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AFFINE- AND SCALE-EQUIVARMNT M-ESTIMATORS 
LN LINEAR MODEL* 

Abstract. M-estimators of regression parameter vector in linear 
model, studentized by a suitable afine-invariant and scale-equivariant 
scale statistic, become a n e -  and scale-equivariant. We study some 
asymptotic properties of studentized M-estimators and give a brief 
review of suitable studentizing statistics, proposed in the literature. 

1. Lntsduction. Consider the linear regression model 

(1-1) Y = Xfl+E,  

where Y = (Y,, . . . , Y,)' is a vector of observations, X = X, is a (known or 
observable) design matrix of order n x p, JP = , . . . , j,)' is an unknown 
unobservable parameter, and E = (El, . . ., En)' is a vector of i.i.d. errors with 
an (unknown) distribution function (d.f.) P. Among various robust estimators 
of B, the M-estimators and GM-estimators apparently attained the most of the 
popularity. 

Given an absolutely continuous function Q: 92' + W1 with derivative $, 
we define an M-estimator M,, of #i as a solution of the minimization 

A 

C p ( q - x : t ) : =  min 
i =  1 

with respect to t E 9?< where xi is the i-th row of X,, i = 1, . . . , n. Such an 
estimator is robust with respect to deviations in the distribution of El (see [g]) 
and its influence function is bounded provided X, is a fixed suitably bounded 
matrix. However, M ,  is not robust with respect to X; it is sensitive to eventual 
leverage points in X and the influence function of M A  is unbounded in the case 
of random X, (see [6]). The latter shortage is usually treated by using the 
generalized M-estimators (GM-estimators; see, e.g., 1161). 
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The M-estimator defined in (1.2) is afine-equitruriant, i.e., 

(1-3) Mn(Y+Xb) = M,(Y)+ b for all YE@, b E WP. 

However, such an M-estimator is generally not scale-equivariant, i.e., the 
following condition does not hold in general: 

(1.4) l&l,(aY) = aMn(Y) for all a > 0, YEW". 

This could be regarded as a lack of robustness, because such an estimator of 
fl is uncontrollably sensitive to eventual changes in the measurement precision 
of the laboratory, etc. For this reason, M-estimators or GM-estimators of j? are 
calculated simultaneously with some measure of scale; for instance, given the 
observations (xi, K), i = 1, .. . , n, a GM-estimator M, of j? is calculated as 
a solution of the system of equations 

where t,h: B p f  + 94' and S, is an estimator of scale which is computed 
simultaneously with Mn by means of the equation 

with some X :  W 1  + W1. Hence, we supplement the GM-estimator by an 
estimator S, of scale and in this way we obtain an afine- and scale-equivariant 
estimator of B. As an alternative to the proposal (1.5)--(1.6), we may consider 
studentized M-estimators (or GM-estimators) defined as a solution of the 
minimization 

C ((x - xi t)/Sn) : = min 
i =  1 

with an appropriate scaIe statistic S, = S,(Y), not necessarily one defined in 
(1.5) and (1.6), which is aflne-inuariant and scale-equivariant in the sense that 

(1.8) S,(Y+Xb) = S,(Y) for all Y E W " ,  b EP, 

and 

(1-9) S,(aY)=aS,(Y) for all a > O ,  Y E @ .  

Generally, S,  consistently estimates its population counterpart S ( F )  and 
in this way brings an additional information about the model. However, the 
exact value of S(F) is not so important in the equivariant situation; our 
ultimate goal is to obtain an afine- and scale-equivariant studentized 
M-estimator. On the other hand, it may be of interest to estimate the 
covariance matrix of M,, itself. 
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In the present paper, we shall characterize some asymptotic properties of 
studentized M-estimators. In Section 2 we shall formulate the asymptotic 
representations of M,,  which were derived in El31 with the aid of the 
second-order uniform asymptotic linearity of M-statistics of JureEkovi and Sen 
[10], These asymptotic representations yield many interesting properties of 
studentized M-estimators, some of them even not yet explicitly mentioned in 
the literature. 

We shall notice that the asymptotic representation of a studentized 
M-estimator generally involves S, unless F is symmetric or in some other 

- 8 
special cases. The covariance matrix of the asymptotic distribution of 
n1/2(M,,-jJ) includes S(F),  and hence (and this applies already to the location 
model) the studentized MI-estimator is not any more asymptotically minimax 
over a contaminated distribution family [a]. However, the asymptotic minimax 
property of nonstudentized M-estimator concerns the contamination "neigh- 
borhood" of one fixed distribution and not that of a distribution law; the 
sensitivity of an estimator to a "contaminated distribution shape" would be an 
interesting and challenging problem. 

