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Abstract. The first half of the paper is intended as a short survey 
on discrete- and continuous-time option pricing. In the second part, 
we develop new concepts and derive new results for option valuations 
within a generalized binomial model with random upturns and 
downturns, characterizing the equivalent portfolio, the trading strat- 
egy, and the call option valuation. Motivated by the Mandel- 
brot-Taylor Paretian stable model for stock returns we apply the 
generalized binomial model to obtain - in the limit - call valuation 
formulae for subordinated stock-price processes. 

1. Introduction and a survey on option pricing. One of the striking 
applications of stochastic calculus is the recent progress in the security markets 
with option pricing. It takes its roots in the seminal works of Arrow and 
Debreu on asset pricing (see [17], Chapter 7), and of Black and Scholes [ 5 ]  and 
Merton [52].  

The most prominent type of option contract is the call option; it gives the 
buyer the right to buy specific number of shares of a company from the option 
writer at a specific purchase price (known as exercise price K or striking price) 
at any time up to and including a specific date (known as the expiration). The 
option is European if it can only be exercised on its expiration date, and it 
is called American if it can be exercised any time throughout its expira- 
tion date. 
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Santa Barbara. The hospitality of the Department of Statistics and Applied Probability at UCSB is 
greatly acknowledged. 

** This work was supported in part by NSF Grant DMS-9103452 and NATO Scientific 
Affairs Division Grant CRG 900798. 
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1. Discrete-time option pricing: binomial option pricing formulae. We start 
with an illustration of the nature of the Black and Scholes [ S ]  arguments for 
valuation European call option on nondivident-paying stocks by considering 
the situation where the stock-price movements are described by a multi- 
plicative binomial process over discrete time; the "binomial" approach to 
option pricing seems to be independently presented by Sharpe [73], by Cox, 
Ross and Rubinstein [14] - whose arguments we shall follow - and by 
Rendleman and Bartter 1671. 

Suppose the current stock-price is S = So (the known stock price at 
to'= 0) and let z be the length of calendar time representing the expiration 
of the call. In the binomial model, the elapsed time between successive 
stock-price changes is discrete and equals h = z/N, where N is the number of 
periods prior to expiration. At the end of the (k+ 1)-st period, the stock is 
going "upward" Sk,, = US, with probability 4, and "downward" Skf = DSk 
with probability l -q; letting R to be the 1 + "the interest rate on a default- 
-free loan over one period". To obtain meaningful values for U, D and R, we 
assume that U > R > 1 > D. Therefore, the successive movements of the 
stock-price are given recursively by 

where t, are i.i.d. Bernoulli with success probability q. To see the Cox-Ross- 
-Rubinstein approach to a call valuation, suppose that N = 1 and let C be the 
current value of the call; then at the end of the period (the expiration time) the 
call value with striking price K will be C, = (US-K)' ((a)' : = max(0, a)) with 
probability q and C, = (DS - K ) +  with probability 1 -q. One can easily check 
that if there are to be no riskless arbitrage opportunities, the current value of 
the call must be equal to the current value of an equivalent portfolio SA + B  
containing A shares of the stock and an amount B in riskless bonds; the A and 
B are chosen to equate the end of the period values of the call for each possible 
outcome, that is, C, = USA +RB with probability q and C,  = DSA +RB with 
probability 1-q. With these values for A and B the call value C = S A + B  
equals 

where p is the riskless interest rate, satisfying pUS+(l -p)DS = RS. Using the 
same recursive arguments for any N E N  we write the general valuation 
binomial option pricing formula 



Subordinated stock-price processes 429 

with 

where p = ( R -  D)/(U - D) and p' = (U/R)p, and a, is the smallest nonnegative 
integer greater than ~O~(K/SD~) /~O~(U/D) .  If uN > N, then C = 0. 

The simple binomial formula produced so far assumed that we are dealing 
with options on a nondividend-paying stock. For various kinds of generaliza- 
tions involving the impact of dividends, dependence of the ups and the downs 
from the level of the stock price, multinomial models for price movements, etc., 
we refer to [15], [38], [68], [36], and the references therein. 

