see [54]). 

STATEMENT 1.2. (i) Theorems 1.1 and 1.2 hold for Watson's statistic W;. 
(ii) For every fixed rn~Nu{O),  L 2 0 and E > 0 the bound (1.11) holds for 

all t E R such that It1 2 N". 
(iii) 'Ihere exist infinitely differentiable and rapidly decreasing functions 

a,, a,, . . . such that, for everyJixed k and m ~ N u  (0), the asymptotic expansion 
(1.3) holds with a remainder term R satisfying (1.13). 

In the case m = 0 the result 1.2 (iii) was proved in [24].- 
Thus, in view of 1.2 (iii), the bound given in Theorem 1.2 for Watson's 

statistic Wi is valid with E = 0 as well. 

The goodness-of-fit sfatistic oi(q). Let q: (0, 1) + [0, + co) be a measura- 
ble function such that jx(1 -x)q(x)dx < + m. Here the function H is given by 

where J(x, v) 4 I (x < v) - v, and VN is the w2-statistic; see [42] for an 
exhaustive review on o2-statistic. Let us recall that in the case q(x) = 1 for all 
XE(O, 1) this is Cramkr-von Mises' statistic, and in the case q(x) 
= l/x(l -x) for all x ~ ( 0 ,  1) it is Anderson-Darling's statistic. 
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STATEMENT 1.3. (i) Theorems 1.1 a d  1.2 holdfor the Cramdr-uon Mises and 
Anderson-Darling statistics. 

(ii) Let r n ~  Nu(0) and assume that 

Furthermore, assume that there exists a non-empty interval ( y  , 6 )  c (0, 1) such 
that 

(1.1.5) q(x)  > 0 for all XE (y ,  a), 
and, for some numbers t > 0 and c 2 0, 

Thea, for every fixed E > 0 and L 3 0 the bound (1.11) holdsfor all t E R such that 
It1 2 NE. 

(iii) Fix k, rn E Nu (0) and assume that p(M)  < + co for M = k + 2 and 
M = m. If the assumptions (1.15) and (1.16) are satisjed, then there exist 
in$ni~ely direntiable and rapidly decreasing functions a,, a,, . . . such that the 
asymptotic expansion (1.3) holds with the remainder R satisfying (1.13). 

In the case p = 2, Statement 1.3 (ii) improves Theorem 2.7 by Bentkus et 
aI. [7] where the same bound (1.11) was proved under the condition 
sup(]ql(x)l: x ~ ( y ,  6))  < -t oo (instead of (1.16)) and in the region JtJ 2 N1/2f" 
only. Let us note that if assumption (1.15) is valid, then there is an infinite 
number of non-zero eigenvalues ,Ij; see [7] and [6] for more details on this 
subject. Statement 1.3 (iii) improves the corresponding results for w2-statistics 
given by Bentkus et al. [7]. 

In view of Statement 1.3 we claim that for the Cramkr-von Mises and 
Anderson-Darling statistics the bound given in Theorem 1.2 is valid with E = 0 
as well. 

2 Proof of Theorem 1.1. Let S*: L,(A, F*) -. L,(A, F*) be the operator 
defined by the formuIa -. 

s*f 4 E*H*(., X*) f(X*) = JH*(- ,  y )  fdy)F*(dy).  

Denote the eigenvalues of S* by AT,  i z ,  . . . , IrZTl 2 lllrl 2 . . . Given the random 
variables XI, . . ., X,, N fixed, K* as n tends to infinity converges in 
distribution to the random variable 

a, 

v,* 4 E*H*(x*, x*)+ c R,*(G;-~). 
k =  1 

LEMMA 1.1. For every K E N  rmd aery A 2 0 there exists a constant c such that 

(2.1) P(I1BI < l r Z , l / ~ )  Q cN-A 
for all NEN. 
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P r o  of, The idea of the proof is based on the proof of Lemma 4.1 by Bickel 
et al. [14]. Let us first note that without loss of generality we may assume 
A, # 0 and A 2 1. Furthermore, let el, . . . , e ,  be the eigenfunctions of the 
operator S corresponding to the eigenvalues A ,  . . A ,  and let 
S,: L,(A, P) 4 &(A, F) be the (self-adjoint and positive-definite) Hil- 
bert-Schmidt operator corresponding to the kernel 

