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Abstract. In this paper we present a method of computer 
investigation of chaotic behavior of stationary a-stable stochastic 
processes, i.e., an important class of processes with cadag trajectories. 
Our results are based on spectral representations of such processes and 
on theorems characterizing their ergodic and mixing properties. 
Computer simulation techniques, appropriate numerical integration 
algorithms and computer graphics provide some results useful in 
applications. 

1. Introduction. A large number of papers on chaotic properties of 
stochastic processes have been devoted to Gaussian processes, starting from 
Maruyama [14], Grenander 163 and Fomin [5]. A chaotic behavior of stable 
processes was studied by Cambanis et al. 131. See also Weron 1181 and 
Podgbrski and Weron [lq. 

All infinitely divisible processes (i.e., all or-stable processes included) share 
with the Gaussians the property that pairwise independence implies mutual 
independence (Maruyama [15]); this follows from the fact that integrals of 
deterministic functions with respect to a Poisson measure are independent if and 
only if the functions have disjoint supports. It is reasonable, therefore, to guess 
that mixing (asymptotic independence) would be equivalent to- asymptotic 
pairwise independence of random variables in an infinitely divisible process. 
While Maruyama did not state the following result explicitly, it is contained in 
the proof of his theorem characterizing mixing of infinitely divisible processes. 

PROPOSITION 1 .I. A stationary infinitely divisible process { X t t ) }  is mixing if 
and only if for all 8,, 8, E R we have 

lim (exp(iO, ~ ( t ) ) ,  exp(i8,~(0))) = (exp(i0, x(o)), 1) ( 1, exp(i8,~(0))). 
t+ m 

This means that all stationary a-stable processes are like the Gaussians in 
the sense that mixing is determined by the bivariate marginal distributions. 
With Gaussian processes, however, it suffices to take 8,  = 8, = 1, as Gaussian 
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processes are mixing if and only if the covariances converge to zero (see [4]). 
A recent result due to Gross [7] shows that the non-Gaussian a-stable 
processes share this property with their Gaussian counterpart. 

In contrast to Maruyama [15], we employ here, as a simple tool, the 
concept of the dynamical functional and combine it with the spectral 
representation of stationary a-stable stochastic processes developed by Hardin 
[8], [9]. As a resuIt we are able to present, in a rather simple way, a systematic 
study of the chaotic behavior of non-Gaussian stationary a-stable processes. In 
this way we obtain a powerful tool for computer investigation of mixing and 
efgodic properties of such processes. 

The significance of these properties for studying and modeling the chaotic 
.- 

behavior of physical systems is discussed in [13]. 

2. Stationary a-stable processes. Let us recall that a real random variable 
Y has a stable distribution if for every a, b > 0 and independent copies Yl ,Y, of 
Y there exists c > 0 such that 

For every stable random variable Y there exists a unique a E (0, 21 (the index of 
stability) such that the number c which appears in the above definition is 
uniquely determined by the equality c = (a" + be)'/". If the random variable 
Y has a symmetric stable distribution with index u, then its characteristic 
function is of the form 

where c ,  is some positive constant (for more details we refer to Breiman 121). 
Now our aim is to describe a-stable stochastic processes X = {X(t): ~ER}. 

DEFINITION 2.1. A stochastic process X is called symmetric a-stable or LPvy 
SaS or, shortly, SaS process for a ~ ( 0 ,  21 if for every  EN and any 
al, . . . , a, E R, tl , . . . , t,, E R, the random variabIe Y = zy=, aiX(t,) has a sym- 
metric stable distribution with index a. 

Let X be an SaS process, ct~(0,  21. For an SaS random variable E: set 
1 1  Y 1 1 ,  = c$la. Then tl.ll,l A " defines a norm in the case 1 < a < 2 and a quasi- 
-norm in the case 0 < a < 1 on the space lin(X(t): ~ER},  metrizing the 
convergence in probability. Then, for Y ~ l i n  (X(t): t E R) we have 

Let Lo = LO(X) denote the closure of the linear span lin{X(t): t E R) in the 
space L0(i2, F, P) of all random variables in (0, P) with respect to the topology 
of convergence in probability. Taking the closure of lin{X(t): t E R} in Lo with 
respect to the norm (quasi-norm) I 1 . I I a  we obtain the space La = La(X). If X is 
a stationary process, then for Y E  La and t E R we have 1 1  ;I; YIIa = 11 YII,. Hence 
(I;)rER is a group of isornetries on 
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D ~ T I O N  2.2. Let (E, &, A) be a measure space. Let us introduce the 
family of sets 

The map Z: go 3 A 4 Z(A)  E Lo is called a stochastic SaS measure with a control 
measure 1 if: 

(i) Z ( 0 )  = 0 with probability 1; 
(ii) for the law of Z ( A )  is described by Eexp(iOZ(A)) = 

