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The imposing sweep of this session's title - Critical Problems in New 
Quantitative Techniques, the high reputations of the discussants and the other 
speakers, together with sponsorship by three scholarly associations, combine to 
fill us with humility. Would then we were able to present to you in a neatly 
organized form a map of the battle lines, quantitative techniques sector, in the 
struggle between social scientists and obdurate social nature. 

But this is clearly impossible, even if time and ability permitted. In the first 
place, the struggle is extensive and complex, as is inevitable and even desirable 
in a vigorous fight. In the second place, lines of communication are spotty: 
there are many media of communication and, to some degree, each patrol 
speaks its own special patois. (Among certain units, it is even considered 
a mark of distinction and scholarship to possess such a special patois.) It is 
simply hopeless for a statistician, who has after all other fish to fry as well, to 
become and to keep well informed of all quantitative developments in the 
social sciences. Even to keep informed about one area, say that of latent 
structure, is a difficult task, somewhat facilitated perhaps if one has friendly 
spies in such bastions as the Rand Corporation and the Columbia Bureau for 
Applied Social Research. 

StiII it behoves statisticians to be as aware as possible of quantitative 
developments in all the sciences, and to react to these developments with 
critical sympathy. 

Our remarks will be divided into two parts - about ten minutes on each. 
The first part will discuss a mode of description for scientific models that helps, 
we think, to organize and interrelate the very numerous models proposed and 
used as interpretations of nature. The second part will consider briefly the 
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question of the identification of models; that is, the question of telling two 
models apart. This question will, we suspect, become increasingly important in 
the social sciences and may act as a considerable stimulus to progress. 

Let us turn first, then, to the description of models, particularly models for 
social phenomena, as to the degree of which they are, on the one hand, 
interpolatory devices, and as to the degree to which they are, on the other hand, 
genuine explanutory theories. 

By theory or model building we mean the formulation of a set of reasonable 
assumptions regarding the underlying mechanism of the phenomena studied. 
~ r o m  these assumptions, conclusions - often expressed as formulas - are 
deduced describing those aspects of the phenomena that are observable. 
Agreement between the deduced conclusions and appropriate observations 
then becomes an important criterion for judging the adequacy of the theory. 
How good agreement should be, and how this goodness may be efficiently 
judged, is an area in which substantive scientist and statistician should, in 
principle at least, cooperate fruitfully. An example of a theory of the kind we 
have in mind is Newtonian mechanics. This of course is a nonstochastic 
example; a stochastic example wouId be any of the theories of learning 
discussed by Mosteller, Estes, and others, although this statement is a relative 
one, since we doubt that any social scientist would claim that there exist in the 
social sciences any theories comparable to Newtonian mechanics. 

An interpolatory device, by contrast, consists of the selection of a relative- 
ly ad hoc family of functions, not deduced from underlying assumptions, and 
indexed by a set of parameters. Given a specific set of observations, one of these 
functions is then chosen, by some process calledfitting the parameters, so that 
a close agreement is reached between the function and the observations. 
Theories, as well as interpolatory devices, usually also have free parameters; 
the essential distinction is that in the case of theories the parameters flow 
directly from basic assumptions that are mechanistic (in a wide sense), while, in 
the case of interpolatory devices, the parameters appear merely as a convenient 
index to the members of the ad hoe family of functions. 

As one example, a nonstochastic one, of an interpolatory device, we 
suggest the method used by Kepler to find the elliptical paths of the planets. In 
contrast, Newton's theory of gravitation, starting from far more basic con- 
siderations, implies the elliptical character of the planetary paths. This classical 
relationship contributes considerably to the intellectual and aesthetic satisfac- 
tion of Newton's theory. It also suggests its great utility as a predictive device 
for related phenomena. As stochastic examples of interpolatory devices, 
parallel to present-day learning theory roughly as Kepler's work is parallel to 
Newtonian theory, we point to the many investigations in which so-called 
learning curves are "fitted" by a member of some parametric family of 
functions, chosen only because its members have the right qualitative features 
and are computationally malleable. 
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Although the distinction between true theory and interpolation is some- 
times quite sharp in specific cases, the two modes of analysis really represent 
somewhat extreme points of a continuous spectrum. Theory construction must 
always contain some interpolatory elements in its selection of assumptions. For 
example, Newton's assumption that the force of gravity is inversely propor- 
tional to the square of distance (rather than to its cube, say, or to some other 
function of it) is of an interpolatory nature. 

We do not wish to deprecate interpolatory procedures, for these are 
essential, especially in the earlier exploratory stages of an investigation. In fact, 
the traditional bread-and-butter topics of statistics - for example, analysis of 
variance - are, at least as commonly applied, of an interpolatory nature. But 
we urge the importance of not remaining satisfied with the essentially 
descriptive successes of interpolatory procedures, and of going ahead to the 
more satisfying and - in the long run - more useful construction of 
explanatory models. Needless to say, explanatory models should be based 
firmly on the wide empirical knowledge of sophisticated scientists in order to 
avoid that armchair vapidity of which we have been warned many times. 

