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Abstract. A new notion of operator-stable processes is in- 
troduced and operator fractional stable motions are discussed as 
examples of operator-stable processes. 

I. Introduction. In the previous paper [7], we have introduced a new 
notion of Rd-valued operator-stable process, defined several operator fractional 
stable motions, and proved some limit theorems only in the sense of the 
convergence of all finite-dimensional distributions. In this paper, we shall 
redefine the operator-stable processes in a more natural way and prove the 
limit theorems in the sense of the weak convergence. Marginal processes of 
Rd-valued stochastic processes will also be discussed. 

2. Operator-stable processes. A full probability measure ,u on Rd is said to 
be strictly operator-stable (or simply operator-stable in this paper) if there exists 
an invertible linear operator B on Rd such that the characteristic function q of 
,u satisfies, for every t > 0, 

where B* denotes the adjoint operator of 8. An Rd-valued randomvector 5 is 
d 

symmetric if t = -5. Let A, and A, be the minimum and the maximum of the 
real parts of the eigenvalues of B, respectively. 

Remark  2.1. Sharpe [8] proved that necessary and sufficient conditions 
for an operator B to be an exponent of some operator-stable distribution are 
(i) A, 2 $ and (ii) every eigenvalue of B having the real part equal to 4 is 
a simple root of the minimal polynomial of B. 

Remark  2.2. A full operator-stable measure ,u can be classified as follows: 
(i) y is Gaussian. In this case, B = $I is always taken as an exponent of y. 

So, whenever we consider a full Gaussian operator-stable measure, we always 
assume B = $1. 
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(ii) p is purely non-Gaussian. In this case, A, > 4. When p is 
a d-dimensional a-stable measure, we can take B = a- ' I .  

(iii) p is generul. Theorem 1 in [3] allows us to consider the Gaussian 
component and the non-Gaussian component separately. We do so in this 
paper. 

If {X It), t E R }  is an Rd-valued Levy process (namely, it has independent 
and stationary increments), is continuous in probability, X(0) = 0 as., and 
X(11 has a symmetric operator-stable distribution with exponent B, then 
{X ( t ) }  is called a B-operator-stable motion, and will be denoted by {Z, (t), t E R) 
in this pager, Take any k distinct time points t,, + .  ., tk and consider 
a (d x k)-dimensional random vector 

Then Z is again operator-stable in R d x k  with exponent Q, where 

This fact is a special case of Theorem 2.2 below. Motivated by this fact, we 
introduce the following new definition of operator-stable processes. 

DEFINITION 2.1. Let {X(t)} be an Rd-valued stochastic process. If there 
exists an invertible linear operator 3 on Rd such that for any k distinct time 
points t,, . .. , tk the (d x k)-dimensional random vector 

is operator-stable in Rd with exponent Q defined by (2.1), then {X (t)) is called 
an operator-stable process with exponent B. 

This definition extends the real-valued stable process in the following 
sense. 

A real-valued stochastic process (X(t)) is said to be a-stable if, for any 
tl, . . . , tk, (X(tl), .. ., X(tk)) is u-stable. If we reread this definition in terms of 
operator-stability, a real-valued stochastic process {X (t)) is said to be a-stable 
if, for any t,, ..., tk, (X(t,), .. ., X(tk)) is a k-dimensional operator-stable 
random vector with exponent Q: 
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As we have mentioned, the operator-stable motion (Z,(t)) is opera- 
tor-stable in the sense of Definition 2.1. More generally, the operator-stable 
integral processes which will be defined below are operator-stable and not 
necessarily have independent and stationary increments. (In [7], the opera- 
tor-stable integral processes are introduced as operator-stable processes.) 

TKEoR~M 2.1 (Maejima and Mason [q). Let {Z,(tj} be an Rd-valued 
operator stable motion with exponent B. Let ( A  (u), u E R) be a set of linear 
operators on Rd. De$ne - . 

Com(B)'= {A: A is a linear operator on P and commutes with B )  

and suppose, for each u E R, A (uj E Corn (B). Then if all components of A (u) are 
measurable as functions of u, and 

m 

5 HA(u)II~ d~ < 
- m  

when Z,(l) is Gaussian, or 

for some s with 0 < E < min (2 - I/dB, l/A,) when Z,  (1 )  is purely non-Gaussian, 
then the stochastic integral 

called the operator-stable integral, is well dejined. 