We shall also examine which scale statistics are suitable for the studen- 
tization in a regression setup. Surprisingly, not many afEne-invariant and 
scale-equivariant scale statistics for the linear model were described in the 
literature. The classical scale statistic, the root of the residual sum of squares, 

with the projection matrix fin = X ( X ' X ) - ' X ' ,  satisfies (1.8) and (1.9) but is 
sensitive to deviations from the normal shape, and hence nonrobust. In Sec- 

I tion 3 we shall give a brief review of suitable alternative studentizing statistics 
for the linear model, which were proposed in the literature. 

2. Asymptotic representation of studentized Mestimators. We shall work 
with the model (1.1) and with the studentized M-estimator of B defined as 
a solution of the minimization (1.7). Assume that Q: W 1  + B1 is absolutely 
continuous with the nonconstant derivative $ = Q' which could be decomposed 
into the sum 

where $, is an absolutely continuous function with absolutely continuous 
derivative qa(z) = d$,(z)/dz, t,b, is a continuous, piecewise linear function which 
is constant in a neighborhood of + a, and $, is a nondecreasing step-function. 
Either of functions $,, $,, $, may vanish. 

Moreover, we shall impose the following conditions on the quantities 
in (1.7): 



(M.l) S, = S,(Y) > 0 a.s., satisfies (1.8) and (1.9) (affine-invariance and 
scale-equivariance) and there exists a functional S = S(F)  > 0 such that 

(M.2) The function h(t) = Jg((z- t)/S)dF(z) has the unique minimum at 
t = 0. 

(M.3) For some S > 0 and q > 1, 
m 

(121 sup sup IK(e-"(z+u)/~)l)~d~(z) < oo 
-4r IuISd 1ulCS 

and 
cO 

j jz2 sup I,b;((z+u)/s))"d~(z) < m. 
- m  lulSd 

(M.4) $, is a continuous, pieccwise linear function with knots at r,, . . . , r,, 
which is constant in a neighborhood of + m; hence the derivative t,b: of $, is 
a step-function, 

i&(z)=uv for rv < z < r v + l ,  v =0, 1, ..., k r  

where cl,,or ,,..., u k ~ R 1 ,  u,=o?,=O and -m < r , < r ,  < ... < r , < r , + ,  
= oo. We assume that f (z) = dF(z)/dz exists and is bounded in neighborhoods 
of Srl , . . . , Srk. 

(M.5) $,(z) = A ,  for q, <z<q ,+ , ,  v = 1, ..., m, where 

-ao=q, < q , <  ... <q,<q,+,=cx,, --ao<<*<II ,<. . .<A,<oo.  

We assume that f (z) = dF(z)/dz and f '(z) = d2 F(z)/dz2 exist and are 
bounded in neighborhoods of Sq,, ..., Sq,. 

Remark. Condition (M.3) is essentially a moment condition which holds, 
e.g., if @,' is bounded and either 

(2.2) $r(z)=O for z < a  or z > b ,  -m<a<-b<oo ,  

or 
m 

(2.3) S l~(~+YdF(z) < co for some E > 0. 
-m  

Conditions (M.4) and (M.5) show explicitly the trade-off between the smooth- 
ness of $ and smoothness of F. The class of $,-functions covers the usual 
Huber's and Hampel's proposals (see [5]-[7]). 

Moreover, we shall impose the folIowing conditions on the matrix X,: 

(X.1) xi, = 1, i = 1, ..., n. 
(X.2) r a - ' ~ ~ = ,  j/xi)14 = O(1) as n + oo. 
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@,3) lim,,, Q, = Q, where Qn = n-IXLX, and Q is a positive definite 
(p x p)-matrix. . 

Let M, be a solution of the minimization (1.7); The definition of M,, should 
be supplemented by a rule as defined in the case. S, = 0; however, this event 
happens with probability 0 and the choice of the rule does not affect the 
asymptotic behavior of M,. If @ = e' is cofitinuous (i.e., $, = 0), then M, is  
a solution of the system of equations 

The system (2.4) may have more roots corresponding to the local minima, etc.; 
however, we may show that, under our conditions, there ex5sts a root of (2.4) 
which is a &-consistent estimator of I .  In situations of nonconvex g we are 
rather able to work with this root than with the global minimum of (1.7). 

On the other hand, if $ is a step-function and it is nondecreasing, then M, 
minimizes a convex function and its consistency and asymptotic normality may 
be proved by using a different argument. 

The asymptotic representations of M, will involve the functionals 

The asymptotic representations are formulated in the following theorems. 

THEOREAI 2.1. Consider the model (1.1) under the conditions (M.I)-(M.S), 
(X. 1HX.3) and assume that y ,  > 0 and $, = 0. 