In summary, social phenomena result from the varying preferences and 
actions of the individuals forming society. An important mode of understand- 
ing such phenomena is the creation of an explanatory model or theory - 
often stochastic - for the behavior of individuals, such that deductions from 
the theoretical assumptions are in concordance with properly conducted 
statistical investigations of the phenomena in question. 

The continuum we have described is by no means precise, nor is it meant 
to be so. Still it is amusing, and possibly productive of fruitful argument, to 
make up a fanciful scale and to try to place on it various models. Let us draw 
a horizontal line to represent such a scale and place at its left end a zero point 
corresponding, perhaps, as a thorough-going interpolatory device, to tradition- 
al least-squares fitting of a line to a swarm of observed points that cry out - 
to children of our culture - to be fitted by a straight line. 

As a reasonable example of a aoninterpolatory theory let us locate at "lo", 
on the right the sort of theory discussed by Estes, Mosteller, and Bush for 
learning in simple T-maze situations. 

Latent structure analysis, as it now stands, we would place at about "Y, 
partly because of the multiplicity of free parameters its formulas entail, and 
partly because of ad hoc elements in the specification of the so-called trace lines. 
Perhaps the father of latent structure analysis will take exception to our 
position for it. 

Factor analysis, in most of its forms of which we are aware, we would put 
a bit lower on the scale, perhaps at "4". Classical economics is hard to assign, 
because it is largely nonstochastic, dealing with averages over large human 
populations. It does, nonetheless, deal with definite mechanisms, frequently 
only qualitatively defined. Perhaps "9" would be a fair position. In discussing 
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this scale with friends, wide differences of opinion have appeared, in part of 
a semantic nature, depending on what one means by the "xyz theory." For 
example, a theory such as that of latent structure could be regarded as of 
a purely curve-fitting type or as including extensive sociological structure 
depending upon the meaning one gives to the term "latent structure theory." 

We find this game of recreational interest, since it entails so many personal 
evaluations. However, perhaps it should best be continued under more 
recreational circumstances. 

I turn now to the second part of our talk, to the question of the 
identification of a model. As we shall see, this question is really only of 
a serious nature when the model in question is a true theory, resting on 
conceptions and assumptions about empirical individuals, however much these 
conceptions and assumptions may be swathed in abstract terminology. 

Let us describe the point graphically. We choose first a set of observable 
quantities that our theory might explain. Suppose that every possible joint 
probability distribution of these observable quantities is represented by a point 
on the blackboard. So each point corresponds to a different, and possibly quite 
complex, statement describing fully the distribution of the observables. 

Now consider a specific theory with its basic concepts and assumptions. If 
it is not trivial, the theory will lead to only some of the points; that is, only 
some of the joint distributions, usually relatively few, will be consistent with the 
theoretical assumptions. For convenience, represent these distributions consis- 
tent with the theory as the points enclosed by this curve. If the theory is wholly 
specific, there will be only one point within the curve. In so far as the theory 
has free parameters, the curve will enclose a multiplicity of points, but almost 
always a small fraction of the totality of points. 

Let us consider an example that may have intrinsic interest. Back in the 
twenties, some prominent English statisticians began an intensive study of 
accident statistics. The observables might, for example, be the number of 
nondisabling accidents suffered by London bus drivers in a two-year period. 
Some drivers had been involved in no accidents, others in one, others in two, 
and so on. Thus to each driver studied would be attached the number of his 
accidents, and this was regarded as an observation on an underlying 
distribution of interest. If the drivers were chosen at random, and if they 
exercised negligible effect on each other's accident frequencies, then the 
observations might be regarded as a random sample from a specific, but 
unknown, univariate probability distribution over the integers 0, 1, 2, etc. 
There are infinitely many such distributions; they correspond to the totality of 
points on our diagram. 

The English statisticians now wanted to introduce theoretical structural 
assumptions so that they could come to sensible grips with this situation. The 
simplest assumption would be that for each driver there is a constant small risk, 
each second of the working day, that an accident may occur, and that this 
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timewise constant risk is the same for each driver. From this assumption it is 
readily derived that the observations follow some Poisson distribution, thus 
reducing the many possible distributions on the nonnegative integers to 
a relative few, the Poisson distributions. But this conclusion was quickly found 
to be hopeless at variance with the observed facts. The numbers simply did not 
look anything like a Poisson distribution; they were much more scattered. 

What to do? One argument ran somewhat as follows: people are different, 
and bus drivers are people. Suppose that to each bus driver there corresponds 
his own risk, constant over time but now variable from person to person. As 
distributions of risks over persons, the family of Pearson Type 111 functions 
might be, and was, chosen on the grounds of manipuIative simplicity and 
reasonable qualitative shape. Note the interplay between explanatory theory 
and interpolatory convenience. Applying this variable risk theory, the family of 
resulting distributions for the observables is that family called the negative 
binomial distributions. This family includes as limiting cases the Poisson 
distributions, but it is much more extensive: it is a two- not a one-parameter 
family. Thus the variable risk theory supposes that the observations are 
governed by a kind of mixture of Poisson distributions. In this the theory bears 
a resemblance to Lazarsfeld's latent structure theory. 