These are Remark 3.2 and Theorem 5.3 of [7]. 

THEOREM 2.2. Suppose that, for each t and u, At (u) E Com (3) and that the 
Rd-valued operator-stable integral 

m 

x (t)  = j A t ( 4  dZ, (4 
- m  

is we21 dejined. Then { X ( t ) )  is uperator-stable in the sense of Definition 2.1. 

P r o of. Suppose 

where (, ) represents the inner product. For simplicity, let us write I(A)  
= 5 A(u)dZ,(u). Take k distinct time points t,, .. ., t,. It is enough to show 
that the (d x k)-dimensional random vector 

is operator-stable on R d x k  and its exponent Q is given by (2.1). To this end, 
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we shall show that for 

e = [;:I i R d X k ,  O j d d ,  

the characteristic function 
1 (Atl) 

(2.2) 
i ( 8 ~ : = E [ e x p { i ( [ ~ ] .  [ 1 (Atk) i I))] 

satisfies for every t > 0 

Note that using (2.2) we obtain 

Let (A,, (u)) be simple functions, namely 
M  

A,, (u) = C A!;) - ,,., 1 (u), A!:' Corn 
p =  1 

Here u, < u, < . . . < uM are a common decomposition for all Arj (u)'s, which 
is possible. Then 

M k  

= E [exp ( i  C ( C A!:'* ej, ZB(up) -ZB(up- I)))] 
p = l  j=l 
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For a general A,,(uer), if we take a sequence of simple functions (A~,")(u)}, the 
standard argument gives us the same relationship 

Hence, noticing ~ ( 6 ) '  = rp (TO) ,  we have 

where we have used the assumption that A,, (u) E Corn (3). By using (2.4) again, 
we obtain 

which is the right-hand side of (2.3), completing the proof. rn 

3. Operator fractional stable motions. The following operator fractional 
stable motions have been introduced in [7] as examples of operator-self-similar 
process. 

DEFINITION 3.1. Let ( Z ,  ( t ) ,  t E R )  be an operator-stable motion with 
exponent 3,  and D be an invertible linear operator in Com(3). If 

CO 

(3.1)  AD,B(t) = S ( J t - ~ l ~ - ~ -  
-m 

IuID-B)dZB(u) 

is well defined, the process {AD,B( t ) )  is called the operator fractional stable 
motion. 

THEOREM 3.1 (Maejima and Mason 171). Suppose D # 3 and D E Com (3). 
4.f 
(3.2) AD-B+AB > 0 and A D - B - I + A B  < 0 ,  

then the stochastic integral (3.1) can be defined. 

These are Theorems 3.1, 4.3 and 5.4 in [73. 



454 M. Maejima 

Remark 3.1. When B = I ,  0 < a < 2, the condition (3.2) is simplified 
to that 0 < A,, A, < 1. 

Remark 3,2. If 2, (1) is Gaussian, then { A D b B  (t)} is a Gaussian operator- 
-stable process. If Z,(l) is purely non-Gaussian, then {d,,,(t)) is a purely 
non-Gaussian operator-stable process. 

As to the continuous versions of the process (An,s(t)), we have the 
following 

THEOREM 3.2;- (i) If ZB(l) is Gaussian, then for any T >  0 the process 
( A D , ,  (t), 0 < t ,< T) has a continuous version. 

(ii) If ZZ, (1) is purely non-Gaussian and AD- > 0, then for any T> 0 the 
process ( A D B B ( t ) ,  0 6 t 6 T )  has a continuous version. 

These facts will be shown as direct consequences of Theorems 4.2 and 4.3 
in the next section. 

4. Weak convergence to operator fractional stable motions. In Theorem 6.2 
of [7], we have proved the following limit theorem about the finite-dimensional 
convergence ; 

THEOREM 4.1. Let {Z,(t), t E W) be a symmetric operator-stable motion with 
an exponent B suck that 

Let D be a linear operator in Com(B) such that D # B, AD-,+& > 0, and 
An-B-I+AB < 0. Let (Xj, j =  0, _+I, _f2, ...) be i.i.d. symmetric Rd-valued 
random vectors such that 

and let a sequence of matrices {Cj )  be such that 

i f j = O ?  -1, 
otherwise. 