We have implicitly taken it that the options being valued are European. 
Merton 1521 (see also Smith [75] for a lucid review of his seminal work) has 
shown that if the stock pays no dividends, European and the American call 
options are equally valued, since in this case the American option will not be 
exercised before the expiration date. Consequently, the Black-Scholes formula 
can be used to value the American call option on nondividend-paying stocks. 
In the presence of dividends, the American call option can be worth more than 
the European since there is a positive probability for an early exercise. For 
further details on American options, see [71], [69], [61], and [27]. 

2. Continuous-time option pricing. As trading takes place almost con- 
tinuously, the elapsed time h = z / N  goes to zero and one needs to adjust the 
N-dependent values of U ,  D, R and q in order to obtain meaningful limiting 
values of the call. Cox et al. [I41 have chosen 

in the binomial option pricing formula (1.1) for C = C ( N ) ;  now as N goes to 
infinity, the limiting value of the call C = lim,,,C(N) equals the 
Black-Scholes formula 

C=S@(X)-KR;'@(X-CT&), where x =  
log(S/KR-') 1 

flfi 

+Z.&, 

and @ is the standard normal distribution function. 
The alternative derivation of the continuous-trading call valuation ob- 

tained in the work of Black and Scholes was based on the assumption that the 
stock value follows a log-normal diffusion process dS(t) = S(t)(pdt+adW(t)), 
S(0) = s, where S(t) is the value of the stock, p is the drift term, cr > 0 is the 
volatility coeficient, and W(t) is a Brownian motion in R. (W is defined on the 
complete probability space (a, t;, P), where (F,)  stands for the P-augmen- 
tation of the natural filtration generated by IT) The non-risky asset, the bond, 
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with price B(t )  is given by dB(t) = B(t)r(t)dt, B(0) = 1. More generally, one can 
assume that r, p and a are time-dependent; in this case, some regularity 
conditions are required: r(t), p(t) and a(t) are progressively measurable with 
respect to (F,) ,  bounded uniformly in R x i2 and a(t) is strictly positive (greater 
than some E 3 0) for all t; see [40] and [16]. 

The European option contract is equivalent to a payment of (S(T)-K))*  
at the expiration z. Black and Scholes [5] asserted that - in the case of 
constant p., c and r - there is a unique rational value for the option 
independent of the investor's risk attitude; with 

f (x, t) = x@(g(x, t ) ) - ~ e - ' * @ ( h ( x ,  t)) ,  

where g(x, t) = ( l n ( x / ~ )  +(r 4-40) t}/o&, h(x,  t) = g(&- a&, 

this unique rational value is f (S(O), t). The arbitrage arguments used by Black 
and Scholes [ 5 ]  and Merton [52] have become the starting point for option 
pricing valuation in deterministic bond price. The further studies include: 

(i) Cox and Ross 1131 give the risk-neutral approach to option pricing - 
as an analogue of Modigliani-Miller [58] theory. 

(ii) Harrison and Kreps C321, Harrison and Pliska [33J, [34], Kreps [43] 
show that a price process is arbitrage free if it is, after renormalization, 
a martingale with respect to some equivalent probability measure. 

(iii) Dufie [19], [20J explored an indirect solution of the Black-Scholes 
partial differential equation via the Feynman-Kac formula to extend the 
Merton continuous-time asset pricing model [52]. 

(iv) The arbitrage arguments for option pricing with stochastic interest 
rate environment were extended in Dufie [19], Dybvig [21], Heath et al. [35], 
Kopp and Elliott [41], Turnball and Miln [76], and Cheng [Ill .  

The European option may be viewed as one example of European 
contingent claim (ECC), which is a financial instrument consisting of payment 
B at terminal time 2; we assume that B is a nonnegative F,-measurable random 
variable with finite moment of order greater than 1 (see [40]). To define 
a hedging strategy against the ECC, let X(t) be the wealth of an investor at 
time t, ~ ( t )  the amount he invests in the stock, and c(t) is the consumption rate 
process. (Here the regularity conditions are: (i) a(t) is progressively measurable 
with respect to {F,)  and square-integrable on [0, z] almost everywhere; 
(ii) fic(t)dt < co almost everywhere.) The wealth process X(t) is then deter- 
mined by the equation 

dX(t) = a(t){p(t)dt+o(t)dW(t)}-c(t)dt+ {X(t)-n(t)}r(t)dt. 

