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OPERATOR-STABLE PROCESSES AND
OPERATOR FRACTIONAL STABLE MOTIONS

BY

MAKOTO MAEJIMA (YOKOHAMA)

Abstract. A new notion of operator-stable processes is in-
troduced and operator fractional stable motions are discussed as
examples of operator-stable processes.

1. Introduction. In the previous paper [7], we have introduced a new
notion of R%valued operator-stable process, defined several operator fractional
stable motions, and proved some limit theorems only in the sense of the
convergence of all finite-dimensional distributions. In this paper, we shall
redefine the operator-stable processes in a more natural way and prove the
limit theorems in the sense of the weak convergence. Marginal processes of
R“-valued stochastic processes will also be discussed.

2. Operator-stable processes. A full probability measure u on R? is said to
be strictly operator-stable (or simply operator-stable in this paper) if there exists
an invertible linear operator B on R? such that the characteristic functlon (0] of
u satisfies, for every t > 0, :

p(0F = (%0, 0ecR,

where B* denotes the adjoint operator of B. An R%valued random vector Eis
oy d .. .

symmetric if £ = —¢&. Let A5 and A, be the minimum and the maximum of the

real parts of the eigenvalues of B, respectively.

Remark 2.1. Sharpe [8] proved that necessary and sufficient conditions
for an operator B to be an exponent of some operator-stable distribution are
(i) Az >3 and (i) every eigenvalue of B having the real part equal to } is
a simple root of the minimal polynomial of B.

Remark 2.2. A full operator-stable measure u can be classified as follows:

(1) u is Gaussian. In this case, B = %I is always taken as an exponent of p.
So, whenever we consider a full Gaussian operator-stable measure, we always
assume B =
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(i) u is purely non-Gaussian. In this case, Ap>3. When pu is
a d-dimensional a-stable measure, we can take B=a 'l

(iil) p is general. Theorem 1 in [3] allows us to consider the Gaussian
component and the non-Gaussian component separately. We do so in this
paper.

If {X (t), te R} is an R%valued Lévy process (namely, it has independent
and stationary increments), is continuous in probability, X (0) =0 a.s., and
X (1) has a symmetric operator-stable distribution with exponent B, then
{X (1)} is called a B-operator-stable motion, and will be denoted by {Z;(t), te R}
in this paper. Take any k distinct time points ¢,,...,f, and consider
a (d x k)-dimensional random vector ‘

Z =(Zy(t)), ...» Zp(ty)-

Then Z is again operator-stable in R*** with exponent Q, where

B 0 ... 0
0O B ... 0
(2.1) Q= '
(U B

This fact is a special case of Theorem 2.2 below. Motivated by this fact, we
introduce the following new definition of operator-stable processes.

DeriNITION 2.1. Let {X(f)} be an R-valued stochastic process. If there
exists an invertible linear operator B on R? such that for any k distinct time
points t,, ..., t, the (d x k)-dimensional random vector

X = (X(tl), ceny X(tk))

is operator-stable in R?** with exponent Q defined by (2.1), then {X (¢)} is called
an operator-stable process with exponent B.

" This definition extends the real-valued stable process in the following
sense.
A real-valued stochastic process {X (£)} is said to be a-stable if, for any
By eees B (X (), ooy X (tk)) is a-stable. If we reread this definition in terms of
operator-stability, a real-valued stochastic process {X (f)} is said to be a-stable
if, for any f,,..., 5, (X(@),.... X (t,)) is a k-dimensional operator-stable
random vector with exponent Q:
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As we have mentioned, the operator-stable motion {Zy(t)} is opera-
tor-stable in the sense of Definition 2.1. More generally, the operator-stable
integral processes which will be defined below are operator-stable and not
necessarily have independent and stationary increments. (In [7], the opera-
tor-stable integral processes are introduced as operator-stable processes.)

THEOREM 2.1 (Maejima and Mason [7]). Let {Zy(t)} be an R%-valued
operator. stable motion with exponent B. Let {A(u), ucR} be a set of linear
operators on R’. Define

Com(B) = {4: A is a linear operator on R® and commutes with B}

and suppose, for each ue R, A (u)e Com (B). Then if -all components of A(u) are
measurable as functions of u, and

[+ o]

{ 1A@)*du <

= 00

when Zg(1) is Gaussian, or

T (1A% [ A @) 42~ du < oo

for some & with 0 < ¢ < min {2—1/Ag, 1/45} when Z (1) is purely non-Gaussian,
then the stochastic integral

T 4wiz,),

called the operator-stable integral, is well defined.

These are Remark 3.2 and Theorem 5.3 of [7].

