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Abstract. The smooth tests for testing uniformity were in- 
troduced by Neyman [15]. The data driven method of selecting the 
number d components in a smooth test for uniformity is discussed, 
including the rust-order asymptotic null distribution, consistency, 
empirical critical values and Monte Carlo powers. The rust-order 
asymptotic null distribution is not sufliciently precise for approxima- 
tion tools. A substantial improvement is made in this paper by 
deriving a second-order approximation of the null distribution, which 
turns out to be very accurate in numerical examples. The ap- 
proximations are based on the second-order behaviour of Schwarz's 
selection rule S under uniformity. The new results on S are of 
independent interest. 

!. Introduction. Let XI, X,, ..., X,, be i.i.d. r.v.'s. Consider the good- 
ness-of-fit problem of testing the simple null hypothesis H ,  that the Xi's have 
distribution function F,, where F ,  is a given continuous distribution function. 
Without Ioss of generality we assume that under H ,  the distribution of Xi is the 
uniform distribution on [0, 11. 

Neyman's 115j paper of 1937, called 'Smooth test'for goodness offit, is seen 
as the starting point of a subbranch of goodness-of-fit tests, the smooth tests of 
goodness-of-fit. In fact, Neyman's test is a particular example of the whole class 
of smooth goodness-of-fit tests, taking the Legendre polynomials as the 
orthonormal system. In [16], pp. 19-22, it is memorized that Neyman's test is 
intended as an "optimal" competitor to Pearson's chi-squared test. Optimal 
means here that the test is locally uniformly most powerful symmetric, 
unbiased for testing uniformity against alternatives of the form 

where ( z j )  are the orthonormat Legendre polynomials on [O, I] and c(0) is 
a normalizing constant. Alternatives of the form (1.1) were vaguely described 
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as smooth. The test statistic for testing H,: Oj = 0, j = I ,  . . . , k, corresponding 
to uniformity, is given by 

Replacing nj in (1.2) by 

where 1,(x) denotes the indicator function of the set A, we get Pearson's 
clii-square test 

with partition 0 = do < dl < . . . < d, = 1, Oj and E j  denoting the observed and 
expected (under uniformity) number of observations in the j-th interval, 
respectively. 

Hamdan 161, [8] implemented a suggestion of Lancaster to use different 
orthonormal systems, leading to what nowadays is called the class of smooth 
tests for goodness-offit, given by the test statistics 

where 4,, #, , . . . is an orthonormal system in L2([0, 11) with r$,(x) = 1. For 
more extensive and general information on the class of smooth tests we refer to 
Rayner and Best [18]. After the papers of Barton [2]-[4], Watson [21], and 
Hamdan [6]-[8] had appeared, there was no much progress in the field. 
A possible reason is that the required computations are quite heavy by hand. 
This is no longer a barrier with modern computers. Although smooth tests 
arose little interest for several years, nowadays Neyman's paper [I51 is 
considered to be ingenious (cf. Le Cam and Lehmann [12], p. ix). Recently, 
there was a renewed interest in smooth tests. For an overview we refer to 
Rayner and Best [19], who conclude in reviewing several tests of fit: "don't use 
those other methods - use a smooth test!". The same conclusion is derived in 
Milbrodt and Strasser [14], p. 14. One of the important issues in applying T, is 
the number k of components. We discuss three different approaches. 

In the first one, k (and the orthonormal system) are selected such that the 
alternatives of particular interest are represented using only the first k com- 
ponents of the orthonormal system with k as small as possible. It requires that 
the user not automatically applies the test, but thinks why the goodness-of-fit 
test is executed and what types of alternatives are of particular interest. This 
imperative task is useful on itself, and therefore the method is more advan- 
tagous than disadvantagous. While especially focused on the selected (type of) 
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alternatives, the test keeps its omnibus character. A criterion of a simple 
structure to implement the idea is presented and extensively motivated in 
lnglot et al. [9). This approach is closest to the classical application of smooth 
tests, since the test statistic is not modified and a formal test is executed. 