Then A:,.. . . , 1; are the eigenvalues of the operator S, corresponding to the 
eigenfunctions el,  . . . , e,. Define 

where l l - l l p  denotes the norm in the space L,(A, F*). Since Eei(X) = 1, the 
quantity 1 - P(d) does not exceed zf= =, P (Eei (X) - 1 1  ep 11 1 2 1/21? and there- 
fore 1 - P ( d )  < CN - A .  Thus we get the bound 

Let S, denote the Kronecker delta, and let 

We clearly have 

and, therefore, 1-P(9) G cWA. This bound together with (2.2) implies 

and therefore our further task is to show that the bound (2.11 holds for the 
quantity P({IAgI:l < 1 A ~ l / f i } n d n 9 )  instead of P {JAgl 9' t A K l / m } .  

Let us examine the event L% more closel~. Assume that el el + . . . + c,eK = 0 
in the space L,(A, F*). This means that C p = ,  cPep(Xj) = 0 for all j = 1, . . . , N. 
Thus 



334 F. G B t z e  and R. Zit ik i s  

Therefore c, = . . . = c, = 0. Thus the functions el, . . . , a, are linearly indepen- 
dent in the space &(A, P*). 

Hence e$ 4 edll epllFw, p = 1, . . . , K, are well-defined (on the set d)  and 
linearly independent in the space L,(A,F*) (on the set B). Thus, 
9 4 span{e?, . . ., eg) is a K-dimensional subspace of the space L,(A, F*). 

Furthermore, let Sb: L,(A, F*) L2(A, F*) be the (self-adjoint and posi- 
tive-definite) Hilbert-Schmidt operator corresponding to the kernel 

If E?, . . . , eg are the eigenfunctions of the operator S* corresponding to the 
eigenvalues Af , . . . , As ,  then . . . , 2g2 are the eigenvalues of the operator 
S; corresponding to the eigenfunctions ef,  . . . , ez. Since $ is a K-dimensional 
subspace of the space L2(A ,  F*), the following estimates hold: 

(2.4) 
IlST l l  p. IIS?llr inf Rp2 = sup inf - >, inf - <sifL f )r* 

& f e s  llfll~ f ~ g  llfll~ f ~ %  Ilfll:* 
where X' denotes an arbitrary K-dimensional subspace of L,(A, F*). Since 
S,1; = {S2ep, e,),, we have 

(2.5) <s;e,O, @>fP = =MA; + t,,, 
where (-, -)F and <-, .)F denote the inner products in the spaces L,(A, F) and 
L,(A, F*), respectively, and 

Furthermore, since/ = I:=, cPe$ for some c 4 (c,, . . . , cK) and lie? 11:. = 1, we 
obtain 11 f < K 11 ell *, where 11 A c: + . . . + c i  and, therefore, 

where (., -) denotes the inner product in the space RK. Applying the just 
obtained estimate in the right-hand side of (2.4), we get 

RB2 2 {A: - max 15pqr}/~, 
p,q= 1. .... K 

which implies 

(2.6) ( 1  I ~ I / } )  ( 2 )  2 {A- max 15Ml]/K) 
p,q= 1, ..., K 
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Let us show that the right-hand side of (2.6) does not exceed c N - A  . This could 
be proved as follows: Write 9, as the sum A, + A, + A , ,  where 

One could easily prove that for every j = l , 2 ,  3, every A 2 0 and every 
positive constant c,, the quantities P(lAjl 2 c , )  do not exceed c K A .  Since 
4; > 0, this completes the proof of the lemma. 

LEMMA 1.2. For every A > 0 there exists a constant c > 0 such that 

PI& H P ,  - ~ : l l ,  3 a) c cN-"+co-" 

for all N E IV and a 3 0. 

