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Abstract. The paper is devoted to a study of the extremal 
rearrangement property of statistical solutions of Burgers' equation 
with initial input generated by the Brownian motion or by a Poisson 
process. 

1. Introduction. The non-linear diffusion equation 

t > 0, x ER, u = ~ ( t ,  x), ~ ( 0 ,  X) = uO(x), also called the Burgers equation, with 
random initial data has been studied for a long time (see, e.g., 131). It describes 
propagation of non-linear hyperbolic waves, and has been considered as 
a model equation for various physical phenomena from the hydrodynamic 
turbulence (see, e.g., [12] and [5]) to evolution of the density of matter in the 
Universe (see [I51 and [8]). Due to the non-linearity, its solutions enter several 
different stages (depending on the viscosity parameter which in the present 
paper is chosen to be 1/2), including that of shock waves formation. 

Several mathematical papers written over the last few years have studied 
the question of large-time scaling limits for solutions of the Burgers equation 
with random initial data (see, e.g, [a], [l8], [20], and [q), the structure of 
shocks [16], and connections between the so-called intermediate asymptotics 
in Burgers' turbulence and the theory of extremal processes (see [I41 and [17]). 

In a recent paper [I I], the authors discovered an extremal rearrangement 
property of statistical solutions of the Burgers equation with initial velocity 
potential data of the form 
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Here LxJ denotes the largest integer smaller than or equal to x. Roughly 
speaking, the property can be formulated as follows. Let [,'s be independent, 
identically distributed, with either Gaussian or Poisson distributions. Then, 
among all the permutations of the components of the coefficient vector 
(c,, . . ., c,), the permutation satisfying the condition 

guarantees the maximum variance (energy density) of the limiting solution 
random field. 

- In this note we study a continuous-time version of the above extremal 
problem with initial input of the form 

where h ( y )  3 0 is a continuous function with compact support, and M(y) is 
either the Brownian motion or a Poisson process defined on the whole real line. 
Although the continuous-time phenomenon is similar to the one encountered 
for discrete moving averages, it turns out that the passage from discrete to 
continuous initial data requires non-trivial modifications in the proofs. We do 
not know if our results extend to processes other than the Brownian motion 
and the Poisson process. 

The following result parallels Theorem 1 of Hu and Woyczyriski [Il l .  
Notice, however, that the scaling in the continuous case is different from the 
scaling In the discrete case. 

THEOREM 1.1. Let u = u ( t ,  x) be a solution of (1.1) with initial data (1.3). 
Then, for each x ER, 

in probability as t GO, where, 

(i) Sf M (y) is the Brownian motion, 

(ii) if M ( y )  is the Poisson process, 

a (h) = J (exp ( j (eh(" + Y, - 1) (eh(y) - 1) dy) - 1) dx . 
R R 

The next result shows that the variance o(h) in (1.4) is an .increasing 
functional of kernel h. 

THEOREM 1.2. If hl (x) < h2 (x) for all x E supp (h), then a (h , )  < a(h,). 

Finally, our main result shows that the maximum rearrangement princi- 
ple, proved in [I l] uheorem 3) via the Schur convexity arguments (see, e.g, [9]) 
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also has a parallel for continuous-time moving averages. The result is again in 
the spirit of domination principles developed in [13]. 

THEOREM 1.3. Suppose h ( ; )  2 0 is a symmetric-uniwodal continuous function 
on R with compact support. Then 

(h) = max a (g), 
&=Ah 

where A, is the family of all continuous functions equimeasurable with h. 

The detailed definitions of notions used above, and some auxiliary results, 
are given in Section 2. Section 3 describes the relevant general domination 
principle, and the limit behavior needed in the proof of Theorem 1.1 is 
established in Section 4. Section 5 contains proofs of Theorems 1.1 and 1.2, 
and of Theorem 1.3 - the main result of this paper. Finally, in Section 6 
we provide some additional comments on the domination principle from 
Section 3. 

2. Preliminaries. Let us begin with establishing the notation that will be 
used throughout the paper. Let f (.) be a non-negative continuous function on 
R, with compact support, and let m(A) be the Lebesgue measure of the set 
A E R .  

DEFINITION 2.1. Functions f,, f, on R are said to be equimeasurable if, for 
all c > 0, 

rn ( { y :  f1 (Y)  2 4) = m ({y:  f2 ( Y )  2 4). 
DEFINITION 2.2. A function f is said to be unimodal if, for any c > 0, 

{ y :  f ( y )  2 c )  is an interval. 