The second approach is a more data-analytic approach. Obviously, it is 
not valid to apply a lot of significance tests, by varying k, to a data set and 
focus only on the most critical of them. Neyman was very clear about it as can 
be seen from the citation on p. 47 of [IS]. Nevertheless, if the null hypothesis is 
rejected, the components may be used informally to suggest the nature of the 
departure-from the null hypothesis. This second approach is described in detail 
in [18]. 

Returning to formal testing theory, the third approach concerns a data 
driven selection of k. This idea was introduced by Ledwina [13]. Roughly 
speaking, it works as follows. First, Schwarz's [20] selection rule is applied to 
find a suitable dimension S, say, of an exponential family model for the data. 
Then Neyman's test is applied within the fitted model, resulting in the test 
statistic N,. So Schwarz's rule serves as a kind of first selection, followed by 
a more precise instrument, being Neyman's test in the "right" dimension. As 
with the original test of Neyman, the data driven version can also be applied 
using other orthonormal systems than the Legendre polynomials. 

Observe that the "data driven approach" has also the extra advantage 
lying behind the idea of the second approach. Namely, when rejecting the null 
hypothesis, automatically a well-defined alternative model is provided for the 
data at hand. 

The rest of this paper is mainly concerned with this third approach. In 
Section 2 the method is described and properties of the tests as obtained by 
Ledwina El31 and Kallenberg and Ledwina [ll] are discussed. In Section 3 
new results on Schwarz's selection rule are presented. The results may be of 
independent interest. They are applied in Section 4, where an accurate new 
approximation of the nu1 distribution of the data driven version of smooth 
goodness-of-fit tests is derived. 

2. A data driven version of smooth goodness-of-fit tests. Consider the class 
of test statistics given by (1.5). Assume that the functions r$,, 4,, .. . are 
bounded, but not necessarily uniformly bounded in j = 1 ,2 ,  . . . Define for 
k = 1,  2, . .. exponential families by their densities p,(x) with respect to 
Lebesgue measure on [O, 11 of the form 

where 
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and o stands for the inner product in Rk. When there is no confusion, the 
dimension k is sometimes suppressed in the notation. 

It is well known that 

where ' denotes derivative. Moreover, by arthonormality, we have 

(2-4) L(0) = 0, $"(0) = 1 (the identity matrix). 

Writing . . 

we obtain the expression for the density of X,, . . . , X,, each Xi having density 
(2.1), in the form 

Schwarz's [20] Bayesian information criterion @IC) for choosing sub- 
models corresponding to successive dimensions yields 

(2.7) S=min(k: l i k < d ( n ) , n s u p ( ~ , ~ 9 - @ ~ ( 9 ) } - ~ k l o g n  
B€Rk 

2 nsup {~ ,o t -&( t ) ) -+  jlogn, j = 1, . .. , 44). 
t€Ri 

Although it is not mentioned in the notation, S depends of course on the upper 
bound d(n) of the exponential families under consideration. Schwarz's BIC is 
further discussed in Section 3. 

The data driven smooth test statistic is defined by 

with S given by (2.7). The null hypothesis of uniformity is rejected for large 
values of T,. 

The idea behind (2.8) is that Schwarz's rule gives a first indication about 
the true density of the observations by fitting an exponential family model to 
the data and that the finishing touch comes from the smooth test in the selected 
exponentiaI family. 

Numerical results in, e.g., [9] show that Neyman's test performs very well 
provided a good choice of k has been made. On the other hand, examples in 
Table 2 of [9] and in Tables 3-5 in [Ill  show that a considerable loss of power 
may occur when a wrong choice of k is made. This illustrates that a good 
procedure for choosing k based on the data is very welcome. Both by 
theoretical results and by the Monte Carlo sirnulation it will be argued that T, 
is such a procedure. To do this we start by considering Ns, the data driven 
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version of Neyman's test, is., (2.8) with ( + j )  = i n j ] ,  the orthonormal Legendre 
polynomials. The asymptotic null distribution of N s  is given by Corollary 3.5 
of [ I l l  and reads as follows, (By X: we denote an r.v. with a chi-square 
distribution with 1 degree of freedom.) 