Proof. Because of Lemma 1.1 we only need to show that 

for a number K depending on A, In the following we estimate JJ  P, - P z  11, 
I 

using Fourier's inversion formula. Let us first state some auxiliary results. 
Let L2(A, F) denote the complex Hilbert space L,(A, C, F) of all 

measurable functions f :  A -, C such that 
I 

I l  f l ld  Ef ( X ) f ( l x )  = S f f d F  < + 
A 

The inner product in this space will be denoted by (*, .)F. Also, let I denote the 
identity operator, and FF denote the trace operator in the space L,(A, F). Then 

Eexp{itVm) = exp(q), 

where 
t 

T, 4 itEH(X, X)-2J%{S(I -2 ivS) - lS)vdv .  
0 

A similar representation holds for the quantity E* exp(itV*,). 
Let us prove that there exists a constant c 2 0. which might depend on 

K and I, only, and such that, for all w E [0, 11, 

(2.8) !P 4 ]exp{wT*+(I-w)T,}l < ~ ( l + J t l ) - 4 ~ .  

Indeed, the representation 

I Fw{S(I-2ivS)- IS) = & ( S ( I + ~ V ~ S ~ ) - ~  S) +2iu&{S(I + ~ V ~ S ~ ) - ~ S ~ )  
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shows .that 

A similar representation holds for the quantity Re%* {S* ( I  - 2ivS')- S*) as 
well. Therefore. 

Since A t 2  3 1:/(2k) for all k = 1, . . . , K, the bound (2.10) implies 
!P < c( l  +[tl)-K/Z, which completes the proof of (2.8). 

Starting from (2.8) we may use Fourier's inversion formula to bound the 
quantity 11 P ,  - Pz 11,. We get 

Furthermore, the bound (2.8) implies 

where 

Let us prove the estimate 

which clearly completes the proof of the lemma. 
Let us introduce some additional notation. Denote the resolvent operator 

of S by R(., S), that is R(z, S) A (zI -S)-I for any complex number z. Unless 
otherwise stated, we shall always assume z = 1/(2iv). With these notations we 
may rewrite TT; as follows: 

t 

= i t E H ( X ,  X)+fE(iR(z, S)H(X,  .), H ( X ,  .)),dv. 
0 

Also, a similar representation holds for the quantity ?;* as well. Therefore, 

t 

t-l{T*-T,) = ih l+t - l j  h,(v)dv, 
0 
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where 
h, 4 E*H1(X*, X*)-EH(X, X), 

Consequently, 

where 

It is easy to see that P{filhll 3 a }  4 cN-"+ca-". Therefore, in order to 
prove (2.13) we only need to show 

Here we use the estimate A[h2] 4 A[h3] + d[h,]+ A [ h , ] ,  where h,(v), h,(v), 
and h,(u) are the following three quantities, respectively: 

EX<R(z, S*)H*(X8 ,  -1, H*(X* ,  . ))IF*-E*{R(z,  S*)H(X*, a), H(X*, .))p, 

Some straightforward calculations show that 

for j = 3, 4, 5, which proves (2.14) and the lemma. rn 

We will now prove Theorem 1.1. By Theorem (2.3) in 1241, we have 

(2.15) . llP,-P,ll* i C S : ~ S P / J K  
where p,  4 EJH(X,  X)I3 +EIH(X1, X2)I3. Let us note that the cited result also 
yields the bound 

where 8% is similar to fl ,  with the distribution function F replaced by the em- 
pirical distribution function F*. Thus, the bounds (2.15) and (2.16) and Lem- 
mas 1.1 and 1.2 together complete the proof of the theorem. a 

3. Proof of Theorem 1.2. For the proof of Theorem 1.2 we need the 
following lemma (cf. Lemma 1.1 by Beran [ l o ] )  several times: 

LEMMA 3.1. For each a€ (0 ,  1 )  we have P', (Pil(ol)) > 0. 

Proof.  Without loss of generality we may assume that A ,  > 0.  It is clear 
that the lemma foIIows from the following result: 
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There exists a point x , ~  ['a, + co) such that P',(x) = 0 for all x < x, 
and Fm(x) > 0 for all x > x,. 