Notice that this definition has been structured so that it can be easily 
adjusted for functions of several variables by, say, replacing "an interval" 
by "a convex set." Elsewhere, we plan to extend results of this paper in that 
direction. 

DEFINITION 2.3. A function f is said to be symmetric-unimodal i ff( . )  is 
a unimodal function and if there exists to such that, for all X E R ,  f ( t , - x )  = 

= f(to+x). 

LEMMA 2.1. Suppose f ( t)  is a continuous function with compact support such 
that suppj f )  c [a, b]. Then there exists a symmetric-unimodal and continuous 
function f such that 

Proof. Define I (c) = rn ( { y :  f ( y )  > c } )  for c 2 0. It is easy to see that l(c) is 
continuous and strictly decreasing in the interval [0, max f (y)]. We can extend 
I ( - )  to the interval [0, a) by assuming l (x)  = 0 when x ~ [ m a x  f (y ) ,  m). 
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Introduce a function f(-) satisfying the symmetry condition 

f ( (b  - a)/2 +a  - x) = f((b - a)/2 + a + x) for all x 2 0, 

and defined as follows: If x = (b -a)/2 + a + I(z)/2 with z E LO, rnax f (yH,  then 
we set f ( x )  = z. If x 3 (b- a)/2 + a + 1 (0)/2, then we set f(x) = 0. The function 
I(x) is continuous and strictly decreasing for x E [O, max f (y)]. Therefore)(.) is 
well defined, symmetric-unimodal and continuous on R. It is easy to check that 
f€df. 

In the rest of this paper, we shall always denote by j! this special 
symmetric-unimodal function in .Mf. 

The property of being symmetric-unimodal is preserved under con- 
volutions. The following result is due to Wintner [19]. -- 

PROPOSITION 2.1. Suppose f, and f, are two symmetric-unimudal functions 
such that their convolution is weEE deJined on R. Then 

Now, let 
Rf(x) = J f ( x - ~ ) f ( - , Y ) d ~ .  

It is easy to check that Rf (- x) = Rf(x). Since Rf (x) is an even function, we 
can restrict our attention to x E [O, a). 

Another function Rf (x), related to Rf(x), will be used in the remainder of 
this note. It is defined as follows. Let 

Using an argument similar to that of the proof of Lemma 2.1, it is easy to check 
that the zf ( a )  is well defined on [0, a), continuous and decreasing. 

3. A domination property. In this section, we will prove the main 
domination property of this note. The notation is that of Section 2. 

PROWSIT~ON 3.1 (domination property). Suppose f is a continuous and 
symmetric-unimodal function with compact support. Then, for any g E dlf 
and any x > 0, 

X X 

(3.1) SRg(Y)d~ G l R f ( ~ ) d ~  
0 0 

and 
m m 

(3.2) S ~ J Y ) ~ Y  = l Rf(y)dy. 
0 0 

To prove the above proposition, we need the following four lemmas. 
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LEMMA 3.1. Iff is a continuous and symmetric-unimodal function, then, for 
XECO, 031, 
(3.3) Rf (x) = Rj (x) . 

Proof. Since f (x) is symmetric-unimodal, we know that f(-x) is 
symmetric-unimodal as well. By Proposition 2.1, R,(x) is also symmet- 
ric-unimodal. Due to the fact that Rl(xi is even, Rf(x) is decreasing in 
x~ [0, a). In view of the construction of R,(x) given in Section 2, the result 
follows. 

LmhiA '3.2. For any g ~ d , . ,  the equality (3.2) holds true. 

Proof. We first notice that 

Indeed, this is so because 

Next, it is easy to check that 

max(l%)) Q) 

= ( J m ( { y :  f (y) z c)) dc)' = (lf ( y )  ~ Y Y  = I R ( Y ) ~ Y -  

Since both R,(y) and Rf (y) are even, the lemma follows. rn 

Before we state Lemma 3.3, some additional notation is needed. 
Let IT denote the permutation group on 11, 2, ..., n). For a vector 
6 =(a,, a,, ..., a 3  and n~n, write 

Denote by (aCll, qz1, . . . 
(a,, a,, . . ., a,) satisfying 
found in [I 11. 