The nondegeneracy condition (D > E > 0) implies the existence of the measure 
P*(A) = E(Z(t) 1,) equivalent to P, where Z is the exponential martingale: 
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By the Girsanov theorem [29], under the new probability space (a, Fz,  P*), the 
process W* (t) = ~ ( t )  + so B(s)ds is a Brownian motion, and the discounted 
stock price process B(t)- S(t) is a nonnegative supermartingale under P*. The 
pair (K, C) is now called admissible for the initial capital s 2 0 if for the wealth 
process X, almost surely, X(z) > 0 for T > t > 0. A hedging strategy against the 
ECC is an admissible pair (x, c) (with initial wealth s > 0) which at the terminal 
time is valued as ECC; X( t )  = B almost surely. The fair price v at time t = 0 for 
the ECC is then the smallest value of s for which a hedging strategy exists; its 
explicit value is, in fact, given by 

Moreover, there exists a hedging strategy with consumption rate c = 0 and 
wealth process 

for further extensions of the method we refer to [59] and [16]. 
In the models above the market models were assumed to be frictionless; 

hedging strategies in the presence of transaction costs were studied in: 
(i) Gilster and Lee [28] and Leland [45] derived call formulae for 

options, that are revised at finite number of times; 
(ii) Dybvig and Ross [223, Prisman [64], and Ross [70] studied multi- 

period market models in the presence of taxes; 
(iii) Bensaid et al. [4] develop hedging strategy in the binomial model with 

proportional transaction costs; 
(iv) Jouini and Kallal[39] compute arbitrage bounds for contingent claim 

valuations for markets with transaction costs using the martingale approach; 
(v) Figlewski 1241 provides numerical analysis to investigate the influence 

of transaction costs in hedging; 
(vi) Grannan and Swindle [31] develop hedging strategies to minimize 

transaction costs using diffusion limits. 
Another feature of the above contingent claim valuation model is that the 

financial market we are dealing with, is compbte, that is, any claim is redun- 
dant - it can be replicated by a self-financing strategy based only of the 
stock-price process (S(t))o,,,, on the underlying probability space (8, F ,  P). 
In other words, any contingent claim can be represented as a stochastic integral 
with respect to the semimartingale S; recall that in the absence of arbitrage 
opportunities the general hedging method (cf. [32]-[34]) implies the existence 
of equivalent probability measure P*, and consequently S is a semimartingale 
with respect to P. In contrast, if the market is incomplete, a contingent claim is 
not necessarily a stochastic integral of S, that is, there exist nonredundant 
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claims, which will carry on an intrinsic risk. Fijlmer and Sondermann [26] 
introduced the notion of a risk-minimizing strategy, and, by making use of 
the projection technique due to Kunita and Watanabe [44J, they showed 
that, in the martingale case B = P*, there exists such a strategy and it is 
unique. Possible extensions to be the general incomplete model, where S is 
only a semimartingale with respect to P, were studied by Schweizer [72] 
(where a risk minimizing strategy was defined in a local sense), and by 
Fiilmer and Schweizer [25] in the case where S is a semimartingale with 
continuous paths. For further generalizations of the notion of incomplete 
market, see C161. 

3. Stable models for asset returns and option pricing. The form of the 
distribution of stock-price changes continues to be one of the most controver- 
sial issues in modelling functionals of security market prices. Recall that a basic 
assumption in viewing the Black-Scholes formula as the limiting case of the 
binomial option pricing formula was that the price changes were in domain of 
attraction of the normal law. While earlier theories, starting with Bachelier's 
theory [I] on speculative prices, had been based on the normality of the law of 
price changes, more researchers who have studied series of price changes reject 
the normality assumption (see, e.g., Mandelbrot [47], [48], and Fama [23]; for 
a list of more than 50 papers in the area we refer to Cox and Rubinstein [15], 
pp. 482-484; for a recent survey see Mittnik and Rachev 1561, [57]). The 
typical sample density has excess kurtosis - more observations around the 
mean and in the tails than the normal. We list some of the alternative 
non-normal models proposed for fitting stock-price-changes data: 