THEOREM 2.1. If 

(2.91 lim d3(n)n-I  logn = 0, 
n-m 

then 

(2.10) - N ,  L under H , .  

Using this limit theorem as an approximation theorem we obtain the 
asymptotic 0.05 and 0.01 critical values equal to 3.841 and 6.635, respectively. 
To see how this approximation performs compared to the finite sarnpIe case, 
simulated 0.05 and 0.01 critical values are presented in Table 1 (partially from 
Table 2 of [I31 and Table 2 of [Ill). 

The acc,uracy of the simulation results are seen in Table 2, where 
exemplary empirical sizes of N ,  are calculated for empirical critical values from 

TABLE I. 5% and 1% critical values of N ,  simulated for subsequent values of d(n), from 10000 
samples in each case 

TABLE 2. Empirical 5% sizes of N, simulated for subsequent values of d(n1 from 10000 samples in 
each case 
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Table 1 on pseudorandom sequences different from those used to prepare 
Table 1. 

It is clearly seen from Table 1 that the difference between the asymptotic 
0.05 (0.01) critical value equal to 3.841 (6.635) and the simulated ones for 
d(n) 3 2 is substantial, even for n = 120. Therefore, we 'may conclude that the 
first-order limiting theorem (Theorem 2.1) is not sufficiently precise for 
approximation tools, and hence there is a need for a second-order limiting 
theorem to improve the accuracy of the approximation of N, under H,. This 
is done, more generally, for T, in Section 4 on the basis of the results of 
Siction 3. 

To show that N, has good power properties under a wide class of 
alternatives we consider its consistency under the alternative distribution P on 
10, 11, Suppose that 

for some K = KIP), X having distribution P. Essentially any alternative of 
interest satisfies (2.1 1) .  (Note that the orthonormal system (xl) is complete.) 
The consistency of N, is given by Corollary 4.5 of [l l]  and reads as follows. 

THEOREM 2.2. If (2.11) holds, and if 

(2.12) liminfdln) 2 K(P) ,  lim d3(n)n-I logn = 0, 
n+ m n* m 

then the test based on N ,  is consistent at P. 

Since K ( P )  is fixed, (2.9) together with lim,,, d(n)  = co implies that the 
test based on Ns is consistent against any alternative of the form (2.11). Apart 
from the theoretical justification in Theorem 2.2, the good power properties of 
N ,  for a wide range of alternatives are shown by simulation results in Tables 
3 and 4 of [13] and Tables 3-5 of [11]. For illustration here we present in one 
table simulated powers of N,, the widely recommended tests of Watson (W), 
Anderson and Darling (AD), Neuhaus (N) and the recently introduced 
procedures of Bickel and Ritov {BR), and Eubank and LaRiccia (ELR). For 
definitions of the several test statistics we refer to [I31 and [ l l ] .  The 
alternatives under consideration are given by the following densities: 

g5(x) = exp { - 0.5n2 (x) -0.2z4(x) - $ ( O ,  - 0.5, - 0.2)) (cf. ((2.1)). 
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Table 3 and other simulation results show that N, has a stable and 
relatively high power for a broad range of alternatives. 

TABLE 3. Estimated powers (in %) based on 1OOOO 
samples in each case; a = 0.05, n = 50, d(n) = 10 

The theoretical results on the asymptotic null distribution of N, and its 
consistency may be extended to other orthonormal systems as well. To do this 
we make some assumptions, Define 

A1 ter- 
natives 

g, 

- . .  g, 
g3 
g, 
g5 

5 = max sup J4j(x)J. 
l<j$krr[O,ll 

AS~UMPTION 1. The following condition holds: 

N, 

81 
58 
61 
57 
63 

For the orthonormal Legendre polynomials on [0, l] we get I/, 
= (2k+ 1)lI2. The asymptotic null distribution and the consistency of T, are 
given by Theorems 3.4 and 4.4 in [ll] and read as follows: 

THEOREM 2.3. If Assumption 1 holds, then under H ,  

W 

65 
39 
59 
61 
55 

(2.15) &&X?,  

and the test based on T, is consistent against any alternative P of the form (2.1 I), 
provided that lim ink,, d (n) 2 K(P).  