D@ne a new sequence of Rd-valued random vectors {Y,) by 

(4.2) 

Then 

In this section, we show the weak convergence in C(L0, TI, Rd) when 
(i) Z,(l) is Gaussian or (ii) ZB(l) is purely non-Gaussian and A,-, > 0 
(cf. Theorem 3.2). 
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LEMMA 4.1. IfE [llXjj12q < at, p 3 2, then for the generated random vector 
E;, defined by (4.2) the following inequality holds: 

The proof is the same as that of Lemma 4 of Davydov [I]. a 

Let 
It1 - m 

Am(t):= C Cj+ It- Ctl)C,+~-m 
j = l - r n  

i . .  
and 

LEMMA 4.2. We have 

Proof.  The lemma can be shown in exactly the same way as in Lem- 
ma 5 of [5]. ia 

The following is easy. 

LEMMA 4.3. Suppose AD > 0, and Jix T >  0. For any 6 > 0, there exists 
C ,  > 0 such that lluDll < Club-' for all 0 < u < T. 

THEOREM 4.2. Suppose that Z ,  ( 1 )  is Gaussian and that E [IIXjll '"1 < co for 
some 2p > l/lD. Then for any fixed T > 0 

Proof.  We show the tightness of W,,. Let 0 < s < t < T. We have, by 
Lemma 4.1, 

(4.3) E CIIKt- KsIIZP1 G A {Va~~llKt-KsIt))P 4 C tE CIIKt- W,s1121)p, 

where and in what follows C denotes an absolute positive constant. Then, by 
the use of Lemma 4.2 with B = 41 and Lemma 4.3, 
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Since we are assuming 2pd, > 1, we can find a 6 > 0 such that 2 (IZ, - 6)p  > 1. 
Tlius we infer from (4.3) and (4.4) that 

where a : = 2 (2, - 6 )  p - 1 > 0. Thus the tightness of ( W,,) follows from the 
Kolmogorov criterion. 

Next suppose Z,(f) is purely non-Gaussian. For some n > 0, define 

where I [ A ]  is the indicator function of a set A, and 

Note that E[Xm] = 0 since X, is symmetric. Let 

CtJ 

= ( D - B ) ~ I - ~ ( E  K +  ((t- [ t ] )  xil+l) = (D-B)n-D E Am(nt)Xm. 
k =  1 m c z  

LEMMA 4.4. Under (4.1) we haue 

s ~ p E [ l l n - ~ X ~ 1 1 ~ ]  < co. 
n 

Proof.  By Lemma 9 of Ed], 

sup n SXP {IIn-'R, 1 1  > x) d x  < a,, 
" 0 

which concludes the lemma. H 

LEMMA 4.5. Under (4.1), for any p < I/&, 

sup nE [ I [  n-' (XI - X , ) I I p ]  < co. 
n 

Proof.  We have 
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Let E > 0 and choose a so large that 

n 

2P C xjIl > a) < E for all n, 
j= 1 

which is possible by tightness (the convergence (4.1)). Thus 

n 

C xjll > x ]  < E for all x 2 a and for all n. 
j= 1 

. . .. . . ~ 

Since (Xi) are symmetric, we have 
4 

P { max Iln-BXjII > X )  G 2P Xjll > x).  
1 S j < n  j= 1 

Thus 

[ P  {Iln-BX,II < x)Jn = P ( max IJn-BXjll < x) 
I S j d n  

= 1 - P { max Iln-BXjll > x} 
l < j Q ~  

so that 

Hence 
m 2 m n 

sup;! xP-I P { I ln -B~, I I  > x)dxs -SUP I x ~ - ~ ~ { l l n - ~  C xjll > X }  dx 
a 1 - 8  n a j =  1  

By Theorem 3 of [4], for every p < l /AB 

and hence 
03 

sup n x P - I  P(lln-BXlll > X }  dx < co, 
" a 

concluding the lemma. ~BZ 
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THEOREM 4.3. r f  > 0 and -t A, < 0, then 

Proof.  We show the tightness of (Wn,) and (Wn,- W,,) separately. Let 
O < s < t , ( T .  