(i) Mixture of normals: Brada and Van Tassel1 [lo], Press [63], Grander 
and Morgenstern [30], Clark [12], and Boness et al. [9]; 

(ii) Student distribution: Praetz [62] and Blattberg and Gonedes 161; 
(iii) Stable Paretian model: in their seminal works, Mandelbrot [47], [48] 

and Fama [23] argue that the departures from normality should be explained 
by the assumption that the price changes are stable with a parameter of 
stability a < 2, in particular, they have infinite variance; 

(iv) Mixture of stable laws: Barnea and Downes [3]; 
(v) Geometric stable laws: Mittnik and Rachev [53]-[57], Kozubowski 

[421; 
(vi) Generalized convolutions: Panorska t60-J; 

(vii) ARCH and GARCH-type models: Bollerslev [7], Vries l771, Bollers- 
lev et al. [8], Baillie and Bollerslev [2]. 

The rest of the section is intended as a short discussion of a call option 
formula under the assumption that the stock-price process follows the 
Mandelbrot-Taylor stable Paretian model. In [65], option pricing formulae are 
given for price processes with marginals having mixtures of normals, Student 
t-distributions, geometric stable and other type distributions for asset returns. 
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Mandelbrot and Taylor [50] argued strongly in favour of the stable 
Paretian distribution over the norma1 law for modelling the distribution of 
asset returns, and a substantial body of subsequent empirical studies supported 
the stable Paretian model (see the discussion in [%I). This model gives rise to 
alternative option pricing formulae, 

A. The main ingredients of the MandeIbrot-Taylor model. The return 
process (W(T)),,, on a time scale measured in volume of transactions is 
assumed to be the Brownian motion with zero drift and variance vZ. The 
cumulative volume (T(t)))),,, - the number of transactions up to physical time 
t - is assumed to follow a positive (u/2)-stable stochastic process with 
characteristic function (ch.f.1 - 

The subordinated process Z(t) = w(T(~)) representing the return process on 
the physical time scale is now the u-stable Lkvy motion with ch.f. 

where a is a function of v, v and E, see [50]. Since returns are defined as 
the consecutive differences of the logarithms of the prices, the process 
S(t) = exp{Z(t)) is the price process in the Mandelbrot-Taylor model. 

B. The discrete version of the Mandelbrot-Taylor model (see [66]). Similar 
to the price tree in the binomial option pricing formula, the consecutive 
movements of the price are determined by 

k 
S,  A s C ~ f ' ~ I l - * f ) ,  

i =  1 

where 6,'s are i.i.d. Bernoulli($) independent of Ui and Di. In contrast to the 
standard binomial option pricing model (where Ui = U = const, 
Di = D = const) we assume that Ui and Di are random, Ui = exp{alXplI), 
Di = UT1, where n represents the number of movements until the terminal time 
T of a call, and {XI"), i = 1 ,  . . . , n) are i.i.d. symmetric Pareto r.v.'s with 
P(IXp)I > x) = n-'x-", x 2 n-'IQ, 1 < a < 2. For the discrete time price 
process SO = S, we then write 

k 

log (SJS) A cr C Xp), 
i =  1 

and thus the process 

28 - PAMS 15 
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converges weakly to a symmetric a-stable LK-vy motion Z(t )  on D[O, .r] with 
ch.f. given in (1.3), The random "riskless interest rate" in the i-th period is given by 

C. The option pricing formtria for stock returns governed by the LLuy 
motion. Formula (1.4) ensures the martingale property of the sequence 
S,* = SJR, . . . R, with respect to the filtration generated by the random ups 
and downs: 

Therefore, (1.4) provides a riskless measure, and the option pricing formula is 
- 

given by 
C,, = Edn) = E(S,-K)+/(R, .. . RJ, 

where 

In [66] it is shown that R , .  . . R, does not converge to a constant in 
contrast to the classical Black-Scholes formula, where R , .  . .R,, is set to be 
R" = R i T .  