I 3. Schwarz's selection rule. It is seen in Section 2 that the first-order result 
T, 5 X: is not sharp enough to imply accurate approximations of the null 
distribution. To improve the approximations we need some second-order 
results. Both for technical reasons and for more insight in what is going on, we 
have to derive precise results on the behaviour of S under H,. The notation Po 
refers to the null hypothesis, where Xi has the uniform distribution on KO, 11. 
While at the first order only the event (S = 1) plays a role (cf. Theorems 3.2 
and 3.4 in [Ill), for the second-order results both ( S  = 1) and ( S  = 2) come in 

A D  

69 
71 
16 
33 
15 

N 

64 
62 
50 
56 
46 

BR 

63 
60 
43 
48 
40 

ELR 

63 
24 
24 
27 
25 
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the picture. The event { S  3 3) may still be'neglected under H ,  as is seen in the 
following theorem: 

THEOREM 3.1. If Assumption 1 holds, then 

Proof. Let K be fixed with 3 < K < d(n). Write 

K d(n)  

(3.2) ' P 0 ( S 2 3 ) =  C P , ( S =  k)+ C P o @ =  k) .  
k=3 k = K + i  

By the definition of S and the application of Lemma 3.2 in [lo], there exists 
for each k E (3, . . . , K) a constant cz and there exists a constant & such 
that 

For k = K + 1, . . . , J(n) it follows from Lemma 3.1 in [1 l ]  that for 

uniformly for k E (1, . . . , d (n)), 

provided that n is ~ ~ c i e n t l y  large. Note that here we use Assumption 1. Next 
we apply formula (2) of 1171 with 

which yields 

where c ,  is an absolute constant, ~ ( a )  + 0 as a + 0, provided that e2/2 2 k and 
a < 1 (q(a) is explicitly given on p. 188 of [I71 and satisfies q(a) < a). In view of 
Assumption 1, a + 0 as n + co (uniformly for k~ El, . . . , d(n))). Moreover, 

2 k for sufficiently large n (independent of k). By taking E small enough we 
therefore get for any [ > 0 and k E ( 1 ,  . . . , d (n)) 

(3.4) p , ( ~  = k)  < n - ( 1 / 2 ) ( 1 - 0 ( k - - 1 )  
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for n = n([) large enough, independent of k E (1 ,  . . . , d(n)). Taking, for instance, 
K = 3 and ( = 0.2 we get for n sufficientIy large 

m n- 1.2 

Po(S 2 3) < .F3(logn)'/2n-1 + C n-0-4Q-1) = F3 (log n)lJ2 n - + I -n-0.4' 
k = 4  

and hence (3.1) holds. 

R e  mark  3.1. It is clear from the proof that the main contribution comes 
from S = 3, as expected. In other words, by virtually the same proof [cf. (3.3) 
and (3.4)) .it :follows that for each fixed K 

In view of Theorem 3.1 we may concentrate on the events {S = I} and 
(S = 2). The event (S = 1) means that dimension 1  is more important than 
dimension 2, dimension 3, dimension 4, etc. Under Ho it turns out that the 
comparison of dimension 1 with dimension 2 is up to the second order the only 
comparison of interest. Similarly, on the event {S = 2) the only important 
contribution under H ,  comes from the comparison of dimension 2 with 
dimensions 1 and 3. This is shown in the next two theorems. 