Let p and q denote, respectively, the densities of the random varia- 
bles 1,(Gf- 1) and &(G;- I). The density p vanishes for all x S. -A1 
and is positive for all x > -1,. Since the function P, is continuous, the densi- 
ty q is not degenerated. Our claim follows from the representation 
P',(x) = j p(x-  z)q(z)dz such that P', (x) = 0 for x < x, and P', (x) > 0 for all 
x, < x < z for some z E R. The assumption P', (z) = 0 now leads to a con- 
tradiction with P',(x) > 0 for x, < x < z .  as 

Without loss of generality we assume E > O in the proof of Theorem 1.2 to 
be small (say E < 10-lo) and N 2 No, where N o  is a large fmed constant (which 
might depend on E > 0 and a ~ ( 0 ,  1)). 

We have 

Let fro = K1+" Using the bound (2.5) of [24] (in the case s = 4) and 
Lemma 1.1 we get, for every A 2 0, 

Therefore, using a Slutzky argument (see Lemma 3 on p. 16 in [44]) in the 
right-hand side of (3.1), we get the bound (1.2) provided that 

with y = ct&Bo. 
Furthermore, since P,(Pil(y)) = y, we obtain 

Thus in order to show (3.2) it is enough to prove 

Write 4(f) A q,(f) 4 f -'(y), and let h A Ps-P,. 
Since P,(P;l(y)) 2 const(P,, a) > 0 (recall that N > c,, where cp is 

a large fixed constant, and note that P',(P;'(ol)) > 0), we infer that the quan- 
tity 

q'(P,)(h) 4 -~(P,'(Y))/P',(P,~(Y)) 

is well defined. We shall show at the end of the proof that on a set of 
probability close to 1 the quantity ql(P,)(h) is actually the directional 
derivative of the function q at the point P, in the direction h.) 



Approximations for mn Mises statistics 339 

An application of Slutzky arguments shows that the quantity A does not 
exceed A ,  + A ,  + A , ,  where 

Using the fact that the Fourier transformation of P, decreases rapidly, we 
easily arrive at the bound A, < cp,  = O(N-'+')). To prove the same bound for 
the quantity A,  note first (see some details below) that, for any fixed real x, 

where f is a measurable function, the i.i.d. random variables f(Xj, X) are 
centered and have finite moments of all orders. Furthermore, the remainder 
term r, is such that for every A 2 0 there exists a constant c 3 0 such that 

for all N E M  and a 2 0. 
The asymptotic expansion (3.4) with the remainder term r, as in (3.5) 

could be proved by using the Fourier transformation and (with slight 
modifications) following the lines of the proof of Lemma 1.2; we omit the 
details of the proof. Using Slutzky arguments together with the bounds (3.5) 
and A ,  < cfl, we obtain, for every A 2 0, 

where x, 4 Pzl(y). The first summand on the right-hand side of (3.6) is of the 
order O(N-I+"); this fact follows from Corollary (3.20) by Gotze [27] (see 
Example 3.7 therein as well). Thus we have proved A ,  = O(N-l+", and still 
have to show 

Let p I - A iV-liZ+' and put d &d,n..  . nd4, where 

(h(") denotes the K-th derivative of the h; h(O) A h). We have already known that 
1 -P(dl) = O(N-A) (Lemma 1.1) and 1 - P ( 4 )  = O(iTA) (Lemma 1.2). Some 
slight modifications of the proof of Lemma 1.2 lead to the bound (valid for 
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every fixed K = 0, 1 ,2 ,  ...) 

which shows that 1 - P ( d 2  +,) = O ( N - A )  for K = 1, 2 (we omit the details since 
they are straightforward). 

Therefore, we may restrict our analysis to the set d only. On this set, for 
some constants c, and c, which do not depend upon N and z~ LO, 11, the 
following two bounds hold: 

. -. 

