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Abstract. The authors provide a construction of common con- 
ditional probabilities given pairwise sufhient cr-fields under the 
hypothesis that the underlying statistical experiment is majorized. The 
results are compared with those previously known for more restricted 
situations and then applied to a new characterization of sufficient 
a-fields within the class of pairwise sullicient ones. 

1. Introduction. It was J. Neyman who in his pioneering work [8] of 1936 
laid the foundations of an analytic approach to what is nowadays called the 
theory of suficient decision procedures. The so-called Neyman criterion put into 
rigorous measure-theoretic terms in the publication [6] of Halmos and Savage 
of 1949 has remained a mark of orientation to all later attempts to characterize 
sufficient statistics, sub-rr-fields, sublattices, projectors, kernels and the like in 
order to meet the requirements articulated in the applications. While Fisher 
conveyed only an intuitive understanding of suficiency in his pertinent paper 
[4] of 1922, LeCam in [7] provided the ultimate precision; appIying Banach 
lattice theory he achieved independence of his approach from conditions of 
domination, herewith overcoming the pathologies pointed out by Pitcher [9] 
and Burkholder 121 on the nonexistence of smallest sufficient statistics and on 
nonsufficient statistics with finer partitions of the sample space than sufficient 
statistics, respectively. Along with LeCam's contributions on the subject 
weaker notions of sufficiency and at the same time replacements for the 
traditional condition of domination gained increasing interest. In fact, pairwise 
sufficiency turned out to be the most natural notion and from a slightly 
different point of view also pairwise sufficiency with supports introduced in [5] 
by Ghosh, Morimoto and Yarnada. The latter authors achieved a generaliza- 
tion of the famous Neyman factorization just in terms of their concept of 
pairwise sufficiency with supports. 

As is well known a a-field is sufficient if there exists a conditional 
probability given this a-field that is common to all measures of the underlying 
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experiment. Using pivotal measures which generalize the classical dominating 
measures Yamada showed in [I31 that there exist common conditional 
probabilities given painvise sac ient  a-fields with support. Although his 
method is based on some lattice-theoretic ideas the spirit of the generalization 
remains devoted to the work of Halmos and Savage. 

In the present paper the authors provide a construction of common 
conditional probabilities given pairwise sufficient a-fields under the still weaker 
hypothesis that the underlying experiment is majorized in the sense of Siebert 
[lo]. The results are compared with those previously known (coincidence of 
the corresponding common conditional operators, their mutual factorization) 
and then applied to a new characterization of sufficient a-fields within the 
pairwise sufficient ones. 

2. Preliminaries. Throughout our exposition we are dealing with classical 
statistical experiments of the form E : = (X, %, 9'1, where 9 denotes a parame- 
trized family {P,: B E  6)) of probability measures P, on the measurabIe space 
(X, q. For any sub-a-field 23 of W we consider the subexperiment E(23) 
= (X, 23, 91 8) of E with the corresponding family BIB = (P,IB: 8 E 8) of 
restrictions of P, to B. A sub-6-field B of 9l is called suficient for E or B if for 
each A E 2l there exists a common conditional probability E(1,123, 9) of A given 
!I3 in the sense that 

~ E ( l , l b , 9 ' ) d ~ , = ~ , ( ~ n ~ )  for all B E B  and all OEO. 
B 

Clearly, 23 is said to be painvise suflcient for 9' if 23 is sufficient for all 
two-element subsets 9, of 9. 