THEQREM 3.2. Thme exists a positiue constant c, such thatfor each event A 

(3.6) 
P,(A, S = 1) < P,(A, n@ < logn + ~ , n - ~ / ~ ( l o g n ) ~ / ~ )  + O(n-l (10gn)-'~~) 

and 

P r o  of, By the definition of S we get 

Po(A7S = 1) G P,(A, n s ~ p { ~ 8 - 1 1 / ~ ( ~ ) ) - ~ l o g n 2 n s u p ( ~ , o t - $ ~ ~ t ) ) - l o g n ) .  
~ E R  t ~ R 2  

For each fixed k we have 

where ) ) . I )  denotes the Euclidean norm in R ~ .  Therefore,. on the set 

we get 

lsup{~ 0 8- $,[8)) -4 G ~ ~ n - ~ / ~ ( l o g n ) ~ / ~  
B€Rk 

27 - PAMS 15 
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for some constant E,. Hence, uniformly in A, 
I 
i Po(A, S = 1) < P,(A, la{$& +c, n-3/2(logn)3/2} +410gn 
I 

2 n { $ ( @ + & ) - ~ ~ n - ~ / ~ ( l o g n ) ~ / ~ ) )  

+ ~ , ( n l / ~  16~1 > (210~n)l/~) + P, (n112 I&I > (210gn)~l~) 

= P,(A,  n@ < logn + ~ , n - ~ / ~ ( l o g n ) ~ ~ ~ ) +  O ( n - ' ( l ~ g n ) - ~ ~ ~ )  

as n + c ~ ,  with c ,  = 2(E1 +E,) ,  where for j = 1 , 2  we have used 
I 

Po(nliz l$,l > (210gn)'/') = O(n - (1ogn)- '/'), 

which follows by standard large deviation theory. This completes the proof 
of (3.6). 

To prove (3.7) note that 

I P,(A, S = 1) 2 P,(A, nsup{xS-i,b1(9))-ilogn 
I ~ E R  
I > n s u p ( ~ , o t - $ , ( t ) } - 1 o g n ) - P , ( S  2 3). 
I tea2 

The rest of the proof is similar to the proof of (3.6). rn 
I 

THEOREM 3.3. Let d(n)  2 2. There exists a positive constant c, such that for 
each event A 

and 

(3.9) P,(A, S = 2) 2 P,(A, n@ 2 logn +c3n-1/2(logn)3/2y 

n$i < logn -c3 n-'/2(logn)312)+ O(n-1(logn)-'/2)-~o(S 2 3) 

as n -+ coy uniformly in A. 

Proof. By the definition of S we get (as in the proof of Theorem 3.2) 
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By taking c, = max{2(Cl +G), 2(E, +E,))  the proof of (3.8) is completed. 
Inequality (3.9) is proved in a similar way. 

~ e r n a f  k 3.2. The O(n- '(l~gn)~~~)-terms in (3.6H3.9) may be replaced by 
O(n-r(logn)-llz) for arbitrary r ,  This is seen by replacing the set { y :  1y.j 
< n-112(210g~1/2, j = 1, . . . , k} by the set (y: lyjl < n-1/2(2rlogn)1/< 
j = 1 ,  .. ., k )  and noting that 

4. Second-order approximation 80 the null distribution of q. As was seen 
from Theorem 2.1 and Table 1, the first-order X;-approximation of the null 
distribution of T, is not very precise. Therefore, we consider the second-order 
approximation, based on the second-order limiting theorems for S under No in 
the previous section. Denoting by U1, U, two independent r.v.'s, each with 
a standard normal distribution, we shall prove the following result: 

THEOREM 4.1. Let d(n) 2 2. IfAssumption 1 holds, and Cramdr's condition is 
satisfied, i.e., 

(4.1) 

then 

(4.2) P,(G < x) = Pr(U: <x)Pr(U$ < logn) 

It is easily seen that the approximation on the right-hand side of (4.2) may 
also be written as 

(4.3) Pr(U: 6 x)-Pr(Uf < x,  U:+U; 2 x, Ui 2 logn). 

In this formulation the correction -term in comparison to the first-order 
approximation Pr(U: < x) is clearly seen. Corresponding to the simulation 
results in Table 1, indeed, Po(T, < x) is overestimated by its first-order 
approximation. The two terms on the right-hand side of (4.2) are the leading 
terms of Po(Ts < x, S = 1) and Po(T, < x, S = 2), respectively. For x d Iogn 
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the second term disappears and the second-order approximation in that case is 
simply obtained by multiplying the first-order approximation by Pr(Ui < logn). 