'(1'1) 3 > O and H ) , where H,  4 P ,  + ih. 
This leads to the following Taylor expansion (with all the quantities well 
defined) for q(P*,): 

1 

where 

q " ( ~ ~ ) ( h ) ~  = 2h(H; '(y))h'(H; O))/H:(H; '(Y))' 

After some tedious but elementary calculations, we obtain 

which together with the bound (3.8) completes the proof of (3.7), and of the 
theorem as well. H 

4. Proof of Theorem 1.3. In the proof we shall use the following lemma: 

LEMMA 4.1. Let 0 < a < b < 1 be any numbers, and let g be a function 
dzflerentiable on (a ,  b) such that sgngl(x) = const for all x € (a ,  b), and, for some 
numbers Qi > 0 and Y ,  

@ G I g f ( x ) l < Y  for all x ~ ( a , b ) .  - 

Furthermore, let h be a function integrable on (a,  b) such that, for some 

h(x )> Y for all x ~ ( a ,  b). 

Then, for all z, 2 0 and all z such that lzl 2 z,, 

b 

I A ][ exp {izg(x)) h(x)dxl 
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Proof.  With some slight modifications we shall follow the lines of the 
proof of Lemma 2.1 by Giitze and Hipp [30]. Without loss of generality we 
assume that sgn gl(x)  = 1. Because of h(g -l(x)) 3 I" and gl(g-'(x)) 6 Y for all 
x ~(g la ) ,  g(b)), we get 

b r y- ~ i b )  < j h ( ~ ) d x - ~ . { g ( b ) - g ( a ) )  +F I exp(irx)dxl. 
a . . O(Q) 

Furthermore, 

where v t{g(B)- g(a))/2. To estimate the quantity (v- l  sinvJ on the 
right-hand side of (4.3) we use the bound (x-'sinxi < 1 -min{di, 11/12 which 
is true for all do 2 0 and all 1x1 2 do. Let us find a number do such that Ivl 2 do. 
It is clear that Ig(b) -g(a)l 2 @(b -a). Therefore, do = so @(b-a)/2, and so we 
have 

min{Q2, 1) 
48 min (z;, l ) ( b  -a)' 

Now taking the bounds (4.2H4.4) together, and using the bound Ig(b)-g(a)l 
2 @(b -a) once again, we get the lemma proved. a 

' 

Let us note at the beginning of the proof of Theorem 1.3 that we do not 
specify the constants c in the text below; we only want to emphasize that all of 
them are non-random, do not depend on both N and t, and are non-negative. 
We subdivide the proof into several steps. 

S tep  1 (reduction of the general case to the case m = 0). Because of the 
moment condition (1.6), we interchange the signs of differentiation and 
integration in the quantity (d/dt)"Eexp(itVN',). Then we write as a multiple 
sum and use the fact that XI, . .. , X, are identically distributed. We get 

I(d/dt)"E exp {it vN}] < CN'"E lEe exp (itVN}I, 

where Ee denotes the conditional expectation with respect to XI,  . . . , X,-,, 
when all the other random vectors are fixed. Thus the theorem follows if 

S tep  2 (using the absolutely continuous part). Here we employ arguments 
used by Bikelis [16]. Without loss of generality we assume that N 2 c,, where 
c, is a Iarge constant (which might depend only on rn and or). Write 
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N1 4 N - 2m and fix XN - 2m+ l, . . . , XN. Because of decomposition (IS), we 
have 

(4.6) Ee exp {it VN} = j exp {itVN) (dP)N1 

Now split the summation in (4.6) into two parts: z' 4 the sum taken over all 
j.= 6, . . ., N ,  such that 1 j -uNII < m l o g ~ , ,  and z" the sum taken over 
all j = 0, . . . , Nl such that I j- aN,t 2 f i   log^,. A theorem by Bernstein 
[ l l ]  yields the bound 

for every x ,< J N ~  ~ ( 1 -  a)/4.  If we take x = x,, where x, is the solution of the 

equation 2x 4- = logN,, the bound (4.7) implies that the quantity 

does not exceed c N - ~ .  This bound and representation (4.6) together yield 

(4.8) 

To estimate the second summand on the right-hand side of (4.8) we use the fact 
that 1 j -aNl l  < f l l o s N l  (which implies that j  2 [N,a/2]) .  This fact and 
the estimate (4.8) show that the theorem will follow if we show 