The next theorem provides an expression for the limit C = limn,, C,. 
Suppose Zi's are i.i.d. uniforms on (0, 1) and E ~ S  are Rademacher random signs 
independent of ZiYs. Then XI") E,~-'I"Z;~/", and rearranging (X?, . .. , Xt)) 
in an increasing absolute order, say (XYL, . . . , Xt!), we observe that the latter 
order statistics have the same joint distribution as 

where r,, r,, .. . are Poisson arrivals with intensity 1, independent of E~'s. We 
can rewrite C,, as 

(S exp (~(xY) + . . . + Xt))) - K) + 
C n = E  

2 -" (exp (a IXplI) + exp{ - a 1XP)I)) 
i =  1 

THEOREM 1 (Rachev and Samorodnitsky [66]). Letting n +  co in the 
"discretized" Mandelbrot-Taylor model implies C, + C, where 
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Janicki and Weron [37], pp. 198-202, have analyzed alternative (numeri- 
cal) approaches to determine the European call option value under the 
Mandelbrot-Taylor stock-price model. Starting with a numerical analysis of 
the price process driven by the stochastic differential equation 

with Z being an a-stable motion, they were able to construct approximations 
for the density of C, = (S(t)-K)' .  This continuous-time option pricing 
approach is certainly of interest since it relies on a more realistic stock-price 
process tlian that in the Black-Scholes model. What still needs to be done in 
the Rachev-Samorodnitsky model is the justification of the "average-hedging" 
arguments. 

In the next two sections we shall derive an alternative call option pricing 
formula on the Mandelbrot-Taylor price process using a generalized binomial 
formula and hedging arguments throughout the derivation (Section 2); then we 
use an approximation technique to arrive at a continuous-time call pricing 
formula (Section 3). 

2. Option pricing for the generalized binomial modell. We assume that the 
movement of stock prices of a particular stock follows S,, , = S, U,,, if 
{ n + l = l ,  and S,+l=SnDn+l if t n + l = O ,  that is, for n20, 

(2.1) & + I  = S ~ ( C ~ + ~ U ~ + I + ( ~ - C R + ~ ) D ~ + I ) -  

Here, So is the current market price of the underlying stock, UN = (U,, . . . , U,), 
DN = (Dl, . . . , D,) are random sequences with finite mean (but they might 
have infinite variance) describing the values of the upward and downward 
moves, the vector c, = (t,, .. ., TN), 

describes the probability for ups and downs. We assume that 

where ri is the rate of interest on a default-free loan over the i-th period (an 
amount x in secure bonds on the (i- 1)-st day fetches an interest r ix  on the i-th 
day). Finally, N stands for the number of periods until the expiration time z. 

Our problem is to obtain a notion of a fair price of a (European option) 
contract which gives the buyer the "option" to buy a prescribed number of 
shares on the N-th day at a striking price K. Thus, the "expected" gain on this 
option is E(S,-K)'. 

Recall that in the binomial mode1 (see (1.1)), where Ui and Di are degenerate 
random variables, Ti's are i.i.d., that the price is not equal to the present 
worth of the gain, namely (R, . . . R,)-l E(SN-K)+ with Ri : = 1 +ri. In fact, the 
price does not depend on P(Ci = I)! As we have already noticed, this is so 
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because the investor can also invest directly on the stock. So if the stock is 
expected to go up ( P ( t i  = 1) is high), and the broker set a high price on the 
option, the investor may instead invest his money on the stock directly. 

In the model (2.1), the distribution of the triple (U,, D,, c,) is quite 
arbitrary. The only assumption in addition to (2.2) and (2.3) is 

that is, having observed the vectors U, = (U,, . . . , U,) and D, = (Dl, . . . , D,), 
5, does not contain any additional information on U,+ Dn+ U,, +z, 
D~+z, - . . r  UN, Dp,. 

