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Abstract. The authors provide a construction of common con-
ditional probabilities given pairwise sufficient o-ficlds under the
hypothesis that the underlying statistical experiment is majorized, The
results are compared with those previously known for more restricted
situations and then applied to a new characterization of sufficient
o-fields within the class of pairwise sufficient ones.

1. Introduction. It was J. Neyman who in his pioneering work [8] of 1936
laid the foundations of an analytic approach to what is nowadays called the
theory of sufficient decision procedures. The so-called Neyman criterion put into
rigorous measure-theoretic terms in the publication [6] of Halmos and Savage
of 1949 has remained a mark of orientation to all later attempts to characterize
sufficient statistics, sub-o-fields, sublattices, projectors, kernels and the like in
order to meet the requirements articulated in the applications. While Fisher
conveyed only an intuitive understanding of sufficiency in his pertinent paper
[4] of 1922, LeCam in [7] provided the ultimate precision; applying Banach
lattice theory he achieved independence of his approach from conditions of
domination, herewith overcoming the pathologies pointed-out by Pitcher [9]
and Burkholder [2] on the nonexistence of smallest sufficient statistics and on
nonsufficient statistics with finer partitions of the sample space than sufficient
statistics, respectively. Along with LeCam’s contributions on the subject
weaker notions of sufficiency and at the same time replacements for the
traditional condition of domination gained increasing interest. In fact, pairwise
sufficiency turned out to be the most natural notion and from a slightly
different point of view also pairwise sufficiency with supports introduced in [5]
by Ghosh, Morimoto and Yamada. The latter authors achieved a generaliza-
tion of the famous Neyman factorization Just in terms of their concept of
pairwise sufficiency with supports.

As is well known a o-field is sufficient 1f there exists a conditlonal
probability given this o-field that is common to all measures of the underlying
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experiment. Using pivotal measures which generalize the classical dominating
measures Yamada showed in [13] that there exist common conditional
probabilities given pairwise sufficient o-fields with support. Although his
method is based on some lattice-theoretic ideas the spirit of the generalization
remains devoted to the work of Halmos and Savage.

In the present paper the authors provide a construction of common
conditional probabilities given pairwise sufficient o-fields under the still weaker
hypothesis that the underlying experiment is majorized in the sense of Siebert
[10]. The results -are-compared with those previously known (coincidence of
thie torresponding common conditional operators, their mutual factorization)
and then applied to a new characterization of sufﬁment o-fields within the
pairwise sufficient ones.

2. Preliminaries. Throughout our exposition we are dealing with classical
statistical experiments of the form E:= (X, %, #), where £ denotes a parame-
trized family {P,: 0e ®} of probability measures P, on the measurable space
(X, A). For any sub-o-field B of W we consider the subexperiment E(B)
= (X, B, 2|B) of E with the corresponding family 2|8 = {P,|B: §e @} of
restrictions of P, to B. A sub-g-field B of U is called sufficient for E or £ if for
each A U there exists a common conditional probability E(1 ,|B, 2) of A given
B in the sense that

jE(l,,ms, #)dP, = P,(AnB) for all Be®B and all 0¢@.

Clearly, B is said to be pairwise sufficient for 2 if 23 is sufficient for all
two-element subsets 2, of 2.

In order to charactenze pairwise sufficient sub-g-fields B of A in terms of
LeCam’s deficiency [7] we need some tools from the Banach lattice approach
to statistical decision theory. For an experiment E = (X, U, &) the L-space of

~ E is introduced as the band L(E) generated in the space .#°(X, ) of all

bounded measures on (X, ) by the set Z. The topological dual M (E) of L(E)
is called the M-space of E. Let (-, > denote the canonical bilinear functional on
L(E) x M(E). Given two experiments E = (X, U, #) and F = (Y, B, 2), where
2:={Q,: 0O} is a subset of probability measures on (Y, B), we shall
consider transitions from E to F as positive linear mappings T: L(E) — L(F)
satisfying the equality ||Tu| = |u)| whenever ue L(E),. The totality of tran-
sitions from E to F will be abbreviated by Trans(E, F). Now the deficiency of
E with respect to F is given by