(i) The tightness of (W",): We have 

(since D E Corn (B)) 

By Lemmas 4.2 'and 4.4, we have 

m 

G c il(t-~)*-~11~(t-~) j I ~ I I - x I ~ - ~ -  1 ~ ( ~ - ~ 1 1 ~ d ~ .  
- m  

Note that since A D - ,  > 0 and AD-,+, + AB < 0, we obtain 

Thus 

However, by Lemma 4.3, for any 6 > 0 

Since > 0, we can take 6 > 0 so small that LD-B-6 > O1 and thus 

J,<C(t-s)'+", where ~ : ' 2 ( i ~ - ~ - d ) > o .  

The tightness of (Wn,) thus follows from the Kolmogorov criterion. 

(ii) The tightness of (W,,- Wn,): Note that there exists p < l/A, such that 
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(See the proof of Theorem 5.4 of [7].) Then we have 

< C z  I I ( D - B ) n - t D - B ) ( A m ( n t ) - ~ , ( n s ) ) ] ~ P ~  [ l ~ n - B ( ~ , - ~ m ) ~ ~ p ~ ,  
m 

where we have applied the Marcinkiewicz-Zygmund inequality to f X,- Rm, 
m E Z ) ,  a sequence of i.i.d; -random vectors with E [X,-R,,J = 0. 

By Lemmas 4.2 and 4.5, we have 

Since AD-, > 0, by Lemma 4.3, we can find a > 0 such that 

The tightness of {Wn,- Wn,) thus follows from the Kolmogorov criterion. B 

5. Operator-self-similarity and self-similar marginals. 

THEOREM 5.1. Let X = ( X ( t ) ,  t 2 0) be an Rd-vaIued operator-selfsimilar 
process with exponent D. Assume that the distribution of X ( 1 )  is absolutely 
contintlous and 

(5.1) IE ~ ~ ' ( 0 ,  ~ ( 1 ) )  1 0  for any B E R ~ .  

If X has a complete set ofunivariate self-simihr marginals, then D is semisimpb. 
Furthermore, the ser-similar parameters of the univariate seIf-similar marginals 
are the real parts of the eigenvalues of D. 

The proof is almost the same as that of Theorem 2 of [2]. 

Remark  5.1. If X(1) is infinitely divisible, the condition (5.1) is auto- 
matically satisfied. 

THEOREM 5.2. Let X be an Rd-valued operator-seEf-similar process with 
exponent D. If D is diagonulizable over R, then X has a complete set of univariate 
margimls. 

The proof is also almost the same as that of Theorem 3 of [2]. 



460 M. Maejima 

REFERENCES 

[l] Yu. A. Davydov,  The invariance principle for stationary processes, Theory Probab. Appl. 15 
(1970), pp. 487-498. 

[Z] W. N. Hudson,  Operator-stable distributions and stable marginah, J. Multivariate Anal. 10 
(1480), pp. 26-37. 

[3] - and J .  D. Mason ,  Operator-stable laws, ibidem 1 1  (19821, pp, 434-447. 
[4] W. N. Hudson, J. A. Veeh and D. C. Weinor, Moments of distributions attracted to 

operator-sbable laws, ibidem 24 (1988), pp. 1-10. 
[5]  M. Maejima, On a class of self-similar processes, Z .  Wahrsch. verw. Gebiete 62 (1983), 

pp. 235-245. 
[6] - Limit theorems related to o class of operator-self-similm processes, preprint (1993). 
[7] - and J. D. Mas on, Operator-self-similar stable processes, Stochastic Process. Appl. 

54 (1994), pp. 139-163. 
181 M. Sharpe,  Operator-stable probability distributions on vector groups, Trans. Amer. Math. 

SOC. 136 (1969), pp. 51-65. 

Department of Mathematics 
Keio University 
3-14-1, Hiyoshi, Kohoku-ku 
Yokohama 223, Japan 

Received on 8.2.1 994; 
revised version on 14.8.1994 