We assume that the random variables U,+ I, D,, are observed on the 
n-th day, and thus can be used to decide the amount nn+l an investor may 
want to invest on the stock on the n-th day. Thus, an investment strategy is 
given by {f,}, where f ,  is a function of 

and having observed U,, Dn and - the investor invests n,, 
=f,(Un, D,, on the (n- 1)-st day. 

Consider an inqestor with initial wealth X, = x who chooses an invest- 
ment strategy (S,). If there is no inflow or outflow of funds, any excess 
(shortfall) funds after investing in the stock are put in the bank (borrowed) at 
the appropriate rate of interest (ri on the i-th day), the worth X,+, of the 
ccportfolio" at time n + 1 satisfies 

To define what will be a "fair price" x* of the option we introduce the 
following functions: for (u,, d,, 8,) E R'; x RR+ x (0> l),, 

n + 
hn(un, any 8,) = So C (cjuj +(I -zj)dj), vn(unY dny en) = (hn(un, dnYen)-K) , 

j= 1 

and given an investment strategy {f,}, let 
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Then we have Sn = h,(U,, D,, q,) for the stock price at time n, and with initial 
wealth x and investment strategy {f;.), the worth X, of the portfolio at time n is 
given by X, = g,(x, u,, D,, en). 

By analogy with the binomial case (the Cox-Ross-Rubinstein model: U,, 
D, are constants, and c, are i,i.d.; Un, D, and en depend on n only), we would 
like to define the price of the option to be x* if there exists an investment 
strategy {A) such that 

(2.6) EsN(x*> 4, DjvY tlly) = E(vN(eJN, DN, tld) 
for all (0; 1)-valued random variables {q i j  with 

In particular, taking qi to be degenerate, q, = E ~ E  (0 ,  1) .for all i, 

for all E ~ E  (0 ,  1). When {Ui, D,) are degenerate, (2.8) is the same as saying that 
{fi) is a hedging strategy. 

We will prove below that (2.6) determines x* uniquely and show that for 
this x* there exists a strategy {fi} which ensures (2.6). We will also obtain 
a formula for x*. Once this is done, one can argue as in the binomial case that 
x* must be the fair price of the option. 

LEMMA I. (i) Suppose that there exists a strategy {&) such that (2.6) holds. 
Then 

(2-9) x* = Ev,(UN, DN, 6$)/(Rl.. .RN), 

where [f are (0, 1)-valued random variables such that 
N 

P(5: = E ~ ,  i < N I (UN, DN)) = n pfi(l -pillwei 
i = l  

with pi = (Ri-Di)/(Ui-Di). 
(ii) There exists an explicit strategy {fj) which yields (2.6). - 
Proof.  (i) Note that (tr) satisfies (2.7), and hence (2.6) holds for qi = [f. 

Also, by the choice of pi, 

Using this "riskless" property of pis, we obtain EgN(xa, UN, DN, c$) 
= R,  . . .RNx*. Now (2.9) follows from (2.6). 

(ii) Let us define 
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Then the result of part (i) can be phrased 

Now we construct an explicit strategy (4) which yields (2.6). The strategy 
is obtained by taking a suitable conditional form of the hedging strategy in the 
binomial case. 

The strategy (fi) is going to be defined by backward induction. We need 
to introduce more notation. Let 

.. - 

be the conditional distribution of U,, D,. Let {w:, w t ,  v,*, f,, vn-,) for 
n = N ,  N - I ,  . . . , 1 be defined by backward induction as follows (note u, has 
been defined earlier): 

i.e. w,l stands for the call value if at the end of the n-th interval the stock is 
46  up"; 

i.e. w: stands for the call value if at the end of the n-th interval the stock is 
"down"; 

i.e. f, stands for the neutral hedge ratio; 

i.e. v: stands for the conditional mean value of tlie call given the ups and the 
downs at the end of the n-th interval; 

i.e. vn- l  is the value of the call at the end of the (n- 1)-st interval. 
Let {q,) be a sequence of random variables sat isfag (2.6). Writing 

l n  = (91, Sz, - - 3  qn), we obtain g n ( ~ n U n + ( l - ~ J D n ) f  v:(Un, Dn, tln-~)-Rn% 
= vn(Un, D,, qn), where 6, = fn(Un, D,, qn- l). Taking expectation, and noting 
that 
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in view of (2.7), we get 

E[?,(?,U,+(l -tl.)Dn)+R,vn-llU,-1, &-I, tln-l)-znR,] 

= ECvn(Unl D,,8.11 

or equivalently, writing 17, = v,(U,, D,, q,), we get 

Thus - . 