= exp(-]BiV(A)); 
(iii) for every sequence {An)nEN of pairwise disjoint sets from 8, the 

sequence of random variables (Z(AJ),, is independent and such that 
" Z(AJ with probability 1. z(UnW= An) = L= 

According to the definition of stochastic integral of deterministic functions 
with respect to a-stable random measures (see, e.g., [17]), for every function 
f€LU(E, 8, A) one can define a stochastic integral jE fdZ as an a-stable 
raxldom variable with the law given by 

The spectral representation theorem for a stationary stochastic SaS process 
x = {X(t)) , , ,  (see, e.g., [S], [9]) says that there exist a measure space (E, 8, A) 
and a group (Q of isometries of La(E, C, I) described by a function 
f, €La(E, &,A) such that 

X(t)=jU,f',dZ for all ~ E R .  
E 

If X is measurable, then the above group of isometries is strongly continuous 
(see [3], Theorem 6). 

We find it interesting to end this introduction by computer construction of 
SaS stationary processes for two different values of the parameter or. 

Figs. 2.1 .and 2.2 present the visualization of the stationary a-stable 
Ornstein-Uhlenbeck process (X(t)) for a = 1.7 and a = 1.3, respectively. 
Both figures show ten typical trajectories of the corresponding stationary 
Ornstein-Uhlenbeck process ( X ( t ) )  plotted versus t E [O, 11. The trajectories 
are represented by fine lines. The two pairs of quantile lines defined by 
p ,  = 0.25 and p, = 0.35 are approximately parallel indicating the stationari- 
ty of the process. 

The method of computer approximation and simulation of stochastic 
integrals with a-stable measures as integrators is described in detail in Janicki 
and Weron 11 11, [12], while a corresponding result concerning convergence of 
the method is contained in [lo]. 
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0.25 0.5 0.75 

Fig. 2.1. Computer approximation of the S,,,(l, 0,O)-valued stationary Omstein-Uhlenbeck process 

0.25 0.5 0.75 
Fig 2.2. Computer approximation of the S,,,(l, 0, 0)-valued stationary Omstein-Uhlenbeck process 
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3. Dynamicad fmcticnnal. Suppose that X is a measurable stationary 
stochastic process. 

DEFIN~ION 3.1. The map @: EO(lY) x R + C defined by 

(3-1) @(Y, t) = Eexp (i(?; Y- Y)} 

is called the dynamical functional of the stochastic process X. 

The dynamical functional was introduced in Podgbrski and Weron [16]. 
For each YE hO(X) the function @(Y, a) is positive definite. If the process 

X is in addition stochastically continuous, then the group (QgB is continuous 
on LO(X) with respect to the topology of convergence in probability. Con- 
sequently, @ is continuous in the product topology on EO(X) x R. By stationari- 
ty we have, for Y EC(X), 

@(K - t) = Eexp(i(T-, Y- Y)) = Eexp{i(Y- Y)} = @(Y, t) ,  

and thus, if X is symmetric, then @ is real and 9(Y, -t) = 9(K t). 
It is convenient to characterize ergodicity and mixing in terms of the 

dynmical functional (see Janicki and Weron [12]). 

PROPOSITION 3.1. Let X be a stationary stochastic process. Then 
(i) % is ergodic if and only if for each Y~lin{X(t): t ER} we have 

(ii) X is mixing if and only f for each Y ~lin{X(t): t E R} we have 

lim @(Y, T )  = IEeiY12. 
T-m 

We make use of this proposition in next two sections. 

EXAMPLE 3.1. Dynarnical functional for the S d  Ornstein-Uhlenbeck process. 

From the spectral representation theorem for SaS stationary processes it 
follows that the Ornstein-Uhlenbeck process {X(t): t€[O, co)) as a moving 
average process can be represented on the corresponding space La by the 
function fo(x) = e-*lco,,,(x) and the group of shift operators U,g(x) = g(x-t). 
Let Y and correspond via the spectral representation theorem to h and U, 
respectively. Then we have 

Define the set of four functions from the linear span lin(U, fo(x): t 2 0): ' 
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Fig. 3.1. Typical realizations of the dynamical functional for S1.7S Omstein-Uhlenbeck process. 
Plotted are @*(hi, t )  versus t e  [0, 81 for the same set of four functions hi as in (3.3) 
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According to (3.2) the dynamical functional @(Y, t )  for the SuS Ornstein 
-Uhlenbeck process ( X ( t ) )  can be evaluated as 

where the functions h correspond to random variables E Fig. 3.1 contains 
numerical evaluations of @*(hi, t )  for a = 1.7 and the above-defined functions 
hi(x), where i = 1,  . . . , 4. These numerical results were obtained with the use of 
the Richardson method (see Bjorck and Dahlquist [I]) providing approximate 
values of-appropriate integrals with high order of occuracy. Plotted are 
@*(hi, t) versus t~ [ O ,  81. Note the different asymptotic values of the dynamical 
functional represented by dotted lines for the functions hi(x). - 

4. Mixing property of stable processes. It is clear that mixing is a stronger 
property than eigodicity. A stationary Gaussian process with the harmonic 
spectral representation 

is mixing if and only if its covariance RCu) = jmm eiUBd;l(0) tends to 0 as u -t co. 
For non-Gaussian stationary stable processes Cambanis et al. 131, Theorem 2, 
obtained a characterization of mixing SaS processes in the language of spectral 
representations. 