THEOREM 2.2. Suppose that, for each t and u, A,(u)e Com (B) and that the
R%-valued operator-stable integral

X0 = | AWdZyw)

is well defined. Then {X (t)} is operator-stable in the sense of Definition 2.1.
Proof. Suppose
o0):=E[exp{i<0, Zz(1))}], 0€R?,

where {, ) represents the inner product. For simplicity, let us write I(4)
= [ A(u)dZy(u). Take k distinct time points t,, ..., t,. It is enough to show
that the (d x k)-dimensional random vector '

X=(I(A),---, 1(4))
is operator-stable on R?** and its exponent Q is given by (2.1). To this end,
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01
9= E ERka, GjERd,
0,

the characteristic function

| . 80, [(I(4)
(2.2) - lﬁ(@):=E[exp{i< [ J , [ } >}:|
: ’ o ok I(Atk)

satisfies for every ¢t > 0

(2.3) v (0) =y (t2°0).
Note that using (2.2) we obtain

YO =E [?XP{i ‘Zl <0, I(At,-»}] .

we shall show that for

Let {4, (1)} be simple functions, namely
M
A=Y APl uy@), AP eCom(B).
p=1

Here u, < u; <... <u, are a common decomposition for all' 4, (u)’s, which
is possible. Then

E[exp {i .Zl <0, 1(4))}]
= E[exp {i z <o, z AP (Zp ()~ Zp (1)) )]
—Efexp{i 3 <Y AP0, Zy(u)— Zylup-)D)]

p=1 j=1

E [exp {i € Z AD*0,, Zp(u,)—Zp(up-1))}]

:Ia ’T'ZIE

(Z Apro)r T
j=1

-]
1
-

Il
[

| exp {(u,—u,-1)logo( Z AP*0 )}

-
I

M

=exp{ ), (up—up—1)108¢( Z A*0,)}

p=1

=

k

= exp{_ojo logop (Y, A¥(u)0;)du}.
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For a general A,,(u), if we take a sequence of simple functions {A{(u)}, the
standard argument gives us the same relationship

. k ©
(24)  Elexp{i Y <0;, I(A,)>}] =exp{ [ logop (Y A¥(u)0))du}.
ji=1 -

i=1

Hence, noticing ¢ (0) = ¢ (¢*'0), we have

@ k @© k
YOy =exp{t | log(p(;r{l;(u) 6))du} = exp{ | log [q,(; A% (u)0)] du}

J i
T e K o k
=exp{ | loge (t* -21 Al w)0)du} =exp{ | log(p(z1 AE W)t 0) du},
- j= -® j=

where we have used the assumption that A4,,(u)e Com (B). By using (2.4) again,
we obtain

Y () = E[exp {iz B0, 1A )]
r 76, I(A,,)
A=) LD
B t* 0, I(A4,)
" 0, I1(4,)
el (o) L))
L 0, 1(4,) -

which is the right-hand side of (2.3), completing the proof. m

3. Operator fractional stable motions. The following operator fractional
stable motions have been introduced in [7] as examples of operator-self-similar
process.

DerINITION 3.1, Let {Z,(t), teR} be an operator-stable motion with
exponent B, and D be an invertible linear operator in Com(B). If

(3.1) - dpp® = [ (t—ulP PP P)dZ,(w)
is well defined, the process {4p 5(t)} is called the operator fractional stable

motion.

THEOREM 3.1 (Maejima and Mason [7]). Suppose D # B and D e Com (B).
If
3.2 Ap—g+A>0 and Ap_g_;+A4A5<0,
then the stochastic integral (3.1) can be defined.

These are Theorems 3.1, 4.3 and 5.4 in [7].
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Remark 3.1, When B= a1, 0 < a < 2, the condition (3.2) is simplified
to that 0 < Ap, A, < 1.
, Remark 3.2. If Z,(1) is Gaussian, then {4p 5(t)} is a Gaussian operator-
-stable process. If Z;(1) is purely non-Gaussian, then {4, g(t)} is a purely
non-Gaussian operator-stable process.
As to the continuous versions of the process {dpp(f)}, we have the
fo]lowing _ _ ,
~ THEOREM 3.2, (i) If Zz(1) is Gaussian, then for any T> 0 the process
{4pp(t), 0 <t < T} has a continuous version.
(ii) If Zgz(1) is purely non-Gaussian and Ap_g > 0, then for any T > 0 the
process {App(t), 0 <t < T} has a continuous version.
These facts will be shown as direct consequences of Theorems 4.2 and 4.3
in the next section.

