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Abstract. Pursuing the earlier work of Emery [I], Meyer [2], [3] 
and the author [4] it is shown that Akma martingales starting from 
a varying initial point on the line constitute an Evans-Hudson flow in 
the framework of quantum stochastic calculus. A new transformation 
property of A z h a  martingales is established. It turns out, rather 
remarkably, that the Azkma martingales and a class of their Weyl 
perturbations satisfy the same ItB's formula but, in the vacuum state, 
have very different asymptotic statistical properties as time increases to 
infinity. 

I. Introduction. Inspired by the work of M. Emery Ill on structure 
equations for AzCma martingales ,and several discussions with P. A. Meyer we 
introduced in [441 the quantum stochastic differential equation (qsde) 

in the boson Fock space r(LZ(R+)) over L2(R+), where At,  A, A are the 
creation, conservation and annihilation processes, respectively, of quantum 
stochastic cdculus [5], and c is a real scalar satisfying -1 6 c < 1. It was 
shown in [4] that there exists a unique commutative, bounded and selfadjoint 
operator-valued solution (Xc(t), t 2 0) for (1.1) which satisfies the following 
properties : -- 

(9 lIXc @)I1 G (2t/tl - c))li2. 
(ii) In the Fock vacuum state 62, Xc(t) is a martingale as well as 

a Markov process with stationary transition probability for which t - l i 2  X,(t) 
has a symmetric distribution vc independent of t. 

(iii) For any polynomial p, Xc(t) satisfies the It6 formula 

where 9; and 0; are maps on the algebra J$ of all polynomials given by 
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(iv) The distribution v, in (ii) has the moment sequence (m,) given by 

if n is odd, 

(1.5) -1 "(2 C2j- 1 -2j tc-  1) 
if n is even. 

. . 

- If c # - 1, v, is absolutely continuous, and as c + 1, vc converges weakly to 
the standard normal distribution. If c = 0, (2t)-It' X, (t) has the density 
function a-'(1 -2)-'I2 in the interval (- 1, I). In particular, (2t)-11Z[X,(t)l 
has LBvyYs arcsin Iaw. If c = - 1, v, is the Bernoulli distribution with 
probability 1/2 for each of the values ,I. (Rather remarkably, (X-l ( t ) )  is 
a multiplicative component of the fermionic Brownian motion.) 

(v) (X, (t)) has the chaotic representation property [I]. 
Properties (ij(iii) and (v) of the Azema martingales X,(t) show that they 

share all the features of standard Brownian motion except for the lack of 
continuous trajectories. They deserve to be considered as legitimate and 
reasonable models of cumulative white noise. As c + 1, (1.1) shows that Xc(t) 
does indeed become the standard Brownian motion. 

The aim of the present note is to make some comments on AzCma 
martingales starting from a given initial position x and also illustrate the 
fruitfulness of quantum stochastic methods in constructing a wide variety of 
new classical Markov processes. Indeed, one of the great advantages of 
realising a classical stochastic process as a pair (X(.), Q), where {X(t)) is 
a commuting family of selfadjoint operators in a Hilbert space and Q is a vector 
state (or a density matrix), is that one can alter the state Q and obtain a variety 
of deformations of the original process. Another way of doing the same thing is 
to fix the state Q and consider the pair (U*X(.)U, e), where U is a unitary 
operator. It should be interesting to investigate the stability as well as changes 
in the statistical properties of a process under such deformations. The present 
note will provide an illustration of this idea by examining the behaviour of the 
M m a  martingales under deformation by a parametric family of Weyl 
operators in r (L2 (R +)). 

2. A&ma martingales starting brnm a givem point. For every - 1 < c < 1, let 
{T, (t), t 2 0) be the contraction operator-valued process in T(L2 (R,)) defined by 

(2.1) r,(t)e(v) = ~((CI~O, ,~+I~, , , )V) ,  t > 0, for all u E L2(R+),  

where I, is the indicator of E c R,, and e(o) denotes the exponential vector 

v B 2  vO" 
l@vQ-@ ... @-@ ... f i  ,,% 
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Define 

(2.2) x,, (t) = x r ,  (t) + Xc ( t )  for all X E R, 

where X, is the Azima martingale which is the unique solution of (1.1). It 
follows from property (i) in Section 1 that Y,,,(t) is a bounded selfadjoint 
operator satisfying 