O(E, F):= inf sup | T(Pg)—Gyl.
TeTrans(E,F) 0e®
¢ measures the information lost when replacing the experiment E by the
experiment F. In fact, E is called more informative than F if §(E, F) = 0. It is
a well-known and most applicable fact that a sub-o-field B of  is pairwise
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sufficient for 2 iff 6(E(3B), E) = 0. In order to show this equality it is often
useful to exhibit a transition T from E(B) which renders d(E(B), E) zero in the
sense that T'(P,|B) = P, for all 6e@. S
Since the pioneering paper of Burkholder [2] we know that sufficiency
ought to be studied without domination of the underlying experiments. It was
an idea of Siebert [10] to introduce the more general notion of majorization.
Given an experiment E:= (X, U, #) with 2 = {P,: 0 ®} and any measure
m on (X, A) we introduce the family N(m):= {4eW: m(4) = 0} of m-null sets.
Accordingly, for any subset 2 of 2 we consider the family

N(2):= {AeU: AeN(P,) for all P,e2}.
Finally, the notation & < m stands for the inclusion

R(m)< () {R(P,): 06}

Now, the experiment E is said to be majorized if there exists a majorizing'

measure m on (X, A) in the sense that for each € @ the measure P, has an
m-density dP,/dm. In the case where 2 ~ m which means that N(#) = t(m) the
measure m is called an equivalent majorizing measure for E.

Given a majorized experiment E it has been shown by Torgersen [12]

that its M-space M(E) consists exactly of all countably coherent families-

{fC, 0): 6e©®} of -measurable functions f(-, §) on X that are essentially
bounded in the sense that

sup { Py-ess supf( f): €@} < 0.

On the other hand, we know that for every countable subfamily 2, := {P tiz1}
of 2 there exists an -measurable function f on X such that f= f(, 0,
Py-as. for all i > 1. Now, let u be an element of L(E). Then there exists
a countable subfamily 2, of 2 such that u belongs to the band generated by Z,.
Writing

f@):={f(,0): 6O}

w, f@P) = [ fdp.

The integral (T)—_f S(P)dpu so defined will be called the (T)-integral of () with
respect to L.

one can prove that

3. Extended common conditional probabilities for pairwise sufficient sub-o-
-fields. Let E = (X, A, &) with 2:= {P,, 0€®} be a majorized experiment
and let B be a sub-o-field of U that is pairwise sufficient for #. Along with E we
shall consider the subexperiment E(B) of E generated by B. For every AU we
introduce the family _

f4(@) = {E(1,9B, P,): 0c B}



356 H. Heyer and S. Yamada

of conditional probabilities E(1,|B, P,) of 1, given B under P, From the
discussion in Section 2 we infer that f,(#) is an element of the M-space
M(E(B)) of the subexperiment E(B). Hence for every ue L(E(B)) the number
{it, f4(#)) can be calculated as the (T)-integral of f,(#) with respect to
u given as -

(THf fu(P)dp = JE(14|B, F)dp,

where %, denotes a countable subfamily of & such that u belongs to the band
generated in .#°(X, B) by £,|B. Since B is assumed to be sufficient for £,
there exists the common conditional expectation E(1,|B, #,) defined as
usual by

fE(1,4B, #)dP = P(AnB) for all Pe#, and Be®B.
B

In the following we first want to study the mapping T: L(E(B)) — L(E) given by
(TW(A):=<p, f4(@)) for all peL(E(B)), Ac¥,

as well as its adjoint T': M(E) - M(E(B)).

Clearly, T(P,y|B) = P, for all 0 @; hence T is a transition from L{E(B))
to L(E) rendering the deficiency 6(E(B), E) zero. We note that in general this
property does not imply that there exists a Markov kernel T, from (X B) to
(X, N) such that T,(P,|B) = P, for all Heo.

We shall collect some properties of the adjoint 7.