Applying the dynamical functional of an SaS stationary process we can 
obtain another characterization of the mixing property. 

THEOREM 4.1. Let X be a stationary Sols process with 0 < a < 2 and the 
spectral representation 

Then the process X is mixing if and only if for any function h E lin{U, f,: t  E R )  

(4.2) lim I\Uth-hllt = 2llhll:. 
t+m 

Proof.  By Proposition 3.1 (ii), the process X is mixing if and only if for 
any YE lin (X,: t E R) we have 

lim @(I: t )  = E leiyt2. 
t-m 

From the spectral representation of X given by (4.1) and the definition of the 
dynamical functional it follows that the above statement is equivalent to the 
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fact that for any h ~lin{U, f,: t ER)  we have 

which completes the proof. I 

EXAMPLE 4.1. Numerical illustration of the mixing property for the SaS 
Orristein-Uhlenbeck process. 

Taking into account (4-2) it is enough to recall Example 3.1. Consider the 
same four functions h,,  . . ., h,. In order to check the mixing property by 
Theorem 4.1 it is enough to evaluate lim,,, @*(h, t). 

The numerical evaluation of the dynamical functional for the S1.7S 
Ornstein-Uhlenbeck process for the given functions hi is presented in Fig. 3.1. 
The theoretical limits exp(-2 11 hill::;) are denoted by  the dotted lines and their 
values obtained by numerical integration are the following (from top to 
bottom): 

0.308, 0.259, 0.193, 0.067. 

It is clear that in all four cases the curves representing the dynamical functional 
approach well the theoretical limits even on the interval [O, 81. Fig. 3.1 
illustrates a typical behavior of any mixing SaS stationary process, so the 
discussed computer method seems to provide useful quantitative information 
on this property for a given stochastic process. 

5. Ergodicity of stable p~ocesses. The characterization of ergodic processes 
in terms of their spectral representation plays an important role in the ergodic 
theory of SaS processes. The characterization given below was established in 
[3], Theorem 1. 

THEOREM 5.1. Let X be a stationary stochastic Sols process with spectral 
representation of the form {J,U, fodZ). Then X is ergodic ifand only $for a e r y  
function h s G{U,f,: t E R) we have 

and 

lim 'kj 11 U,h-hll:dt = 2 Ilhll:. 
T-m T o  

An application of Theorem 5.1 allows us to show that any real-valued SclS 
process with harmonic spectral representation is not ergodic. 

Let us recall that an SaS process (X(t)ItER has a harmonic spectral 
representation if there exists a complex stochastic measure W defined on 
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(R, a,, p) with finite control measure p such that 

For a stationary SaS process ( X ( t ) ) ,  with such a representation there 
exists a positive constant c, such that for  EN, a l ,  . . . , ~ , , E R ,  tl ,  . . . , ~ , E R ,  
we have 

(see [lg]). 

EXAMPLE 5.1. Numerical illustration of the lack of the ergodic property for 
the SaS hrmonizable process. 

In this example we would like to examine the behavior of the ScrS 
harmonizable process. Let us recall that its spectral representation is given by 
fo(x) = I,,,,,(x) and U,g(x) = cos(tx)g(x). Take dW(x) = a-'dL,(x), where 
L,C) stands for the SaS Etvy motion with a = 1.7. 

As in Example 3.1 we define the set of four functions h, ,  . .. , h, from 
the linear span lin(Ut f,(x): t 2 O), taking the same linear combinations as 
in (3.3). 

Fig. 5.1 presents the numerical results obtained for the SaS harmo- 
nizable process with this set of functions hi(x). Plotted are time averages 
corresponding to equations (5.1) and (5.2), versus TE[O, 201, as indicated. 
The lower and upper dotted lines represent the theoretical values of limits: 
211hillz, 411hi11.2", respectively. Their values are presented in the following 
table : 

Theoretical values 

In all four cases the curves which represent the time averages of the S1.7S 
harmonizable process do not approach the corresponding theoretical limit 
values indicated by the dotted lines. As we pointed out, SaS harmonizable 
processes are never ergodic for a < 2. Thus, this example illustrates a typical 
non-ergodic behavior of the SuS harmonizable processes. Note that in a sharp 
contrast to the Gaussian case, for or < 2 the Orstein-Uhlenbeck process is 
never harmonizable since the first one is ergodic and the second is not so. 
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5 10 15 

Fig. 5.1. Illustration of the fact that the symmetric 1.7-stable harmonizable process is not ergodic 
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