, a[.,) a special non-increasing rearrangement of 
arll 2 a[,] . . . 2 a[,,,. The following result can be 

LEMMA 3.3. Let n E Z+, E = (c,, c , ,  . . . , c,,) E Rn, with ci 2 0 and let, for 
k = 1, ..., n-1, 

n-k 

Rk(C) = C CiCi+k.  
i =  1 
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If n a , ~ I I  is a permutation such that 

t h e ~ ,  for k = 1, ..., n-2, 

where { E l ,  . . . , I , )  r= (1, 2, . . . , n - 1), and 

We will use Lemma 3.3 in the proof of Proposition 3.1 by finding first 
a way to discretize our continuous moving average problem. 

without loss of generality, we assume supp(f) c [0, 11. Some auxiliary 
functions and notation will be used. Let, for x >, 0, 

and 

n -  1 

L (x) : = C f ( i /n) r I i ln, ( i  + l ) / n ) ( X )  
i = O  

1 " 
R, ( x )  : = - C f ((lxn l ) /n  + i /n)  f (i/n). 

n ,, 
If no { f ( i /n)) ;~o'  = { f (no (i)/n)):,k is a rearrangement of { f ( i / n ) ) f ~ h  such that 
no {f ( i / n ) ) L  1 satisfies condition (3.5), then we put 

and 

For the sake of simplicity we are adopting here a convention to the effect that 
n ( k )  = k whenever k > n. We shall keep this convention throughout the rest of 
this paper. 

From the definition of Rn(x)  we know that R,(x)  = R,(k/n) when 
k/n < x < ( k +  l ) /n .  Introduce a special permutation 5 ~ 1 7  such that 

is a rearrangement of {R,(k/n));=i$, satisfying the monotonicity condition 

Finally, define 

(3.9) R, ( x )  : = R, (RLxn 1). 
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LEMMA 3.4. I n  the above notation, as n + m, we have 
(i) f. (x) + f ( x )  uniformly for x E [ O ,  11; 

(ii) R, ( x )  4 j f ( x  + y) f ( y )  dy un$~rmly for x  E [O,  1 I; 
(iii) En ( x )  4 Rf(x), whepe Ef ( x )  is defined in Section 2; 
(iv) (x) +PIX) uniformly for all x E [ O ,  I], where f(x) is defined in 

Lemma 2.1 (with a = 0, b = I); 
(v) i n (x )  + j f ( x +  y ) f ( ~ ~ ) d ~ ,  where f is the same as in (iv). 

Proof.  (i) follows from the uniform continuity of any continuous function 
with compact support. To verify (ii) use the definition of integral and the fact 
that f (x + y )  f (y) is continuous and has a compact support on R x R. 

To verify (iii) we need the following steps. Notice that Rf (x) = 
= J f (x + y) f (y) dy is continuous, even and has compact support. Hence, by the 
definition of &(XI, we see that xf{x) is a continuous decreasing function on 
[O, cm), which is strictly decreasing on [0 , m ({y : R f ( y )  > O})]. 

From property (ii) we infer that, for a fixed c > 0 and for any E > 0, there 
exists an N such that, for all n 2 N, 

Therefore, using the continuity of Rf(x), we get 

Notice that 

Since Rf (x) is continuous, for each C E  (0, max Rf (x)) we have 

rn ((x: Rf (x) 2 c - 6)) > m ({x: Rf (x )  2 c ) )  > m ( { x :  Rf (x) 2 c + E)). 

Therefore, for any E > 0 there exist N ( E )  such that for all n 2 N we have 

# {k: Rn(k/n) > c-E) # { k  : R, (klrz) 2 c + E }  + 1 
2 m({x: Rj(x) > c } )  2 

n n 

From the definition of Rn(-) we know that Rn(.)  is decreasing, and 

( # { k :  R, (k /n)  2 d )  # {k: R,(k/n) 2 d ) + l  
n n ) < d .  

Therefore, we get 

C + E  > Rn (# { k :  R. (kin) 2 c + E )  + 1 
n ) 2 5 (m ( { x :  Rf (4 2 c) ) )  
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and 

# (k: R,(k/n) 2 c-E) 
Rfi (m ({x : Rr (4 2 c})) 2 Rn > C - E .  

n 

In other words, 

lim Rn (x) 2 c 3 R,, (XI, - 
n'm n+m 

where x = m({x: -Rf(x) 2 c)). This proves statement (iii). 
To verify (iv), we will proceed as follows. In this case, f ( x )  is defined as in 

Lemma 2.1, with a = 0 and b = 1, symmetric about the line x = 1/2. Notice 
that, for each c E (0, max f (y)), 

and {x: fn(x) 2 c) is one of the intervals: 

where k/n < 1/2 and k = rnin (i: f (i/n) 2 c). Since (3" (kin)) is a special 
rearrangement of {J;, (k/n)) which satisfies (3.5) and sincef~ Af, we infer that, 
for all c > 0, 

and 

as n + GO. As in the proof of (iii), we have 

so that j', (x) +f(x). 
Finally, observe that f€dr is a continuous function with compact 

support, that { A  (kin)) is a rearrangement of { f, (kjn)), and thatf,(x) uniformly 
converges to a continuous function (property (i)). This gives the uniform 
convergence in (iv). 