3.1. PROPERTIES OF THE ADJOINT T'. Let f(?)e M(E) and g(?)e M (E(B)).
Then
311 T(f(P)g9(P) = g(P)T'f(P) (smoothing);
3.1.2. T?f(P) = T'f(P) (idempotency);
3.13. T'g(P) = g(P) (fixed point property).
_Subsequently, we shall employ the symbol g:= gy for the canonical

embedding of the space MP(X, A) of all bounded A-measurable functions on
X into the M-space M(E) of E. Obviously,

ely)={1,: 0e®}eM(E) for all Ac¥.

3.2. THEOREM. Let AL
(i) For all BeB and 6@ we have

(T)-] T'e(1,)d(IPy|B) = Po(ANB),
B _

where
(i) T'e(l,) = {E(L,IB, Py): 06} = £,
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Proof. (i) For all AU, BeB and e ® we obtain
<T(13P9|-‘B)a 0(1,)> = {15P4|B, T'o(1,)>
= (T)-f T'e(1,)d(15P5|®B).
On the other hand, 1;P,|B < P,|B; hence 15P,|B belongs to the band
generated by the family {P,|®B: 6 ®}. Thus
(T(1,P,|B), o(1,)) = T(1,P,IB)(4)
' = JE(1,]9B, Po)d(15Py|B) = Py(AnB)

whenever Ac, BeB and 0e 6.

(ii) Suppose now that for Ae

T'o(1) = {f4(, 0): 0 O}.
Then
(T)-f T'o(1)d(15P,|B) = § f,¢, 0)d(15P,|B)
= J_‘;fA(', B)d(PolfB).

But, by the proof of (i),
(T)-{ T'e(1 )d(15P4|B) = Po(ANB) = IJ; E(1,1B, Pg)d(Py|B);

consequently,
fu(, 0)=E(1,|B, P) Pias. for all 0c@. u

The proof of part (i) of the theorem yields
3.3. COROLLARY. For all BeB and 0 ®

T(13P|B) = 15T (P,|B).

One just applies the fact that TPy|B = P, whenever 0¢ @

3.4. DerFNITION. The element T'g(1,) of M(E(B)) constructed in Theo-
rem 3.2 is called the common conditional probability of A given B in the ex-
tended sense. '

Occasionally, the mapping T’ is referred to as the common conditional
probability operator given B.

3.5. Remark. In the work of LeCam [7] more general transitions T are
considered for which the common conditional probability operator arises as
the idempotent pointwise limit of the sequence of finite sums n~ 1Y, _, T".

In our case, however, the application of this ergodic type result becomes
superfluous since 7' is idempotent by Property 3.1.2.
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- 3.6. Remark. It has also been established in LeCam’s work that for any
transition T: L(E(B)) — L(E) which renders §(E(B), E} zero the dual T’ is
expectation invariant in the sense that T'(1zv) = 1,T'(v) whenever Be'B, .
ve M(E). ,

The transition. T that we are concerned with has the weaker property
expressed in Corollary 3.3. From this property we may (only) conclude that

CPy|B, T'(150)) = {Py|B, 1,T'(v)>

for all 0 ®, BeB and ve M(E), an identity which has been applied in the
proof of Theorem 3.2. :

We note that under some completion assumption B turns out to be the
invariant o-field of T’ in the sense that

B ={BeW: T'o(ly) = o(1y)}
(see Property 3.1.3).

4. Comparison with the case of pairwise sufficiency with supports. A brief
review of the basic notion appearing in the title of the section seems to be in
order.

Our standard datum remains an experiment E = (X, %, &) with
#:={P,: 0 @}. For any PeZ a set S(P)e ¥ such that P(S(P)) =1 and for
every Ae W with A= S(P) and P(4) = 0 we have A e N(ZP) is called a support of
P for E. If for a sub-o-field B of A there exists a support of P belonging to
B for all Pe#, then B is said to contain supports. Concerning the existence of
supports one has the equivalence of the following statements (Diepenbrock
[3D):

(@) Every Pe2 has a support for E.