(i) Then there exists a root M, of the system (2.4) such that 

(ii) Any root of (2.4) satisfying (2.9) admits the asymptotic representation 

where IIR,IJ = Op(n-l) and el = (1, 0, ..;, O)'€gP. 

26 - PAMS 15 



THEOREM 2.2. Consider the linear model (1.1) under the conditions (MA), 
(M.2), (X.lj(X.3) and assume yT > 0 and.$, = $, = 0. k t  Mn be a point of the 
global minimum of (1.7). Then 

and M, admits the representation 
n 

(2.12) ~H-B=(n~:)-1Qi1Cxi$(E,lS)-(r5/~T)(sJ~-l)el+~Hl 
i =  1 

. . 

where IIR,II = 0,(n-3") as n -P ca . 
Remark. Notice that S, affects only the first component (intercept) of M ,  

in the representations (2.10) and (2.12). 

Combining the above results, we immediately obtain the following result 
for the general class of M-estimators. 

THEOREM 2.3. Consider the model (1.1) under the conditions (M.lHM.5) and 
(X.lHX.3). Let i,b be either continuous or monotone and let y ,  + y: > 0. Then, for 
any M-estimator M,, satisfying n1I2 11Mn-811 = Op(l), 

where 

11411 = (0.6-'1 B h = 0 ,  
Op(n- 3/4) otherwise. 

Theorems 2.1-2.3 follow, after a slight modification, from JureEkovi and 
Welsh [13]; hence, we omit the details. We shall rather concentrate on various 
interesting asymptotic properties of studentized M-estimators, which are 
implied by the above representations. 

PROPOSI~ON 2.1. Under the conditions of Theorem 2.1, let Mkl) and Mi2) be 
any pair of roots of the system of equations (2.4) both satisfying (2.9). Then 

Proof. By Theorem 2.1, every root of (2.4) satisfying (2.9) admits the 
asymptotic representation (2.10); this immediately implies (2.15). 

PROPOSITION 2.2. Assume that 

Then, under the conditions of Theorems 2.1-2.3, 
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has the asymptotic p-dimensional normal distribution Np(O, 02Q-I);  here Ti 
stands for yi, y* or yi+y:, respectively, i = 1 ,  2. 

Proof. The asymptotic distribution follows from the respective represen- 
tations in Theorems 2.1-2.3 via the central limit theorem. 

PROPOSITION 2.3. Assume (2,161 and the symmetry of F and e, i.e., 

(2.18) P ( z ) + P ( - z ) = 1  and Q(-z )=p(z ) ,  ~ € 9 ~ .  

Then, under the conditions .of either of Theorems 2.1-2.3, 

where llR,ll = Op(n-l) provided $, = 0 and llRRll = ~ ~ ( n - ~ ' ~ )  otherwise, More- 
over, n1i2(M,-#) has the asymptotic normal distribution 

with the same fi as in Proposition 2.2. 

Proof. Notice that yf = 0 in the symmetric case; the proposition then 
follows from the asymptotic representations in Theorems 2.1-2.3 and from 
Proposition 2.2. FA 

Without symmetry conditions, but assuming that S,, itself admits an 
asymptotic representation, we could still obtain a representation and asymp- 
totic distribution for M,: 

PROPOSI~ON 2.4. Assume that Sn admits an asymptotic representation 

where 1" q(z)dF(z) = 0 ,  qz = J> q2fz)dF(z) < co. Then, under the conditions 
of Theorems 2.1-2.3, 

and n1/2(Mn-j3) has the asymptotic normal distribution 

(2.23) 4 ( O ,  fi2 {c2Q-' + [a; -2a12]el e;)) 
with 

Proof. The asymptotic representation (2.22) follows from the respective 
representations in Theorems 2.1-2.3 combined with (2.21). The asymptotic 
distribution then follows from the central limit theorem. s 



Remark  1 .  In the location submodel corresponding to X, = I,, the 
studentized M-estimator of the location parameter is asymptotically normally 
distributed with zero expectation and with the variance 

Remark  2. Notice that, in the linear regression model (1 .1)  with intercept 
and with asymmetric distribution d errors, the studentization has an impact 
only on the intercept component of the estimator; the variance of the intercept 
component in the asymptotic distribution coincides with q2. On the other 
hand, the marginal covariance matrix corresponding to (p,, . . . , B,)' in the 
asymptotic distribution is Q(1)(u2/y'~),  where Q(') is a submatrix of Q-l.  

3. Some studentizing scale statistics. In this section we shall briefly describe 
some scale statistics S,, which are afine-invariant and scale-equivariant (see 
(1.7) and (1.8)). The root of residual sum of squares (1.10) satisfies both (1.7) and 
(1.8) but is closely connected with the classical normal model and sensitive to 
the deviations .from the same. 