Step  3 (reduction to the set B x C). The main idea of this step is based on 
arguments by Bikelis [16], Gotze [24], and Bickel et al. [14]. Let #I B(Y E B}  
and y 4 P(YEC), and let 

Furthermore, let us put N ,  A [ N ,  a/4] and write 

j exp (it VN) (d Fo)CN1"21 = j exp {it V,} (dF,)N2(d~,)Nz(d~o)[Nia~21-2Nz. 
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In the first group of dPo on the right-hand side of (4.10) we decompose each F, 
as follows: F, = PP, -k (1 - B) ("some distribution function"), and in the second 
group of dP, on the right-hand side of (4.10) we decompose each F, as follows: 
Po = yP, + (1 - y) ("some distribution function"). Now going along the lines of 
Step 2, we infer from (4.10) that in order to show (4.9) it is enough to prove the 
bound 

I A E ~ J  exp (itVM} (d F,)[N2flJZ1(d F3)[N2Y1211 G c K L .  

Let Z ,  Z,, Z, ,  . . . , and W, Wl, W,, . . . be independent random vectors having 
the distribution functions F, and F,, respectively. Using the symmetrization 
technique of the proof of Part 1 of Lemma (3.37) by Gotze [24] we get 

where ZT and ZT* are independent and have the same distribution function P,. 
The E@ denotes the conditional expectation with respect to the random vectors 
Wk, k = 1 ,  . . . , [N,y/2]. Therefore, 

IN27121 
W#]I , 

where ECB this time denotes the conditional expectation with respect to the 
random vector W Thus in order to complete the proof of the theorem we need 
to show 

(4.1 1) J G c N - ~ .  

Step  4 (proof of the bound (4.11)). Let us rewrite the quantity J in a 
more convenient way for further calculations. Let us put M A [N2P/2], 
z A 2t Jii?l/~, and let 

where p, denotes the density of F,. Then J = 
Fix an elementary event w. Because of (1.8)-(1. lo), we may assume without 

loss of generality that there exists a direction k E (1, . . . , d )  and a point x such 
that 

(4.12) SUP I<gS,(x), e,) I G MA 3 

SEC 
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where C, E (C1 , . . . , C I M Y l )  is such that x E C,. Rewrite C, as the Cartesian 
product I, x . . . x I, of intervals. Then, with dx; denoting integration with 
respect to the variables different from x,, we have 

Tb estimate the quantity IS,, . . . dx,] we are going to use Lemma 4.1. For this, fix 
x,, . . ., xk- 1, xk+ . . ., xd, and let g(xk) 4 S,(x)? h(xk) 4 po(x). Also, let a and 
b be numbers such that I, = (a, b). For every number X E C ~  we have 
g'(x,) = (9SM(x), e,) , which implies 

(4.16) Ig'Cxk)I 2 I<gs~(xo), ek)I-I(gS~(x)-gS,(xo), @ , ) I V  
Using (4.13) and (4.14) on the right-hand side of (4.16), we get Igf(x,)l 
3 1/(2dMK). Therefore, we may choose 

The same proof shows that for all XEC, the sign of g'(x,) is the same (and 
equals sgn{9S,(xo), e,)). For a number Y, as is easy to see from (4.12), we 
may use 

!P = M A .  

Since P{YEC) > 0, there exists a cube 6,  c C  such that for some c, > 0 we 
have po(x) > c, for all x E C1. Thus (if necessary, replace the set C by C,) for 
a number Y we may use 

Thus, using Lemma 4.1, we get 

Hence, because of the bound (4.15), we have 

If we now use the bound 1 -x < exp (-x) on the right-hand side of (4.17), then 
we obtain 

J < e~p(cM~-'~"{zi, 1)). 