Condition (4.1) is satisfied if &,(Xi )  has an absolutely continuous 
component, and therefore it is fulfilled in many cases, e.g., for Neyman's test 
with the orthonormal Legendre polynomials. To prove Theorem 4.1 we state 
and prove first several lemmas. 

LEMMA 4.1. FOP each fixed k and for each constant C ~ E R  we have 

P r o  of. By standard large deviation theory (cf., e.g., [ 5 ] ,  p. 553) we have 

(4.5) ~,(ne < log n + c4n- '/2(logn)3f2) - ~,(n$; < log n) 

= p,(nt@ > logn)- ~ , ( n @  > logn + ~ , n - ~ / ~ ( l o g n ) ~ / ~ )  

= 2 ~ r ( ~ ,  > (1ogn)l/~)(1+ O(n- 1/2(logn)3/2)) 

-2Pr(Ui > {logn + c4n-1/2 ( 1 0 g n ) ~ j ~ ) ~ / ~ )  (1 + O(n-1/z(logn)3j2)) 

= O(n-llogn) as n + co. 

LEMMA 4.2. If Assumption 1 holds, then 

as n + co, uniformly in x. 

Proof. Taking A = (Ti < x) we see by Theorem 3.2 that there exists 
a positive constant c, such that 

Po(& < x, S = 1) = P,(Tl < X, S = 1) 

< P,(T, < x, n&g < logn+ ~ , n - ~ / ~ ( l o ~ n ) ~ / ~ )  + O(n- ' ( l~gn)-~/~)  

< Po(Tl < x, n e  < logn) + ~,(n6:  < logn+ ~ , n - ~ / ~ ( l o g n ) ~ ~ ~ )  

- ~ , ( n &  < log n) + O(n- '(log n) - 

as n + co, uniformly in x. The application of Lemma 4.1 and noting that 
Ti = n@ yield 

P,(T, < x, S = 1) < ~ , ( n @  < x, n@ < logn)+O(n-llogn) 

as n -, oo, uniformly in x. Similarly, the converse inequality is obtained by 
using (3.7) in combination with Theorem 3.1. rn 

LEMMA 4.3. For each constant C ~ E R  we have 

(4.7) ~ , ( n e  2 logn, n 8  > I o g n - ~ , n - ~ ~ ~ ( l o ~ n ) ~ / ~ )  = O(n-l(logn)-l) 



Data driven Nevman's tests 42 1 

Proof. Write 
312 112 D,;((yl,y2): y , Z ( l ~ g n ) ' ~ ' , y , > ~ o g n - c ~ n - ~ " ( l o g n )  1 1- 

The set D, is a convex Bore1 set and the point 

is the nearest point to the origin. The application of Assertion 2 in Remark 1 
on p. 67 of [I] yields 

By the same argument for the other three regions of similar form, which 
together with D, constitute the event in (4.71, the proof is completed. N 

LEMMA 4.4. If Assumption 1 holds, then 

as n + a, uniformly in x. 

Proof. Taking A = (T, < x} we see by Theorem 3.3 that there exists 
a positive constant c,  such that 

Po(T, < x, S = 2) 

< P,(T, < x, n@ 2 ~ o ~ n - c ~ n - ' / ~ ( l o g n ) ~ / ~ )  + O(n-'(l~gn)-l/~) 

< P,(T2 < x, n@ 2 logn)+ ~,( logn- c3n-1/2 (10gn)~I~ < n&i < logn) 

+ ~(n-'(logn)-'~~) 

as n + ao, uniformly in x. The application of Lemma 4.1 and noting that 
T2 = n ( a  + 8) yield 

P,(T, < x, s = 2) < ~,(n(@+@) < x, n6; 3 logn)+0(n-'logn) 

as n + ao, uniformly in x. 
For the converse inequality we consider (3.9) in combination with 

Theorem 3.1 and we obtain 

Po(T, < x, S = 2) 