4. Weak convergence to operator fractional stable motions. In Theorem 6.2
of [7], we have proved the following limit theorem about the finite-dimensional
convergence:

THEOREM 4.1. Let {Z,(t), t e R} be a symmetric operator-stable motion with
an exponent B such that

E[exp{i 0, Zz(1)}] = 9(0), OeR".
Let D be a linear operator in Com(B) such that D # B, Ap_p+ A5 >0, and

Ap_p_1+A5<0. Let {X,;,j=0, £1, £2,...} be iid. symmetric R*-valued
random vectors such that

(4.1) n~8 2 X, Zg(1),

i=1
and let a sequence of matrices {C;} be such that

C.= o : ifj=0, —1,
i jj.ﬂsgn(s)lslb‘”" ds  otherwise.
Deﬁné a new sequence of R%-valued random vectors {Y,} by
4.2) Y,=Y C; X,_;.
jeZ
Then

p Mt
(D—B)n Z Y, = Ap ().
k=1

In this section, we show the weak convergence in C ([0, T], R%) when
(i) Zz(1) is Gaussian or (ii) Zz(1) is purely non-Gaussian and Ap_5 >0
(cf. Theorem 3.2). :
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Lemma 4.1 IfET| X 2r] < oo, p = 2, then for the generated random vector
Y, defined by (4.2) the following inequality holds:

B[] ¥ %) < 4{Var(| 3, KDY

The proof is the same as that of Lemma 4 of Davydov [1]. =
Let

[t1—-m

A=), CH(t—[DCyri-m

and o
[1] )
W;:=D-B)n"?(Y Y+ (—[£D) Yg+1) = D—B)n~" 3, 4, () X,,.

k=1 meZ

LemMma 4.2. We have
[(0—B)n=®=2(4,, ()= An )] < € In~®=2 (t=mf>~ >~ |s—m” B}

Proof. The lemma can be shown in exactly the same way as in Lem-
ma 5 of [5]. =
The following is easy.

LeMMA 4.3. Suppose Ay, >0, and fix T> 0. For any 6 > 0, there exists
C, > 0 such that |u®| < C,v**~° for all 0 <u< T

THEOREM 4.2. Suppose that Z (1) is Gaussian and that E[|| X 2r] < oo for
some 2p > 1/A;,. Then for any fixed T>0

W Aps(t) in C([0, T1, RY).

Proof. We show the tightness of W,,. Let 0 <s<t<T. We'have, by
Lemma 4.1, ‘

(43)  E[IWa—Wal??] < A{Var (| W~ W,sl)}? < CELI W~ Wesl*1P,

where and in what follows C denotes an absolute positive constant. Then, by
the use of Lemma 4.2 with B =3I and Lemma 4.3,

44)  E[|W,—W,l*]
= E[|(D—3$D Y n "2 (A, (nt)— A, (n5) X, *]

< CY|0—4Dn~2(A,,n)— A, (ns)|* ELIX,I]
C o0
< ; “' ”n—(D—(1/2)I) (lnt_xln—u/Z)I_ Ins_xID—(1/2)1)||2 dx

-
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. C a0
é; [ =@ (jn (¢ —5)—n (—s5) 2P~ 1/

— @

—|n(t—s)x|P =202 (¢t —s)dx

@
SCl@E—s)°~ WMt —s) [ I11—x|P~ D~ |x|P~ 202 gy

- .

< C(t—s)2o=d),

o Since we are assuming 2pA, > 1, we can find a 6 > 0 such that 2(1,—d)p > 1.
o Thus we infer from (4.3) and (4.4) that

E L[| W~ Wl ?"] < C(e—9)'*,

where a:=2(A,—J)p—1 > 0. Thus the tightness of {W,} follows from the
Kolmogorov criterion. =

Next suppose Zg(1) is purely non-Gaussian. For some a > 0, define
X=X, I[In" Xl <al,
where I[A] is the indicator function of a set A, and -
| Y,=YC X,

JjeZ
Note that E[X,] = 0 since X,, is symmetric. Let
W, = @—Bn>(Y, %t (t— ) Yige1) = D—B)n ¥, A, (m) X,

k=1 meZ

LEMMA 4.4. Under (4.1) we have
supE[||ln 2 X,|*] < o0.

Pfoof. By Lemma 9 of [6],
supn [ xP{|[n"BX || > x}dx < o0, -
LI

which concludes the lemma. &
LEMMA 4.5. Under (4.1), for any p <1/, -
supnE[[|n 2 (X, —X,)|I”] < .

Proof. We have
nE[n"%(X,—X,)|71 = nE[In"2 X, |PI[|n" 2 X,|| > a]]

<Cnf{x? tP{|n"BX || > x}dx.

a
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Let ¢ >0 and choose a so large that
2P{|n"2Y X;| >a} <& for all n,
ji=1

which is possible by tightness (the convergence (4.1)). Thus

2P{|n 2 Y X,|>x} <e for all x>a and for all n.