. . 
Since 

dr ,( t )=(~-i)r , ( t )aA, r c ( o ) = I ,  

equations ( 1 . 1 )  and (2.2) imply that Y( t )  = Y,,,(t) satisfies the qsde 

Thus Y satisfies the same qsde in (1 .1)  but with initial value x. It now follows 
exactly by the same arguments as in [4], (2.3) and (2.4), that (Y(t)) is 
a commutative process of bounded selfzdjoint operators satisfying the It6 
formula given by (1.2H1.4) with X, replaced by Y =  x,,. Using (2.4) and 
quantum ItB's formula one obtains by induction 

where 

On the algebra d of all polynomials in one variable define the homomorphism 
{jt7 t 2 0) by 

(2.7) jtb) = p(Y(t)), P E J ; ~ .  

Then (2.5) and (2.6) yield 

where 8; and 8; are defined by (1.3) and (1.4), 8: = 8: and 0: is defined by 

Thus Gj,) given by (2.7) is an abelian Evans-Hudson flow [ 5 ] ,  with structure 
maps Bj, i ,  j~ (0, 1 ) .  Furthermore, (2.4) and (2.8) imply that { Y ( t ) )  satisfies the 
same classical Itd's formula (1.2H1.4) with X, replaced by X 

We shall now evaluate the moments of the Azkma martingale 
Y(t) = Y,,,(t) in the vacuum state a. Define 
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Then (2.5) implies that 

A simple calculation yields 

In particular, we have the identity 

This has the interpretation that the two Markov processes {x-' Y,,c(t)) and 
(Yl,c ( t /xZ))  are identical in law. 

From (2.10) and (2.11) we also have 

if n is odd, 
lim ------ h(t 'r) = n n . . . 2  i f n i s  even. 
t + m  tn" 

In other words, as t + a, the distribution of t-'12 Yx,c(t) converges weakly to 
the distribution v, of X c ( l )  in the vacuum state. 

3. Weyl perturbation of the Azbma martingale. In the boson Fock space 
r (L2 (R +)) consider the special Weyl operators W, ( t ) ,  t 0, u E C, defined by 

t 

(3.1) W, ( t ) e ( f )  = exp[-$l~1~t-~jf(s)ds]e(f +uIIo,,) for all f € L 2 ( R + ) ,  
0 

where e ( f )  is the exponential vector with exponent f. Then W, is a unitary 
operator-valued process satisfying the qsde 

(3.2) dw, = w , ( t s d ~ ~ - i i d ~ - - ~ ( ~ ( ~  dt). 

Let Y be the AzCma martingale x',, defined by (2.2). 
Define 

(3.3) z (t) = w: (t) Y (t)  W" (t) . 
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A routine computation using quantum It8's formula, (2.4) and (3.2) yields 

with Z ( 0 )  = x. Since the dt coefficient is not equal to 0, ( Z ( t ) }  is no more 
a martingale. However, {Z(t)) is a bounded selfadjoint operator-valued 
commutative process. Indeed, the factorisability property of the Weyl process 
implies that 

. - 
- Z(t)= Wi(T)Y(t)W,(T) for all O d t g T ,  

and hence the commutativity of the family {Z ( t ) ] .  Define the homomorphisms 
on the polynomial algebra d by 

Then 

(3.5) 

where j ,@) satisfies (2.7). Once again using quantum Itd's formula, (2.8) and 
(3.2) one obtains 

where 4: = 8: (see (2.9)), 

Thus the process (Z(t)] starting from x at t = 0 yields an Abelian Evans- 
-Hudson flow over the initial algebra d with structure maps 4:, i, j ~ ( 0 ,  1). 
Once again (3,4) and (3.6) imply that 

where 8; and 0: are given by (1.3) and (1.4). In other words, in the vacuum state 
fZ(t)} is a Markov process starting from x and satisfying the same classical 
ItB's formula as Y(t). Indeed, it is one of the interesting problems in the theory 
of Markov processes to describe all the Markov processes c(t) satisfying 

30 - PAMS 1 5  
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a given It6's formula of the form 

where p varies over an algebra V of functions, and L and M are two fixed linear 
operators on the linear space V. 