2 Po(T, < x, n 6  2 logn) -P,(logn < nG < logn +c, n-'1*(10gn)~/~) 

- P0(n& 2 logn, n G  > l ~ g n - c ~ n - ~ J ~ ( l o g n ) ~ / ~ ) + O ( n - ~ ( l o g n ) ~ ~ ~ )  

2 P0(T2 < x, n 8  2 logn)+O(n-llogri) 

by Lemmas 4.1 and 4.3. This completes the proof of the lemma. rn 
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LEMMA 4.5. If (4.1) holds, then, uniformly for x, as n + oo 

P r o  of. By the standard Edgeworth expansion (cf., e.g., [ 5 ] ,  Theorem 3 on 
p. 541) it follows that, uniformly in x, 

= Pr(U: 6 x)+O(n-l), 

where cp denotes the standard normal density. a 

LEMMA 4.6. Unformly for x as n + oc, we have 

(4.10) ~ ~ ( ~ 1 ~ f ~ ~ , n & > l o g n ) = P r ( ~ ~ ~ x ) P r ( U ~ > l o g n ) + O ~ n - ~ l o g n )  

and 

(4.11) ~ , ( n ( @  + 6;) < x, n& 2 logn) 
= Pr(Uf+Ui < x, U$ 2 logn)+O(n-'logn). 

Proof.  We give the proof of (4.11); the relation (4.10) can be shown in 
a quite similar way. Without loss of generality assume that x 2 logn. Write 

Dn1 = ( ( ~ 1 ,  y,): Y, 2 (h3n)1'2, Y:+Y; s x), 

D.2 = ( ( ~ 1 ,  Y,): y2 < -(l0gn)'l2, Y: +Y: x). 

The sets Dnl and D,, are convex. It follows by Assertion 2 in Remark 1 on p. 67 
of El] that for i = 1,2 ,  with a = (0, (logn)li2) if i = 1 and a = (0, -(logn)'I2) if 
i = 2, we have' - 

~ , ( ( n ' / ~  TI, nl/' 6,) = Pr((U,, u,) E ~ , ~ ) { l +  O(n- 112(logn)3/2)) 

= Pr((u,, u,)ED,~)+ O(n-'Iogn), 

which implies (4.11). EA 

Proof  of Theorem 4.1. By (4.6), (4.8H4.11) and (3.1) we have, uniformly 
in x, as n -, oo 

= P,(n@ < x)- < x, n& > Iogn) 
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= Pr(U: < x)-Pr(Uf < x, U$ > logn)+Pr(U: + U; < x, Uz 2 logn) 
+O(n-llogn), 

and hence (4.2) holds. 

The approximation on the right-hand side of (4.2) is surprisingly simple 
and very accurate, especially when compared to the first-order approximation. 
The structure of the approximation clarifies that under H, up to the second 
order only {S = 1) and {S = 2) are important. Moreover, {S = 1) and (S  = 2) 
may be further restricted to dimension 1 beats dimension 2, corresponding to 
U,Z < logn, and dimension 2 beats dimension 1, corresponding to Ui > logn, 
respectiveiy. (As a side-note, remark that here also dimension 2 beats 
dimension 3 is cancelled out.) 

Both to investigate the accuracy of the approximation and to facilitate its 
evaluation we derive an upper and lower bound of Pr(Uj+U$ < x, Ug 
2 logn). Let for x 2 logn 

The area a(x) of this set equals 

(4.13) a(x) = (x1I2 - (1ogn)li2) (x -logn)li2 -&x arc cos - 

+$(logn)'I2(x- logn)ll2, 

C",'")"' 
while for b,, y,) E D* we have 

(4.14) nit2exp(-x) < expi-$Cy:+ yg)) < exp(-tx). 