In order to characterize pairwise sufficient sub-a-fields 23 of N in terms of 
LeCamYs deficiency [7] we need some tools from the Banach lattice approach 
to statistical decision theory. For an experiment E = (X, 2€, P) the Lspace of 
E is introduced as the band L(E) generated in the space d b ( X ,  N) of all 
bounded measures on (X, N) by the set 9'. The topological dual M(E) of L(E) 
is called the M-space of E. Let (., -) denote the canonical bilinear functional on 
L(E) x M(E).  Given two experiments E = (X, a, 9) and F = (I: 8, A?), where 
% : = (Q,: 0 E Bj is a subset of probability measures on (Y, B), we shall 
consider transitions from E to F as positive linear mappings T: L(E) -+ L(F) 
satisfying the equality l(Tp(( = ((,ujrl( whenever p~ L(E)+. The totality of tran- 
sitions from E to F will be abbreviated by Trans(E, F). Now the deficiency of 
E with respect to F is given by 

S measures the information lost when replacing the experiment E by the 
experiment F. In fact, E is called more informative than F if S(E, E') = 0. It is 
a well-known and most applicable fact that a sub-c-field 23 of % is pairwise 
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sufficient for B iff S(E(B), E) = 0. In order to show this equality it is often 
useful to exhibit a transition T from E(23) which renders 6(E(23), E) zero in the 
sense that T(P,IB) = P, for all 8 E O. 

Since the pioneering paper of Burkholder [2] we know that suf6ciency 
ought to be studied without domination of the underlying experiments. It was 
an idea of Siebert [lo] to introduce the more general notion of majorization. 
Given an experiment E : = ( X ,  8 , P )  with B = {P,: OE @) and any measure 
rn on ( X ,  a) we introduce the family %(m) : = ( A E  '3: m(A) = 0) of m-null sets. 
Accordingly, fox any subset 9 of 9 we consider the family 

W(5'):= { A € % :  AE%(P,) for all P,E~). 
- 

FinaIIy, the notation B % m stands for the inclusion 

Now, the experiment E is said to be majorizad if there exists a majorizing' 
measure m on ( X ,  in the sense that for each OE 0 the measure P, has an 
m-density dPJdm. In the case where 9 - m which means that %(P) = %(m) the 
measure m is called an equivalent majorizing measure for E. 

Given a majorized experiment B it has been shown by Torgersen [12] 
that its M-space M(E) consists exactly of all countably coherent families 
if(., 8):  O E  0 )  of %-measurable functions fc, 0) on X that are essentially 
bounded in the sense that 

sup(P,-ess sup f (-, 6): 6 E O )  < co. 

On the other hand, we know that for every countable subfamily Po : = {Poi: i 2 1 )  
of 9' there exists an %-measurable function f on X such that f = f ( . ,  O i )  
Poi-a.s. for all i 2 1. Now, let p be an element of L(E). Then there exists 
a countable subfamily Po of 9 such that p belongs to the band generated by 9,. 
Writing 

f ( 9 ) : =  If(-, 8): 6 ~ 6 3 )  
one can prove that 

< P Y  f ( 9 ) )  = j f d ~ .  

The integral (T)-1 f tB)dp  so defined will be called the (T)-integral o f f  (9) with 
respect to p. 

3. Extended common conditional probabilities for pairwise sufficient sub-a- 
-fields. Let E = ( X ,  a, 9) with 9 : = (P,: 0 E O )  be a majorized experiment I 

and let 23 be a0sub-o-field of % that is pairwise sufficient for 9. Along with E we 
shall consider the subexperiment E(B)  of E generated by b. For every A E 2l we I 

introduce the family I 

I 
I 
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of conditional probabilities E(lA1'B, P,) of 1 ,  given 93 under P,. From the 
discussion in Section 2 we infer that f , (P)  is an element of the A4-space 
M(E(23)) of the subexperiment E(B). Hence for every p E L(E(23)) the number 
(p ,  fA(9)> can be calculated as the (T)-integral of f,(P) with respect to 
p given as 

where 9, denotes a countable subfamily of B such that p belongs to the band 
generated in d b ( X ;  B) by P0l23, Since 8 is assumed to be sufficient for Po, 
there exists the common conditional expectation E( lAIB ,  Po) defined as 
usual by 

jE(1,123,Po)dP= P ( A n B ) '  for all P E ~ ~  and BEB.  
B 

In the following we first want to study the mapping T: ~ ( ~ ( 2 3 ) )  + LIE) given by 

A :  = < ,  f A  for all ~ E L ( E ( B ) ) ,  A€+& 

as well as its adjoint T': M(E) 4 M(E(B)) .  
Clearly, T(P,IB) = P, for a11 B E @ ;  hence T is a transition from L(E(iF3)) 

to L(E) rendering the deficiency 6(E(B), E) zero. We note that in general this 
property does not imply that there exists a Markov kernel TI from ( X ,  B )  to 
( X ,  a) such that TI (Po(%) = P,  for all 0 E O .  