Thus the strategy given by the functions { f,) defined by (a)-(e) satisfies (2.6). I 

By Lemma 1, v, must be equal to x*. It  is easy to see this here directly. It is 
a direct consequence of the definitions that 

vn-~(Un-~? Dn-1, <*-I> =Ri1EC~,(Un9 Dn, 5:) 1 (Un-13 Dm-19 tn-1119  

and hence 

In view of the preceding discussion, we can define x* given by (2.9) as the price 
of the option. We will call S,* to be the "riskfiee" stock-price process associated 
with S,. 

3. Option pricing for the generalized Mandelbrot-Taylor model. We now 
consider a generalized version of the Mandelbrot-Taylor model for movement 
of stock prices and obtain a formula for the price of an option. 

Let (W(t))tao be a standard Brownian motion defined on (GI, S1,  PI) and 
let ( ~ ( t ) ) , ~ ,  be a positive (a/2)-stable motion with 0 < u < 2, defined on 
(Q,, S o ,  Po), with ch.f. given by (1.2). We consider the product space 

and now ( ( ~ ( t ) ) ~ ~ ~ ,  ( ~ ( t ) ) ~ ~ ~ )  regarded as processes on (a ,  R 9) are 
independent. Let r(s) be the interest rate at time s on riskless bonds. This 
means that one unit invested at time u in bonds yields exp{jLr(s)ds) units at 
time t. 
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Let the stock price of a certain stock be modelled as 
t 

( 3 4  S, = Soexp {j r(s)ds+Z(t)], 
0 

where Z(t) = ~ ( ~ ( t ) ) + j i p ( s ) d T ( s ) ,  and p(s) is a continuous function. When 
p = 0, log& becomes a stable motion, as desired, in the Mandelbrot-Taylor 
model (1.2), (1.3). Thus p(u) can be interpreted as "drift." We wish to find the 
price of an option on this stock with expiration t h e  z and striking price K. Let 
us introduce an auxiliary process 

f 

where Wo(s) = W{s)- s/2. Our main result is: 

THEOREM 2. The price of the option on (S(t)}Obtbt with terminal time z and 
striking price K is 

13.3) x* = E [exp { - f r(s)ds) (S: -K)']. 
0 

Remark. Let us first make it clear that we cannot interpret the price as in 
the Black-Scholes formula, that is, we cannot demand or postulate the 
existence of a hedging strategy. Instead, here the interpretation is via a discrete 
approximation of the S-process. To be precise, we will construct approxima- 
tions (S,(n, to the stock-price process (Sf)t3o such that the price x,*, of 
the option on (St(n, m)),,, with terminal time z and striking price K converges 
to x* given by (3.3). This is the reason to call x* the price of the option for the 
stock-price process S(t). 

Proof.  Cons t ruc t ion  of (S,(n, m)),30. We divide the time interval 
LO, T] into nm intervals, and for t in the interval 

we define 

where 

UIk = Ulk(n, na) = 1 + 81- A -  exp(rlk(n, m)), [ ( A) :I 
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and (tik = tik(n, 111)) are (0, 1)-valued random variables satisfying 

( b k :  1 < 1 < n, 1 < k < m) are conditionally independent given {T( (~ i ) /n ) :  
O ~ i ~ n j ,  and 