We call (Z(t)) defined by (3.3) a Weyl perturbation of the Azkma 
martingale (Y(t)}. In analogy with the case of the Brownian motion { Z  (t)) can 
also be called an Azhma martingale with drift. But it should be emphasised that 
(2 (t)} is not a martingale. Even though ItB's formula remains stable under the 
Weyl perturbation, the fact that there is a nontrivial dt coefficient in (3.4) 
implies a dramatic change in the asymptotic behaviour of Z ( t )  as t + co. We 
shall now describe this phenomenon in more detail. To this ens we examine the 
moments of Z ( t )  in the vacuum state. Defme 

Then from (3.5H3.8) we have 

with 

Thus 

exp [luI2 (c - 1) t] - 1 
gl(t, X) = xexp[Iul2(c- l)t] +2(Reu) 

lu1 (c - 1) 

and, in particular, 

2Reu 
lim g, (t, x) = for -1 d c < 1. 
t - rm (1-c)lu12 

From (3.9) we have 
t 

(3.13) g,  ( t ,  x) = xn exp [luI2 (cn- 1) t] + j exp [lulz (cn- l)(t -s)] 
0 

It now follows by induction and (3.10H3.13) that for - 1 < c < 1 
the limit lim,,,g,,(t, x) = g, exists for every n, en is independent of x 
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and 

Since {en] is the limit of a moment sequence, it is clear that there exists 
a probability distribution with {p,) as its sequence of moments. We shall now 
prove that this probability distribution is unique. For Icl < 1 it is clear from 
(3.14) that there exist positive constants a and /I (depending on c) such that 

Choose and fix a constant y > 0 satisfying 

ay+B < r2, ?.ell < r ,  le21 < 2r2. 
We now claim that lejl 6 j!? for allj. By choice this holds for j = 1, 2. Suppose 
that the claim holds for all j < n. Then (3.15) implies 

lenl < ~ ( n - l ) ! ~ ~ - l - t -  (n-2)!nByn-2 < n! yn-'(ay+P) < n! y n  

Thus the claim holds for all j and 

" ltlj 1 
Z l e j l T < r n  for ltl<-. 

j=o J .  Y 
In other words, (en) is the moment sequence of a unique probability measure 1, 
on the line with the moment generating function x j m , l ~ j ( t j / j ! )  defined in the 
interval It1 < l/y. This shows that the transition probability measure P( t ,  x, .) 
of the Markov process {Z ( t ) )  converges weakly to the probability measure 1, 
as t + m  for - 1 < c <  1. 

We can now summarise the discussions of Sections 2 and 3 in the form of 
a theorem. 

THEOREM. Let (Y,,,(t)) be the AzCm martingale starting from x with 
parameter - 1 < c < 1, dejned by (2.2). Let 

In the vacuum state 52, both {x, ,( t)] and {Z,,Jt)) me Markov processes with 
stationary transition probabilities satisfying the same Itd's formula (1.2H1.4). As 
t -, m, the distribution of t-'I2 Y,,,(t) in the state S1 converges weakly to the 
distribution v, of t-'I2 Y,,,(t) which is independent of t. For - 1 < c < 1, the 
distribution of Z,,, (t)  in the state i2 converges weakly as t + co to a limiting 
distribution LC independent of x. 

Remark  1. Suppose c  = - 1. Then, in the vacuum state, Z is a Markov 
process starting from x at time 0 and having stationary transition probability 
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P ( t ,  y, -) with support at the two points & d- given by 

where ~ ( t ,  y) = (y2+t)-1i2(yexp[-21u12t]+ l~~-~Reu(l -exp[-2lu1~t]) ] .  

Remark  2. In the Theorem, if we write 

zk, x ,  t ,  4 = W! (t) K7,(t) q(t) ,  

then the differentGI equations (3.10) and (3.11) imply that for every t 2 0 the 
observables Z (c, x ,  t, u)  and XZ (c, 1, txU2, UX) have the same moment 
sequence in the vacuum state, and hence the corresponding Markov processes 
generated by them are identical in law for each x #  0, 

Acknowledgement. The author thanks B. Ramachandran for his help in 
proving the uniqueness of the distribution Ac with the moment sequence {Q,) at 
the end of Section 3. 
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