To verify (v), we just need to show that 

as n + ao. This follows in view of the uniform convergence in (iv). rn 



Maximum principle for Burgers' equation 37 3 

Proof  of P r o  posi t  ion  3.1. Using all of the above facts we infer that, for 
all x, k = LxnJ, 

where the first inequality follows from (ii), the third line by Lemma 3.3, the 
fourth line by (v), and the last line by Lemma 3.1. 

By construction, g is also continuous, symmetric-unimodal and belongs 
to dJ. Since Rp ( y )  [resp. Rf (y)] is a (modified) convolution of 8 [resp. f ] with 
itself (which is even), we get Rp(y) = Rf(y). 

4. The limiting behavior. Explicit solutions of the Burgers equation (1.1) 
can be obtained via the Hopf-Cole transformation (cf., e.g., [lo], [3], and [20]): 

where 

and U,(y )  = Km uo (x)dx is the initial velocity potential. As stated in the 
Introduction, the initial velocity potential is assumed here to be of the form (1.3). 

LEMMA 4.1. (i) If M ( y )  is the Brownian motbn, then, in probability, 

(4.4) t - )m lirn t-L'21(t7 x f i )  = &exp($~h{s)'ds). 

(ii) If M (y) is the Poisson process, then, in probability, 



374 Y. H u  and W. A. Woyczytiski  

Proof.  (i) If M ( t )  is the Brownian motion, then 

1 
E-I(~,  xf i )  = -Jexp 
JT 

' x J i - y ) 2  Eexp (Ih(y-z)dM(z))dy 
( 2 )  4 

and 

x exp (j ( h  ( J u ,  - r) + h  ($u, - z))' dr) du, du, 

( X - U , ) ~ +  (x-u,), 
= exp (J h2 (s) ds) j[ exp (- 

2 

x exp ( lh (Ju ,  -4 h ( d u ,  -z) dz) du, du, . 

Since h(.) has compact support as long as u, # u,, we have 

lim h(.&u, - z ) h ( d u , - z )  = 0. 
r+m 

Notice that the Lebesgue measure of the set {(u, ,  u,), u, = u,) is zero. By the 
Lebesgue Dominated Convergence Theorem, 

= 271 exp (S ha (s) ds). 
t+m 

Therefore lim,-, Var (t-lI2 1 ( t ,  x fi)) = 0, and an application of the Che- 
byshev inequality gives Lemma 4.1 in the case of the Brownian motion. 

(ii) In the case where M ( y )  is the Poisson process we have 

= I exp (- @) 2 e ~ p  (j (2") - 1) as) dy  = JZ;; exp (J (PI - 1) d ~ )  
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and 

x E exp (J(h (Ju ,  - z)+ ~ ( J u ,  - 2)) d M  (z)) duu, du, 

(x-ul)" ( ( x - u ~ ) ~  
= exp (2 - I) ds) jj exp ( - 2 

x ~ X P  (1 ( ~ X P  (h ( Ju l  -2)) - 1) 

x (exp (h ($u, -r)) - l)dr)du, du, . 
Since eh(')- 1 has compact support as long as u, # u2, we have 

lim (exp (h ( d u ,  - 2)) - 1) (exp (h (&u, -I)) - 1) = 0.  
t + m  

Again, the Lebesgue measure of the set ( (u, ,  u,), u, = u,) is zero, and an 
application of the Lebesgue Dominated Convergence Theorem gives 

Therefore, again lim,,, Var (t - 'I2 l (t, x 6)) = 0, and another application 
of the Chebyshev inequality yields Lemma 4-1 for the case of the Poisson 
process. ta 

LEMMA 4.2. Let Z be a solution of the Burgers equation described in (4.1). 
Then 

(4.8) ~ ( t - ~ / ~ ~ ( t ,  xJE) )  = 0 

and 

(4.9) ~ a r ( t - ~ l ~ ~ ( t ,  x J ; ) )  = J G d ( h ) ,  

where, for M ( y )  being the Brownian motion 

(4.10) d(h)  = exp(1h2(s)ds)J(exp(Jh(v-s)h(-s)ds)-l)dv, 
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and for M ( y )  being the Poisson process 

(4.1 1 )  B (h) = exp (2j (eh(")- 1 )  ds) 1 (exp (!(@("-@ - 1) (ah(-') - 1 )  ds) - 1) dv.  