J= 1 e e
Since {X} are symmetric, we have

n
P{max [n"2X/| >x} <2P{|n % } X, >x}.
1<j<n j=1 .

Thus
[P{In~"X, ]| < ¥}I" = P{ max |n™" X, <x}
£j<n
=1-P{max [n2X;| > x}
1<j<n
>1-2P (|1 3 %] > )
i=1
so that ’
nP{In"2X,| >x} <n{l—[1-2P{|n 2 ¥ X, > x}]'"}
i=1
2 _n
< 2P Y X >x).
1_8 j=1
Hence
supnfx? ' P{|n"BX || > x}dx< ésup [xP1P{|n "% Y X,| > x}dx
n g —& n 5 j=1

< el T X1
By Theorem 3 of [4], for every p < 1/4g
E[n"" 21 X,|"1-EL1Z51"] < oo,
and hence J
sgpn?x”‘lP{lln‘BXlll > x}dx < o0,

concluding the lemma. =
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THEOREM 4.3. If Ap_5 >0 and Ap.g_1+Ap <0, then
Wy Aps(® in C([0, T, RY.

Proof. We show the tightness of {W¥,,} and {W,,—W,,} separately. Let
0<s<t<g T

() The tightness of {W,}: We have
Jy 1= B[ Wo— Wyell 21 = E[|[(D — B) 3,12 (A,, (n1)— Ay (n5) X, *]
= E[|(D-B) Ln @ (4, () —A,ms)n 2 X,|*] -

(since DeCom (B))

< CY |(D—B)n~P~3(4,,(nt)— 4, ms)|*ELIn 2 X,,[1%].
By Lemmas 4.2 and 4.4, we have
j n? B (jnt—xP B — |ns—x|°~B)|| 2 dx
I

|72~ B(n(t —s)—n t—s)xI° 2 — In(t—s) xI”~ )| * n(t —s) dx

=IO =l

< ClE=sPPI2(t—s) | 1 —xP~P— xP~P|? dx.

-
Note that since Ap-p >0 and Ap_p,;+ 45 <0, we obtain

§ I =xP~2—xP~ P2 dx < 0.

Thus
Jy < Cllt=s)°7 2|2 (t—9).
However, by Lemma 4.3, for any 6 >0
t—9°~ 2l < Ct—s)*>="% t,s<T
Since Ap_p >0, we can take 6 > 0 so small that ip,_z—3J >0, and thus
J, <C(t—s)'*", where a:=2(lp-3—08)>0.
The tightness of {W,} thus follows from the Kolmogorov criterion.
(i) The tightness of {W,,— W,,}: Note that there exists p < 1/4, such that

| =P~ 2~x]|”dx < 0.

- @
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(See the proof of Theorem 5.4 of [7]) Then we have
I3 := B[|(Wy— Wo)— (Wos— Wpo)lI"] |
=E[|P-B) Y n~?P P4, (nt)— A, () n 2 (X,,— X,)|°]

< CY |(D—B)yn=®=B(4,, (nt)— A, ns)| E[In~ (X, — X,)I,

where we have applied the Marcinkiewicz-Zygmund inequality to {X,—X,,,
meZ)}, a sequence of iid: random vectors with E[X,—X,]=0.
By Lemmas 4.2 and 4.5, we have
C -2
J, <= [ InP P (nt—x|P~ P — jns— x|~ %) dx

— oo

= Tlln” B(In(t—s)—n(t—s) x|~ " — In(t—5)xI°B)|" n (t—s) dx

S Cle—s"72I1P@e—s) § I1—xP72—|xI” 7| dx

< ClE—s)°" 2P (t—s).
Since Ap-p >0, by Lemma 4.3, we can find a > 0 such that
J, < Ct—s)**e.
The tightness of {W,;— W,;} thus follows from the Kolmogorov criterion. «

5. Operator-self-similarity and self-similar marginals.

THEOREM 5.1. Let X = {X(t), t > O} be an R%valued operator-self-similar
process with exponent D. Assume that the distribution of X (1) is absolutely
continuous and

(5.1) [E[eX®XUD) £0  for any OcR’.

If X has a bomplete set of univariate self-similar marginals, then D is semisimple.
Furthermore, the self-similar parameters of the univariate self-similar marginals
are the real parts of the eigenvalues of D.

The proof is almost the same as that of Theorem 2 of [2].

Remark 5.1. If X (1) is infinitely divisible, the condition (5.1) is auto-
matically satisfied.

THEOREM 5.2. Let X be an R%valued operator-self-similar process with
exponent D. If D is diagonalizable over R, then X has a complete set of univariate
marginals.

The proof is also almost the same as that of Theorem 3 of [2].
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