The variable risk theory turned out in fact to be nicely consistent with the 
observations. So all seemed well. In fact, the concept of accident-proneness 
(corresponding to a high risk level for an individual) became popular and 
personnel managers tried hard not to hire accident-prone people. We under- 
stand that some psychoanalysts have constructed far-reaching conclusions on 
the basis of the accident-proneness concept. But now the question of 
identification of model arose. It was pointed out that another underlying 
concept and another set of assumptions of a wholly different kind wodd lead 
to precisely the same set of distributions for the observables. 

This second approach was first suggested, as far as we know, by Pblya and 
Eggenberger. It is simple and assumes that all the individuals are governed by 
the same law. Suppose that they all start out with no accidents and with the 
same constant risk of an accident A. Any particular individual goes along with 
this constant risk until hisJirst accident occurs. Then he proceeds at a new level 
of risk, I +a, where a is positive. When his second accident occurs, his risk level 
jumps to A+2a. And so on.. . , after k accidents and before k+ 1 accidents the 
risk level is A +  kol. This model is called that of positive linear contagion; it 
means that the risk of accident increases with number of accidents. The 
important point is that the family of distributions for the observables under the 
positive linear contagion model is precisely the same as that under the variable 
risk or mixed Poisson model. That is, both theories give rise to exactly the 
same two-parameter family of negative binomial distributions for the observa- 
bles. Hence even if we knew perfectly the distribution of the observables, we 
would not be able to discriminate between the two theories, relative, of course, 
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to the given data; thus nonidentifiability. And remember that the two theories 
correspond to two very different conceptual mechanisms. 

Of course, there may well be more than two theories leading to the same 
family of distributions for the observables. 

Further, more complex things may happen. For example, the families of 
distributions for the observables under two theories may not be the same but 
one may be included in the other, or there may be genuine overlapping. Or it 
may be that the two families are disjoint, so that identification is in principle 
possible, but so close together that resolution would require a wholly 
impractical sample size; this might be called practical nonidentijtability. 

What then? The presence of nonidentifiability forces us to try to 
differentiate between the theories by considering other and wider classes of 
observables. And this is in the direct interest of scientific advance. In the 
accident case, for example, current work is exploring such observables as the 
time intervals between accidents and the numbers of accidents suffered by the 
same person in two time periods or in two environments. Of course, 
considerations of elegance and simplicity - Occam's razor - may also play 
a role, a consideration some writers adduce when comparing the Ptolemaic and 
Copernican theories of planetary motion. 

Let us comment briefly, in closing, on the theory called a latent structure. 
This theory supposes a mixture of multivariate populations, each with 
independent marginals. Often other conditions are added. Perhaps the simplest 
interesting case is that in which a questionnaire has four dichotomous 
questions, so that there are 2" = 16 patterns of answers, or 15 "degrees of 
freedom" for specification of the distribution of the observables with respect to 
a given population. In appropriate circumstances, the latent structure theory 
says that the population is really made up of two groups, in proportions v and 
1 - v, such that among the individuals of group 1 the four questions are 
answered independently, and among the individuals of group 2 the four 
questions are also answered independently but with different probabilities. 
Thus the general 15-dimensional "space of distributions" is reduced to 
a 9-dimensional space corresponding to the following 9 parameters: v (the 
mixing parameter), four probabilities of "yes" for group 1, and four probabili- 
ties of "yes" for group 2. This is the so-called latent dichotomy with 4 questions 
discussed by Lazarsfeld and his colleagues. The two groups are considered to 
be sociologically important. 1 

We raise the following question, without attempting to answer it: Might it 
not be possible to begin with some diferent reasonable conceptual model and 
show that it implies the same or an overlapping family of distributions for the 
observables? That is, may another model exist, as in the case of the accident 
statistics example, that will lead to the same family of probability distributions 
as does the latent structure model, or at least to a family that overlaps to 
a large extent? We suspect that the answer may be "yes." 
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It might be noted here that work on medical problems with the help of 
models much like those of latent structure was initiated by Muench in 1936 
and has been extended by Neyman and Chiang. The major differences between 
these medical models and those of Lasarsfeld and his colleagues lie in the 
natures of the restrictions on conditional probabilities of positive responses. 
Chiang in a paper in Human Biology (1951) has discussed the question of 
"practical nonidentiiiability" of models in the context of tuberculosis diagnosis. 
He suggests a number of different models and explores the sample sizes 
necessary to discriminate between them. They turn out to be, in his situation, 
generally quite large. 

In summary, it seems important to us that the model builder and tester 
consider the possible existence of alternate conceptual structures equally well 
explaining his observables. For then, in attempting to discriminate, he will be 
naturally led to wider observational areas that may prove to be of considerable 
importance. 
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