Pro of. A verification of (4.8) is trivial, and we omit it. Let us check (4.9). 
In the case where M ( t )  is a Brownian motion we have 

x  e x p ( j h ( J E ( y 1  - r , ) - u ) h ( - u ) d u ) d ~ ,  dy2. 

Moreover, 

(4.13) e ~ ~ ~ h ~ ( ~ ) d u ) t ~ / ~ ~ ( x ~ - - x ( y ~ + y ~ ) +  ( Y I + Y ~ ) ~ -  4 ( ~ 1 - y ~ ) ~  

Subtracting (4.13) from (4.12), we get 

x ( e x p ( j h ( J i ( ~ ~ - ~ 3 - - u ) h ( - ~ ) d u ) - l ) d ~ , d ~ z .  

Changing variables v ,  = y ,  + y2 ,  v2 = $ (Y - ~ 3 ,  we obtain 

E (t - v4 z (t , ~4))' = 2exp (J  h2 (s) ds) jJ (x2  - xu1 + u?/4 - v!/4t) 

x e ~ p ( -  (x2-vlx+v:/4)-o:/4t)(exp({h(v2-u)h(-u)du)- l )duldv2-  
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Since exp (l h (0, - u) h ( - u) du) - 1 has compact support, by the Lebesgue 
Dominated Convergence Theorem we get 

lim E (t - 3/4 Z (t , x 4))' = Zexp (j h2 (3) ds) jj (x2 - xv, + v:/4) 
t -  m 

x exp(- (x2 -u,x+ v:/4))(expU h(v2 -u) h(-u)du)- l)dv, dv,. 

Finally, observe that 

which completes the proof of Lemma 4.2 in the Brownian motion case. 
In the case where M(t) is the Poisson process we proceed in a similar 

fashion: 

E ( ~ - ~ / ~ z ( ~ , x $ ) ) ~  = e ~ p ( 2 j ( e ~ ( " - l ) d u ) t ~ ~ ~ ~ j  

I 

x (exp (j (exp (h (J;(Y, -Y,)-- u)) - 1) (exp (h (- 4)- 1) du) - 1) d ~ l  d ~ 2 .  

Changing variables as above, after a computation similar to that in the 
Brownian case, we complete the proof in the case of the Poisson processes as 
well. rn 

The following rate-of-convergence result in the central limit theorem for 
dependent random variables is due to Bulinski 111. 

PROFTISITION 4.1. Let {Xi (t) , j E U (t)) be an m (+dependent field on a finite 
set U (t) c Zd, and let, for some s E (2, 31 and all t > 0, 

sup (E IXj(t)ls)li" = C,(t) < m. 
i ~ U ( 2 )  

< k, I U (t)l Mi (t) rnd("- '1 (t) + M ,  (t) md (t)  logtd - ')I2 I U (t)l 

+ I U (t)l 'I2 M,2 (t) m2d/s (t), 

where S (t) = (Var xjEvgl Xj (t))li2 > 0, k, = k ,  (4, IU (t)l is a number of points in 
U (t), M, (t) = 6-I (t) C, (t), and 8 (x) is the distribution function of N (0, 1). 

LEMMA 4.3. The distribution of t3I4Z(t, x 4) weakly converges to 
N(0, f i b ( h ) )  as t -r m. 

I 

P r o  of. Without loss of generality we assume that supp(f) c [0, 11. 
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Throughout this proof g, x 0, means that 

g1 (t) < 81 0) < *. 0 < liminf-, Imsup- 
1-m Q2 (t) t - m  g2 (0 

Let 

Then 

and 

Using Chebyshev's inequality, we get H ( t )  + 0 in probability as t + a. 
Similarly, we can get as t + oo the convergence in probability: 

For the remainder we have 

where 

Since supp (h) c [0, 11, r,~, (t) is a 2-dependent sequence. Using Proposition 4.1, 
we get 

IU (t)l = 2t5I8, C3 (t) = max (E  I?, (t)I3)ll3 =: t-lI4, 6 (t)=:l, M ,  (t) =t-l14. 
k 

Since d = 1, we have 

so that 
t - 3 1 4 ~ ( t ,  x&)+N(o, &b(h)). 
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5. Proofs of the maim results. In this section, we prove our main theorems. 
Suppose R ,  ( x )  and R, ( x )  are integrable functions with compact support on 
10, C], where C > 0. Let and R",(x) be defined as in Section 2. 
The following result is due to Burkill [4]. 