Take now zi = M-1'10"(logM)2 and note that the number E > 0 may be taken 
as small as we want, say E < 10-lo. Then the bound (4.11) follows immediately. 
This compIetes the proof. BI 



Approximations for von Mises statistics 345 

5. Proof of the statements. Let us first prove Statement 1.3. To do that we 
give a special case of Theorem 1.3. 

COROLLARY 5.1. Let m E N u (0) and 

Assume that there exists a non-empty rectangle (a ,  #?) x (7, 6)c (0, 1)  x (0, 1) such 
that for all X E ( ~ ,  # the function y w H ( x ,  y) is diflerentiable on the interval 

(7, 8). Put S, (TI + . . . + ~ ~ ) / f i ,  where TI ,  . . . , T, are independent copies of 
the random function T 4 E?(a +@-a) U ,  -). Furthermore, assume that for every 
E > 0 one may find numbers A E  R, K > 0, and v > 0 such that A, K, v 6 E and such 
that for every D 2 O the following three conditions hold: - 

15-31 sup NDP(II&ll~2cr,a G l/NK) < + ; 
NEN 

(5,4) sup NDP{sup SUP ISN(x)-SN(y)l 3 lj(2N") < + a, 
NeN j x,yeIj 

where I j c ( y ,  6), j = 1 ,  .. . , [Nv], me subintervals of the interval (y, 6) such that 
Vol(lj) = (6-y) / [Nv] .  Then, for every E > 0 and L 2 0, 

sup I ( d / d t ) " E e ~ p { i t V ~ ) l = O ( ~ - ~ ) ,  N++oo .  
t:ltl BNC 

Proof. The corollary is an easy consequence of Theorem 1.3. Let us note 
only that the condition (1.9) follows from (5.3) by using the inequality 

Also, to prove Statement 1.3 we need the following lemma which is 
a simple consequence of Corollary 1.2 by Bentkus [5]. 

LEMMA 5.1. Let B be a centered Gaussian L,(y, 6)-valued random variable 
the covariance of which is the Hilbert-Schmidt operator L,(y, e) -r L,(y, 5) 
corresponding to the kernel 

If, for some l > 2, 
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and the random variable B is not concentrated in any Jinite-dimensionaI subspace 
of L,(y, d), then the condition (5.3) is satisfied. 

Proof  of S t a t emen t  1.3. (i) This is an immediate consequence of 
Theorem 1.1. 

(ii) Let us verify the conditions of Corollary 5.1 with the function H, when 
d = 1, u = 0, and p = 1. The equivalence of the moment conditions (5.1) and 
(1.14) is easy to prove. Thus let us verify (5.2H5.4). Note first that 

where 8, denotes the uniform empirical process. Let us look -at the condition 
(5.2). It is clear that without loss of generality we may assume 

Thus, because of (5.8) and Lemma 2.3 by Stute [53], we obtain 

which completes the verification of (5.2). 
The condition (5.3) is satisfied because of Lemma 2.1 and (5.1); compare 

the discussion concerning the infinite-dimensionality of the weighted Brownian 
bridge given just after Theorem 1.4 in [ 6 ] .  

Let us now show that (1.16) implies (5.4). Write 

A ' ~ ( S U P  SUP IfN(x)q(x)-gN(~)qty)l> 1/12NK)). 
j X.YEIJ 

The assumptions (1.16) and (5.8) imply that, for some constant c, > 0, 

Using the bound (5.9) with q(x) = 1 on the right-hand side of (5.10), for 
a constant c > 0 we get 

if K < vz - A. Using Lemma 2.4 by Stute [533 or Inequality 3.2 by Shorack and 
Wellner [51] it follows that for small numbers v > 0 and K > 0 the right-hand 
side of (5.11) does not exceed c W D .  Let us note also that the numbers A > 0, 
v > 0 and K > 0 could be chosen arbitrarily small (but satisfying the condition 
K < VZ-A). 
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(iii) The result is a direct consequence of part (ii) of this statement; see 
Section 3 (or Section 2) in [7] for more details. 

Let us now prove Statement 1.2. For this we formulate another special 
case of Theorem 1.3. 

COROLLARY 5.2. Assume that ' 

(5.12) 
. . 