We shall collect some properties of the adjoint T'. 

3.1. PROPERTIES OF THE ADJOINT T'. Let f (9') E M(E) and g ( 9 )  E M(E(23)). 
IThen 

3.1.1. T( f ( P ) g ( J ) )  = g (P)T ' f (P )  (smoothing); 
3.1.2. TI2 f (9) = T'flB)  (idempotency); 
3.1.3. T'g(9') = g ( 9 )  @xed point property). 

Subsequently, we shall employ the symbol Q:= Q, for the canonical 
embedding of the space %Jlb(X, 2l) of all bounded N-measurable functions on 
X into the M-space M(E)  of E. Obviously, 

e ( l A ) = { l A :  ~ E O ) E M ( E )  for all A € % .  

3.2. THEOREM. Let A E Zl. 
(i) For all BE % and 0 E 0 we have 

where 
(ii) T'e(1,) = ( E ( l A I B ,  Po): 8 ~ 0 )  = fA(9) .  
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Proof. (i) For all A € % ,  B E %  and 8 6 8  we obtain 

On the other hand, l,Pe123 + Pol%; hence 1,Pe123 belongs to the band 
generated by the family (P,IB: 0 E O). Thus 

whenever A€%, B E B  and 8 ~ 8 .  
(ii) 'Suppose now that for A €55 

Then 

But, by the proof of (i), 

consequently, 

fA(-, 0) = E(lAI %, Pd Po-as. for all 86 8. 

The proof of part (i) of the theorem yields 

3.3. COROLLARY. For all BE 23 and Q E  Q 

One just applies the fact that TP,lb = P, whenever O E  43; 

3.4. DEFINITION. The element Tfe(lA) of M(E(b)) constructed in Theo- 
rem 3.2 is called the common conditional probability of A given b in the ex- 
tended sense. 

Occasionally, the mapping T' is referred to as the common conditional 
probability operator given 8. 

3.5. Remark. In the work of LeCam 171 more general transitions T are 
considered for which the common conditional probability operator arises as 
the idempotent pointwise limit of the sequence of finite sums n- C; =, Yk. 

In our case, however, the application of this ergodic type result becomes 
superfluous since T' is idempotent by Property 3.1.2. 
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3.6. Remark.  It has also been established in LeCam's work that for any 
transition T: ~ ( ~ ( 2 3 ) )  + L(E) which renders S(E(B), E) zero the dual T' is 
expectation invariant in the sense that Tf(1,u) = l,T'(v) whenever B €23, 
v E M (E).  

The transition T that we are concerned with has the weaker property 
expressed in Corollary 3.3. From this property we may (only) conclude that 

<Pel233 T1(1Bv)} = <PeIBr  IgTI(v)) 

for all B E  O, B E  23 and v E M(E),  an identity which has been applied in the 
proof of Theorem 3.2. 

We note that under some completion assumption 23 turns out to be the 
invariant c-field of T' in the sense that 

% = {BEN: T'g(1,) = @(lB)) 

(see Property 3.1.3). 

4. Comparison with the case of pairwise sufficiency with supports. A brief 
review of the basic notion appearing in the title of the section seems to be in 
order. 