We will first show that the process (S,(n, m)),3, converges weakly to the 
process (St)t3o in D[O, a]. To do this, for 

we write 

where 

and 

Conditioned on the (T(s))ss,-process, (Ctk: 1 < I < n, 1 < k G m) are in- 
dependent random variables and vl, are constants. Thus using the Lin- 
deberg-Feller theorem for triangular arrays (it is easy to verify the Lyapunov 
condition for 6 = 2; see, e.g., [74], p. 3311, we see that, conditioned on 
{T( t ) :  t < 21, the finite-dimensional distribution of the process (XJ,, con- 
verges to the corresponding distribution of a Gaussian process with independent 
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increments. The mean function and variance function of the Gaussian process 
are respectively given by 

and 

lim ZE[[~,~-E(C, I T(s):  s c r)12 1 T(s): s 6 r ] ,  
n,m-tw 1.k 

where the summation is over 1, k: r ((1 - l ) /n  +(k  - l)/nm) < t. 
Explicit computations show that these two limits are so p(s)dT(s) and T(t ) ,  

respectively. Thus, as n, na + a, the conditional distribution of (X,,, . .. , X,) 
given (T(s)),<, converges to the conditional distribution of (Z ( t , ) ,  . . . , ZIt,)] 
given (T(s)),<,.  Under the conditional measure, tightness of the laws of 
{(X,(n,  P I I ) ) , ~ ~ :  n, na 2 1 )  can be proved in the same fashion as the Donsker 
invariance principle. Thus, we can conclude that, conditional on (T(s),,,), the 
process (X,),,, converges to (Ztkao.  From this it foI1ows that, as (n, m) -, m, 

the processes (X, (n ,  m)),, , converge weakly to (ZJ,,,. Thus, (S,(n, m)),20 
% (St],8o. Now, the price x,*, of the option on St@, m) is (using (2.10)) 

where R, = exp(so r(s)ds). In deducing (3.4) we have assumed that the interest 
rate over a period 

and that portfolio can be changed only at multiples of z/(nm). Also that at time 
t = ( ( i -  l)/n+(j- l)/nm)r one has observed (T(s)),<,, and that this information 
can be used to decide the investment strategy. 

It remains to evaluate the limit of x,*,. Let us recall that S:(n, m) is given 
by the same expression as (3.4) with tk replaced by 5%; here 

and again (5$) are independent given (T((zi)/n): i < n). Using the choice of 
U's and D's, it can be verified that 
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Now taking j~ = 1/2 in the previous convergence argument, we see that 
@(n, m)) 3 (ST). By (3.13, we easily obtain ESF(n, rn) = SoR, for all t, n, rn. Simi- 
larly, using conditioning with respect to (T(s ) :  s < T), we get ES: = S,R,. Thus, 
S,* (n, m) + SF weakly and ES,* (n, m) + E S:. Hence ES(S,* (n, m)) + Eg(S:) for 
all continuous functions g on R+ with limsup,,,g(x)/x < m. Taking g(x) 
= (x-K)+, we get 

. .  . 

Thus the of the option on ISz) with terminal time r and striking price K is 

The interpretation of Theorem 2 is not that of existence of a hedging 
strategy, but that with an initial endowment x* one can choose a strategy, 
adapted 'to the observations (S(t), ~ ( t ) )  at time t, which yields "on the average" 
the same yield as the option, as long as the stock movement confirms to the 
model (3.1) irrespective of the dnft (~(s)). 

It is important to note that we have used arguments involving conditioning 
on {T(t):  0 < t d t) only in the convergence proofs. When it came to d e h e  
a strategy in the discretized version, at time t, only (T(s):  s 6 t )  were assumed to 
have been observed. 

We now obtain a simpler expression for x*. For a > 0, a > 0, let 

where Z is a standard normd It is easy to see that 

where @(u) is the standard normal distribution. Now for the option value x* we 
obtain - 

where ~ ( c T )  = $(KR;'S;', a'). Here v(o) can be interpreted as the value of the 
option if the stock price was modelled as $ = oW(t)+Lr,ds. Thus to compute 
x*, we need to: 

(i) estimate parameters of an (a/2)-stable r.v. T(z) (see (1.2)), since K, R,, 
and So are given, 

(ii) simulate values of T(z), say 5 T(z), j = 1, . . . , N, and 
(iii) evaluate numerically v(o). 
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Then 

for more details we refer to [56], [57], and 1371. 

Acknowledgement. The authors express their gratitude to the referees and 
A. Weron for helpful comments. 
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