PROPOSITION 5.1. Suppose that a, (x)  and R2(x) satisfy the following 
relations: 

X x 

S ~ I ( Y I ~ Y  G S & ( Y ) ~ Y ,  0 < x < C, 
0 0 

and 
C C 

~ K ( Y ) ~ Y  o = S & ( Y ) ~ Y .  o 

Then, for all contlex continuous .functions 4, 

Now, proofs of the three theorems formulated in Section 1 can be given in 
quick succession. 

P roo f  of Theorem 1.1. Since 

by Lemmas 4.1 and 4.4 we have 

Proof  of Theorem 1.2. Notice that for all x, ~ E R  we have 

in the case' of the Brownian motion, and 

in the case of the Poisson processes. Since #(x )  = ex- 1 is an increasing 
function, the proof is complete. m 

Proof  of Theorem 1.3. In the case where M ( y) is the Brownian motion, 
since # (x) = ex - 1 is convex and R, (x) = 1 h (x + y)  h  ( y )  dy is continuous and 
has compact support, Propositions 3.1 and 5.1 give us the desired result. 

In the case where M ( t )  is the Poisson process, consider f (x) = eh(")- 1. It 
is easy to check that f (x) is continuous, symmetric-unimodal and has compact 
support if and only if h(x )  is continuous, symmetric-unimodal with the same 
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compact support. Also, 6- 1 is a strictly increasing function. Since h 2 0, we 
get also f 2 0. If 8 E Ah, then by a simple computation we have 8- 1 E Af. 
Therefore, as in the Brownian motion case, applying Propositions 3.1 and 5.1 
to the function f(.), we obtain the result in the Poisson process case. I 

6. A remark an the domination pr~perty. In Section 3, the domination 
principle of Proposition 3.1 showed that, for all x 2 0, 

where f is a non-negative continuous symmetric-unimodal function with 
compact support, and g ~ d ~ .  In this section we will show that, as a matter of 
fact, the left and the right-hand sides in inequality (6.1) are not too far from 
each other if their averages are not too far from each other. More exactly, their 
difference can be uniformly majorized by the difference of their averages. Define 

P R O P ~ ~ I T I ~ N  6.1. Let KJ and Rf be as in Section 2. Then, for any g € A f ,  

where the constant Rf(0) does not depend on g. 

Proof. Since f is symmetric-unimodal, R, = R,. Let 

Obviously, A (x) 2 0 for x 2 0. For x2 2 X, , 

Let x, = 0 in the inequality above. Since A(0)  = 0, we have 

For any x, > 0, 
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Therefore, for any x 3 0, we get 

A (4 < ,/2RJ (0) (e (8)  - e ( f  1). 
PROPOSITION 6.2. Let ~ ( g )  land p ( f )  be the same as in Proposition 6.1. 

Assume that Rf satisJes the Lipschitz condition with constant Mf, i.e., for any 
y,, y, 3 0 ,  we have 

IR,(Y,)--Rf(Y,)l G M f l Y , - - ~ , l .  

Then, for any g E.&%"~, 

where the constants do not depend on g. 

Proof.  For y,  > y,, we have 

Therefore, for y, > y2 ,  we have 

Observe that we have Rg(0)  -Rf (0) = 0. Indeed, we can divide both sides 
of (3.1) by x, and let x + 0. Hence we get 

Since R f  (0) < Rg (0) (because Rg is a rearrangement of R,), and since for g E df 
we have 

Rg(0)  = S ~ ( - Y ) ~ ( - Y ) ~ Y  = J f ( -Y ) f ( -Y )dY  = Rf (019 
l 

our observation follows. 
Taking y, = 0 in (6.3), we get 

If Kg ( y )  - RJ ( y )  2 0, using (6.3), we obtain 

(6.5) 2 sup A ( y ) 2  
O $ y < m  

(Rg (Yz ) -Rf  ( ~ 2 ) ) d Y z  
Y - (ag(~) -RpLy))lMf 
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If zg (y) - R, ( y )  G 0, using (6.41, we have 
Y + IRJ(Y) - RB(y)) /Mf  

(6.6) 2 sup A IY) 2 
O C y G m  I ( R ~  (Y~~--~,,(YI~)~YI 

Y 

Combining (6.5), (6.6) and (6.11, we get (6.2). a 
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