Our standard datum remains an experiment E = (X, N, B) with 
9': = (Po: 0 E 631. For any P E 9 a set S(P) E Ql such that P(S(P))  = 1 and for 
every A E  2l with A cS(P)  and P(A) = 0 we have A E  %(B) is called a support of 
P for E. If for a sub-a-field 23 of 2€ there exists a support of P belonging to 
23 for all P E B ,  then 23 is said to contain supports. Concerning the existence of 
supports one has the equivalence of the following statements (Diepenbrock 
C33): 

(a) Every P E ~  has a support for E. 
(b) E is majorized. 
(c) There exists an equivalent majorizing measure for E. 
The following notions of pairwise ~ ~ c i e n c y  with support and pivotality 

have been introduced by Ghosh et al. in [5 ] .  - 
Let E be a majorized experiment. 
4.1. DEFINITION. A sub-a-fieId 23 of 'ill is said to be pairwise suficient with 

supports (a PSS a-field) for E if 
(i) B is pairwise sufficient for 9 ,  and 

(ii) 23 contains supports. 
4 2 .  DEFINITION. An equivalent majorizing measure n for E is called pivotal 

(for E )  if any given sub-a-field 23 of 'ill is PSS iff there exists a %-measurable 
density dP,/dn for each 8 E 8. 

It is long known that majorized experiments admit pivotal measures. 
One of the most striking applications of the notion of PSS a-fields is their 

characterization in terms of a generalized Neyman factorization (see [5 ] ) .  
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In his previous work [I31 Yamada discussed in detail a special case of 
common conditional probability in the extended sense; 

Again E is assumed to be majorized. Let b be a sub-6-field of N. Then for 
any pivotal measure n for E its restriction n l b  to B is pivotal for the 
subexperiment E(B). From the general theory of Banach lattices one infers that 

L(E) = ( f i r :  f ECIX, 8, n(B)) 

as well as 

! L(E(9))  = (f(n18): f EL'(X, b ,  nls)). 

We define the mapping T,: ~(~(23)) + L(E) by 

~,,(f(nI%)):= f n  for all f ECIX, 23, n18) .  

Then T, is a transition from E(B) to E rendering the deficiency S(E(B), E) zero, 
and its adjoint enjoys the idempotency property as well as properties 
analogous to (i) and (ii) of Theorem 3.2. More precisely, the common 
conditional probability T1e(1,) of A given 8 with respect to n has the 
properties collected in the following 

4.3. THEOREM (Yamada C131, [14]). (i) ( T ) - { r  e(l,)d(lBnJB) = n(AnB)  for 
all A E ~ I ,  B E B  with n(B) < co. 

(ii) (~)-~T,'~(l,)d(l,P,123) = P,(AnB) for all A€%, BE%, and B E @ .  
(iii) Ce(1A) = (E(lAjB, P,): 0 ~ 0 )  for all A€%. 

4.4. Remark. If 23 is sufficient, then by Theorem 4.3 

T,'e(l,) = E(lAIB, P,) = E(lAIB, n) n-a.e. 

This conclusion corresponds to the classical case of a dominated ex- 
periment E. We may say that in the general situation of a majorized experiment 
PSS a-fields are suflcient with respect to (T)-integrals. 

In fact, the representation (i) of Theorem 4.3 is characteristic of a PSS 
a-field within the framework of majorized experiments, as we shall show now. 

4.5. THEOREM. Let E be a majorized experiment with equivalent majorizing 
measure n, and let 23 be a sub-a-field of 2l. Suppose that 23 is PSS. Then the 
operators T, and T introduced prior to Theorems 4.3 and 3.2, respectively, 
coincide. 

Proof.  We fix a set 3 E B such that n(B) < a. Next we note that for every 
A E N  
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Moreover, there exists a countable subfamily Po of 9 such that the measure 
1,n belongs to the band generated by Yo. Thus 

I On the other hand, we infer from [14J that ' 

T,'e(lJ = (E(l ,I%, Po): BE@); 

hence 

We conclude that E(IAIBl  9,) is a conditional probability of A given 
93 common to all  PEP^. 