Using symmetry we therefore get 

(4.15) Pr(Uf + Ui < x, U; 2 logn) 

= 4Pr(U$ + U i  < x, 0 d U, < (~ - logn) l /~ ,  (logn)lI2 < U, < P I 2 )  

= 4{Pr(0 < U, < (x - l ~ g n ) ' ~ ~ ) ~ r ( ( l o g n ) ~ ~ ~  Q U 2  d x1I2)- (27~)-'a(x) b(x)) 

with 

Replacing Pr(Uz+ U$ < x, Ui 2 logn) on the right-hand side of (4.2) by 
its lower and upper bounds obtained from (4.15) and (4.16) and inserting for 
x the empirical critical values of Table 1 we get the results compiled in Table 4. 
It is seen that for d(n) = 2 the approximation is excellent, even for small values 
of n. For d(n) 2 3 we have a slight overestimation, but the approximation is 
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TABLE 4. Lower and upper bounds of the second-order approximation of P,(T, 6 x) for empirical 
critical values x of Table 1 (probabilitiesx lo5) 

LY = 0.05 0: = 0.01 

n 

20 

. . 

50 

80 

100 

120 

also in that case rather accurate, and far more accurate than the first-order 
approximation. 

As was noted before, if x < logn, the second term in the approximation 
(4.2) disappears. On the other hand, if x 2 2logn, then 

n 

20 

50 

80 

100 

120 

= Pr(U:+ U; > x, U; 2 Iogn) < Pr(Uf+ U; > x) = exp(-$x) < n-l, 

x 

5.367 
6.537 
7.213 
7.617 
7.854 

5.350 
5.865 
6.015 
6.094 
6.096 
6.117 
6.121 

5.260 
5.508 
5.581 
5.592 

5.269 
5.499 
5.557 
5.571 
5.58 1 
5.586 

5.032 
5.240 
5.314 
5.321 

which implies for x 2 2logn 

X 

8.45 1 
10.216 
11.332 
12.183 
12.997 

8.592 
10.447 
11.191 
11.827 
12.128 
12.217 
12.465 
12.495 

8.511 
9.853 
10.239 
10.386 
10.388 

8.449 
9.941 
10.227 
10.352 

8.967 
10.272 
10.522 
10.603 
10.615 

Po(% < x) = Pr(U: < x)Pr(U; < logn) + Pr(U; 2 logn) + O(n-llogn). 

Lower 
bounds 

94055 
96377 
97273 
97698 
97915 

94758 
95784 
96043 
96173 
96176 
96210 
96217 

94928 
95426 
95563 
95584 

95122 
95562 
95667 
95692 
95710 
95719 

94813 
95214 
95353 
95366 

Upper 
bounds 

949 12 
97341 
98182 
98552 
98733 

95050 
96204 
96493 
96637 
96641 
96678 
96685 

95028 
95579 
95732 
95755 

95174 
95652 
95768 
95796 
95815 
95825 

94819 
95235 
95382 
95396 

Lower 
bounds 

98376 
99226 
99518 
99664 
99763 

98654 
99378 
99545 
99652 
99693 
99704 
99734 
99737 

98697 
99253 
99364 
99401 
99402 

98704 
99301 
99380 
99411 

98981 
99406 
99464 
99482 
99485 

Upper 
bounds 

99095 
99662 
99817 
99885 
99926 

99152 
99698 
99800 
99859 
99880 
99886 
99900 
99902 

99109 
99578 
99659 
99686 
99686 

99076 
99597 
99656 
99679 

99306 
99664 
99707 
99720 
99722 



Data driven Neyman's tests 425 

Therefore we may take the following very simple approximation of P,(T, 6 x):  

(4.18) Pr(U: < x)Pr(Uz G logn) if x < logn, 

linearize if logn 6 x < 2logn. 

To illustrate the approximation (4.18) consider n = 50 and the empirical 
5% ~ritical values x of Table 1. We obtain the following: 

. . 

It is seen that the approximation works quite well in this case. As is seen 
from (4.17) the approximation (4.18) is larger than the right-hand side of (4.2) if 
x 2 2logn. It was seen in Table 4 that for the 1% critical values the right-hand 
side d (4.2) gives already a (slight) overestimation. Since as a rule in Table 4 the 
1% critical values are larger than Uogn, the approximation (4.18) gives 
a @gher)Goverestimation of Po(% < x). A possible remedy is to replace the 
interval Dogn, 2lognf in (4.18) by, for instance, oogn, 3lognl if small levels are 
concerned. 
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