(i) An extension afMAD (median absolute deviatioh from the median) to the 
model (1 .1 )  was proposed by Welsh [18]. Starting with an initial &-consistent 
and affine- and scale-quivariant estimator #?(' of p, let us put 

( 3 - 1 )  ~ ( p )  = ~-x:gO, i = 1, ... , n, 

Then S, satisfies (1.8) and (1.9) provided B, is f i n e -  and scale-equivariant. 
Moreover, under some regularity conditions on F, S,, is a &-consistent 
estimator of the population median deviation; Welsh [18] also derived its 
asymptotic representation of type (2.21), hence Proposition 2.4 applies. 

(ii) L-statistics based on regression quantiles. The a-regression quantile &a) 
for the model (1 .1 )  was introduced by Koenker and Bassett [I41 as a solution 
of the minimization problem 

C ea(x-x i$ ) :  = rnin with respect to t €gP, 
i= 1 

where 

(3.5) ~ , ( z ) = ~ z l { a ~ ~ z > ~ ] + ( l - o l ) ~ [ z < ~ ] ) ,  ~ € 9 ' .  
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The Euclidean distance of two regression quantiles 

13-61 ~ , = I l B n ~ ~ z ) - t n ~ a l ) l l ,  o < a l < % < l ,  

satisfies (1.8) and (1.9) and S, 3 S(F) = F-l(a,)-F-l(al); its asymptotic 
representation follows, e.g., from that for B,(a) derived by Ruppert and Carroll 
[17]. The Euclidean norm may be replackd by L,-norm or by another 
appropriate norm. An alternative statistic is the deviation of the first compo- 
nents of regression quantih, S, = bfil (a,) -Bnl (al), 0 < or, < a, < 1, with the 
same population counterpart. 

More generally, Bickel and Lehmann [I] proposed various measures of 
spread of the distribution F, which could also serve as the scale functional SIP'); 
the corresponding scale statistic is then an estimator of S(F) based on 
regression quantiles. As an example, we could consider 

where A is the uniform distribution on (4, 1 -6), 0 < d < 9; then 

(iii) Falk [33 proposed a histogram- and kernel-type estimators of the 
value l/f (F-'(a)), 0 < a < 1, in the location model, f(x) = dF(x)/dx. Dodge 
and JureEkovi 121 extended Falk's estimators to the linear model in the 
following way. 

First, 

(3.9) HIP' = ( B n l  (a + vn)- IT,, (a -vn))/(2vn), 

where 

(3.10) v , = ~ ( n - ~ / ~ )  and nv,-+m a s n - a ,  

is the histogram-type (n~,)~/~-consistent estimator of l/f(F-'(a)), satisfying 
(1.8) and (1.9). 

Second, considering the kernel function k: 9' + 9t1 with a compact 
support, which is continuous on its support and satisfies 

(3.1 1) j k(x)dx = 0 and j xk(x)dx = - 1, 

we could construct the following kernel-type estimator of l/f ( F - I  (or)): 

1 M-U 



where 

(3.1 3) Y , + O ,  nv,2+m and nvi -+O a s n j c o ;  

then, again, I&) is an (n~,)~/~-consistent estimator of l/f (F-'(a)), whose 
asymptotic variance may be less than that of (3.9) for some kernds, Regarding 
their lower rates of consistency, we shall not use the above estimators just for 
a simple studentization, but rather in an inference on the population quantiles, 
based on the regression data. 

(iv) JureCkovk and Sen [ll] constructed scale statistics based on regres- 
sion rank scores, which are dual to the regression quantiles in the linear 
programming sense and represent an extension of the rank scores to the linear 
model (see [4] for a detailed account of this concept).- ore precisely, 
regression rank scores rim(a) = (anl (a), . . . , &,,(a))', O < a < 1, for the model 
(1.1) are defined as a solution of the maximization 

(3.14) Y'd,(a): = rnax 

under the' restriction 

(3.15) a - 1  u )  = 0, ci,(a)~ [0, I]", 0 < CI < 1, 

In the location model, they reduce to the rank scores considered in [ 5 ] .  The 
proposed scale statistic is of the form 

where 

0 < a,  < 9, and p: [0, I] + W 1  is a nondecreasing, square-integrable and 
antisymmetric score generating function standardized so that j:o-Ro g2(a)da 

= 1. Then S, satisfies (1.8) and (1.9) and is a &-consistent estimator of 

In the Iocation model, S,, reduces to the Jaeckel [9]  measure of dispersion of 
ranks of residuals. 
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