Now we apply (1) and (2) to obtain 

for all A E  2I and BE B with n(B) < m or; more generally, 

whenever f E Z(X, 113, n1 B). (Here it has to be observed that 9, depends on 
f (nlW-1 

But this implies for all A E '$I and f E L? ( X ,  23, nl B)  the following chain of 
equalities 

i.e. T, = T on L ( E ( b ) ) ,  which is the desired assertion. H 

Finally, we discuss the mutual factorization behavior of the mappings T, 
and ?: 

4.6. THEOREM. Let E be a majorized experiment, and let 23 and 6 be two PSS 
sub-a-$elds of 2l. 

(4 If 
T ( L ( E ( ~ ) ) ) ~  T,(L(E(Q)), 

then there exists a transition TI from E(23) to E ( 6 )  which renders 6(E(23), E(E)) 
zero and satisfies KT,  = ?: The transition TI is uniquely determined by thew 
properties and given by 

T , p = ( T p ) l E  for all p ~ L ( E ( 2 3 ) ) .  

(ii) If 

T , L ( E ( ~ ) ) ~  T ( L ( E ( ~ ) ) ) ,  
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then there exists a transition T, porn E(K) to E(23) which renders 6(E(E) ,  E(B)) 
zero and satisfies T T, = T,. The transition T, is uniquely determined by these 
properties and given by 

a- 
Proof. It suffices to show that the mappings Tand T, are one-to-one; the 

desired assertions then follow from the general inverse mapping theorem (see, 
e.g., E l l ) .  

As for T we suppose that given p,, p, €L(E(b)) we have Tpl = Tp2. Then 
. " 

< -  ( ) =  for all A E W .  

Thus, for all A E ~ I  and B e b  we obtain 

where go denotes a countable subfamily of 8 such that p,-p2 belongs to the 
band generated (in db(x, %)) by Po, and 

holds (p,-p,)-a.e. Choosing A:= X in the above chain of equalities we see 
that p1 = p2. 

As for the mapping T, we assume that T,(fl (nlb))  = T,,(f,(nlb)) for 
fl , f2 EJ?(X, 23, nl b), which means that fl n = f2n on N. But this implies that 

which is the assertion. 

4.7. COROLLARY. For every E ~ ( E ( 2 3 ) )  we have T , (Tp[b )  = 7'. 

5. Another characterization of sufficiency (in terns of the extended corn- 
rnon conditional probability operator). Again we start with an experiment 
E = (X, 2l, 9) and a sub-a-field B of 2I. By Q, we denote the canonical 
embedding from 9Jlb(x, 23) into M (E(b)).  

5.1. THEOREM. Suppose that the n-Jield 9 is pairwise suflcient for B so that 
the extended common conditional operator T' given % is defined. jIhen the 
following statements are equivalent: 

(i) 8 is suficient for 8; 

(8 r e ( m b ( X ,  "W)ce,(w(x, B)). 
Proof. Only the implication (ii)* (i) has to be shown. 
Fixing A E  we write 
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with a bounded 8-measurable function g, on (X, a). For any O E 8 and BE 23 
we define the measure P,IB on (X, a) by 

P,IB(.):= P,I.nB). 

Then P, (3 E L(E), and hence (P ,  1 B) I 23 E ~ ( E ( 9 3 ) ) .  
Now we have 

= jE(1,123, P,)dP@ = P,(AnB) 
B 

whenever BeS ,  B E @ .  This implies that 

<(P,IB)IB, Y@(lA)> = <TC(P,lB)IBl, ellA)> 

= (Peens), Q ( l A ) >  = P,(AnB) 

for all BE%, B E  O, On the other hand, we have 

(tPolBll% Te(l,)> = <1P01B31% e%(gA)) 

for all BE%, B E  O.  But this implies that 

{g,d(pelB)= P , ( A ~ B )  for all BE%, BE@, 
B 

or equivalently 

E(lA1 8, Po) = g, Po-a.s. for all 0 E O .  

That is to say, g, is a common conditional probability of A given 8 with 
respect to 9. The sufficiency of b for B has thus been established. H 
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