(b) E is majorized.

(c) There exists an equivalent majorizing measure for E.

The following notions of pairwise sufficiency with support and pivotality
have been introduced by Ghosh et al. in [5].

Let E be a majorized experiment.

4.1. DEFINITION. A sub-o-field B of A is said to be pairwise sufficient with
supports (a PSS o-field) for E if '

(i) B is pairwise sufficient for £, and

(i) B contains supports.

4.2. DEFINITION. An equivalent majorizing measure n for E is called pivotal
(for E) if any given sub-o-field B of A is PSS iff there exists a B-measurable
density dPy/dn for each 6e@. . :

It is long known that majorized experiments admit pivotal measures.

One of the most striking applications of the notion of PSS o-fields is their
characterization in terms of a generalized Neyman factorization (see [5]).
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In his previous work [13] Yamada discussed in detail a spec1al case of
common conditional probability in the extended sense:

Again E is assumed to be majorized. Let B be a sub-o-field of U. Then for
any pivotal measure n for E its restriction n|B to B is pivotal for the
subexperiment E('B). From the general theory of Banach lattices one infers that

={fn: fel(X, SB,“n{%)}
as well as
L(E(B)) = {f(n|B): fel(X, B, n|B)}.

We define the mapping T,: L(E(B)) — L(E) by
T,(f(1|B):= fn  for all fel}(X, B, n|B).

Then T, is a transition from E(B) to E rendering the deficiency 6(E(B), E) zero,
and its adjoint 7, enjoys the idempotency property as well as properties
analogous to (i) and (ii) of Theorem 3.2. More precisely, the common
conditional probability T,o(1,) of A given B with respect to n has the
properties collected in the following

4.3. TEOREM (Yamada [13], [14]). () (T)-[T, e(1 )d(1zn]|B) = n(AnB)for
all AcN, BeB with n(B) < c0. -

(ii) (T)-f T, 0(1,)d(15P4|B) = Py(ANB) for all Ac¥, BeB, and 6cO.

@iii) T;e(1,) = {E(1,]1B, Py): 0@} for all AeU.

44. Remark. If B is sufficient, then by Theorem 4.3

T/o(1) = E(LB, Py = E(1,|B, n) n-ae.’

This conclusion corresponds to the classical case of a dominated ex-
periment E. We may say that in the general situation of a majorized experiment
PSS o-fields are sufficient with respect to (T)-integrals.

- In fact, the representation (i) of Theorem 4.3 is characteristic of a PSS
o-field within the framework of majorized experiments, as we shall show now.

4.5. THEOREM. Let E be a majorized experiment with equivalent majorizing
measure n, and let B be a sub-c-field of . Suppose that B is PSS. Then the
operators T, and T introduced prior to Theorems 4.3 and 3.2, respectively,
coincide.

Proof. We fix a set BeB such that n(B) < co. Next we note that for every
Ae¥

(T)-f Tra(1)d(15n]B) = <1,n|B, To(L)> = <T,(151]B), o(1)>
= (15m, ¢(1)> = (T)-fe(1 )d(1pm).
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Moreover, there exists a countable subfamily %, of 2 such that the measure
1zn belongs to the band generated by %, Thus

1) (T)-fe(1 )d(15n) = [1,d(1zn) = n(ANB).
On the other haﬁd, we infer from [14] that -
T o(1,) = {E(14B, P,): 0€O};
hence - ,
@ a (T)-f Tie(1,)d(15n|B) = [E(1,,|B, Z)d(15n|B).

We conclude that E(1,|B, ) is a conditional probability of 4 given
B common to all Ped,.
Now we apply (1) and (2) to obtain

JE(141B, Z)d(15n|B) = n(4nB)
for all AeW and BeB with n(B) < oo or; more generally,
JE(1,B, Z) fd(n|B) = | fdn
A

whenever f e I}(X, B, n|B). (Here it has to be observed that £, depends on

f(n]|B).)
But this implies for all AeW and feI}(X, B, n|B) the following chain of
equalities .