Let us pui S i  &(TI + . . . +,~~)/fi, where Ti, , . . , T, are independent copies of 
the random function T 4 H(U, a), Furthermore, assume that for every E > 0 one 
may find numbers K > 0 and v > 0 such that K, v < E and such that for every 
D 3 0 the following condition holds: 

(5.13) sup NDP{sup sup IS&)- SN(y)l 3 1/(2N7) < + co , 
N d  j x,Y€Ij 

where Ijc(O, I), j = 1 ,  . . . , [N'] ,  are subintervals of the interval (0, 1) such that 
Vol(Ij) = l / [ N v ] .  Furthermore, let B be a centered Gaussian k,(O, 1)-valued 
random variable the covariance of which is the Hilbert-Schmidt operator L,(O, 1) 
+ L,(O, 1) corresponding to the kernel 

Assume that the random element 93 is not concentrated in any Jinite-dimensional 
subspam of L,(O, 1). Then, for every mE Nu{O), E > 0 and L 2 0, 

sup I(d/dt)"Ee~p(itV~}l=O(N-~), N + + c Q .  
r : l t l  BNE 

Proof.  We shall show that Corollary 5.1 implies the result. Take 
ct = y = 0 and 8 = S = 1. Then, for every j = 1, . .. , [NY, choose 
a non-random point y j €  I j .  Using Slutzky's arguments, we get 

(5.15) 

A 4~ { sup ISN(x)l N" = P {sup sup ISL(x)I 2 N L )  
~~(0.1) j x ~ I j  

Because of (5.13), the first summand on the right-hand side of inequality (5.15) 
does not exceed c N - ~ .  Therefore, A < cNPD follows if 
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But the bound (5.16) {and (5.2) as well) are consequences of Markov's inequality 
and the bound E(S;(yJlD < c which holds, because of the assumption (5.12), for 
all k = 1, . . . , [Nv]  and all D 3 0, where the constant c 2 0 does not depend 
on I?. Furthermore, because of Lemma 5.1 the assumption (5.3) is satisfied as 
well. This remark completes the proof of the theorem. sa 

P r o  of of St a te  m en t 1.2. (i) This is an easy consequence of Theorem 1.1. 
(ii) The proof is almost the same as that of Statement 1.3; use Corolla- 

ry 5.2 instead of Corollary 5.1. 

. (iii) This is a consequence of part 0; use results from Section 3 of [7]. ta 

Finally, as a simple consequence of Theorem 1.3 we have 

COROLLARY 5.3. Assume that 

sup I ( - q ~ ( x ,  Y)l < + m 
x,y€(o,l) 

Furthermore, let 9 be a centered Gaussian L2(0, I)-valued random uariable with 
covariunce being the NiIbert-Schmidt operator L,(O, 1)  + L,(O, 1) corresponding 
to  the kernel d@ned by (5.14). Assume that the random element %? is not 
concentrated in any finite-dimensional subspace of L2(0, 1). Then for every 
r n ~ N u ( O ) ,  8 > 0 and L 20, 

sup /(d/dt)mEexp (i t  VN) ( = O ( N -  L), N + i- oo . 
t:ltl b NE 

Proof. This corollary follows from Corollary 5.2. Note that the assump- 
tion (5.12) holds because of (5.17). Furthermore, using the bound 

we see that the left-hand side of (5.13) does not exceed 

If v > 2 ~ ,  then for every D 2 0 the quantity (5.18) does not exceed c N - ~  
because of the Markov inequality and (5.17). This completes the proof of the 
theorem. B 

Proof of Statement 1.1. (i) This is an easy consequence of Theorem 1.1. 
(ii) Because of z,\ bbf l2 < + oo we have 

d2 m 

(5.19) -H,(x, y) = -2(2x)' x b~1 '~0~2~E(x-y)  
ax dy 1 = 1  

for all x, y E (0, I), which shows that the condition (5.14) holds. The assumption 
on infinite-dimensionality of the corresponding Gaussian random variable is 
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satisfied because there is an infinite number of non-zero coefficients b,, b,, . . . 
Thus, Corollary 5.3 implies the desired result. 

(iii) Because of (5.19) we have 

which shows that ~i = n2(&,, gN), where 71, is a polynomial of degree 2 in the 
Hilbert space L,(O, 1). Therefore, results by Bentkus et al. [7J might be used to 
get the theorem proved. (In- the case m = 0 one may use general results for von 
Mises statistics by Gotze [24], [26].) rn 
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