T(f®|B)(4) = (f)(4) = £ fdn

= JE(1,|8B, %) fd(n|B) = T(f(n|B))(4),
ie. T, =T on L(E(B)), which is the desired assertion. m

: Finally, we discuss the mutual factorlzatlon behavior of the mappmgs T,
and T

. -4.6. THEOREM. Let E be a majorized experiment, and let B and € be two PSS
sub-o-fields of A.
0 If |
T(L(E®))< T(LE®), |
then there exists a transition T, from E(B) to E(€) which renders 6(E(B), E(C))

zero and satisfies T,T, = T. The transition T, is uniquely determined by these
properties and given by

Tip=(TWI|C€ for all pe L(E(B)).
(i) 1f
TL(E©)<T(L(E(B)),
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then there exists a transition T, from E(€) to E(B) which renders 6(E(C), E(B))
zero and satisfies TT, = T,. The transition T, is uniquely determined by these
properties and given by

Tu= (TGI8  for all peLE®).

Proof. It suffices to show that the mappings Tand 7, are one-to-one; the
desired assertions then follow from the general inverse mapping theorem (see,

e.g., [1D).
As for T we suppose that given p,, u, € L(E(B)) we have Ty, = Ty,. Then

Uy —HUsy [4(P)) =0 for all AeN.
Thus, for all Ae A and BeB we obtain

0 =<yt fars(P)) = IE(IAnB|$a g'o)d(l-‘l __#z)
= iE(IAIQ?’, Po)d(py — 1),

where %, denotes a countable subfamily of 2 such that u; —u, belongs to the
band generated (in #°(X, A)) by £, and

E(14,5|B, %) = 1,E(1,B, %)

holds (u; —pu,)-a.e. Choosing A:= X in the above chain of equalities we see
that u, = p,. '

As for the mapping T, we assume that T,(f,(n|B)) = T,(f,(n|B)) for
fi,fre (X, B, n|B), which means that fyn = f,n on U. But this implies that

f1(n|B) = (fin)|B = (/,n)|B = f,(n|B),
which is the assertion. =
4.7. CorOLLARY. For every peL(E(B)) we have T,(Tp|B)=

5. Another characterization of sufficiency (in terms of the extended com-
mon conditional probability operator). Again we start with an experiment

=(X, U, #) and a sub-g-fiecld B of A. By gy we denote the canonical
embeddmg from Me(X, B) into M(E(B)).

5.1. THEOREM. Suppose that the o-field ‘B is pairwise sufficient for 2 so that
the extended common conditional operator T’ given B is defined. Then the
following statements are equivalent:

(i) B is sufficient for #;

(i) T'o(WP(X, W) < ou(M* (X, B)).

Proof. Only the implication (ii) = (i) has to be shown.

Fixing AW we write

T'o(1,) = 0w(9.4)
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with a bounded B-measurable function g, on (X, ). For any 0 ® and BeB
we define the measure Py|B on (X, %) by

Py|B():= P,(nB).

Then P,|BeL(E), and hence (P,|B)|®BeL(E(B)).
Now we have
T[(P,)B)|B1(A) = [E(1 4B, P,)d[(P,B)|B]

= [E(1,1B, P,)dP, = Py(ANB)
B

whenever BeB, 0e®. This implies that
((PoIB)B, T'o(1,)> = CT(Ps|B)|B1, o(1)
= (Py(nB), o(1)) = Po(ANB)
for all Be®, 6e€®. On the other hand, we have
(P4l B)IB, T'e(1,,)> = {(Py|B)|B, ¢5(9.,)>
= [9.4d[(Ps|B)|B] = £gAd(Po|%)

for all Be®B, fe®. But this implies that
§94d(Py|B) = Py(AnB) for all BeB, 0@,
B

or equivalently
E(1,|8B, Py) =g, Pyas. for all fe@.

That is to say, g, is a common conditional probability of 4 given B with
respect to 2. The sufficiency of B for & has thus been established. m
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