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Abstract. The paper deals with non-negative stochastic processes 
X(t, w )  (t 2 0) with stationary and independent increments, con- 
tinuous on the right sample functions, non-degenerate to 0 and 
fulfilling the initial condition X(O, w) = 0. The main aim is to study 
the probability distribution of the functional jr ee-UXo."'dt for u > 0. In 
particular, the multiplicative infinite divisibility of such functionals is 
discussed and a description of corresponding spectral measures is 
established. 

1, Preliminaries and notation. We denote by A the set of all non-negative 
bounded measures defined on Bore1 subsets of the half-line R+ = [0 ,  ao). By 
A+ and 9 we denote the subsets of A' consisting of measures M with 
M ( R + )  > 0 and M ( R + )  = 1,  respectively. Further, by A, we denote the subset 
of A consisting of measures M fulfilling the condition 1," eax M (dx)  < a~ for all 
a < 1 .  Given M E  k we denote by M and (M) the Laplace transformation and 
the Bernstein transformation of M, respectively, i.e. 

00 m 

a ( ~ } = j e - ~ ~ ( d x )  and ( M ) ( z ) = ~ ~  
0 

M (dx) 

for z 2 0. For x = 0 the last integrand is assumed to be z. It is clear that 

for z 2 0 .  Moreover, it is well known ([4], Chapter XIII,7) that infinitely 
divisible measures from 9' are of the form e+ (M) with M EA and 

(1.2) e+ IM) A (4 = exp ( - ( M )  tz)). 

The uniquely determined measure M is called the spectral measure of e+  (M).  It 
is easy to verify that the following statements are true. 

PROPOSITION 1.1. M E  dl if a d  only if the Jirnction ( M )  has an analytic 
extension in the ha&-plane Rez > -1. 
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PROPOSITION 1.2. M E  dl if and only if e +  ( M ) E ~ , .  
PROPOSITION 1.3. For every M E &  and z 2 I the inequality { M )  (z) 6 

< M (R +) z is fulJilled. 

In the sequel we shall frequently use the measure h! defined by the formula 

on R + .  It is evident that IIE At, 

and 

By 6, we denote the probability measure concentrated at the point c. For 
M, N E A! we write M < N whenever M (A) < N (A) for all Bore1 subsets A of 
R,. Further, by M * N  we denote the convolution of M and N .  

For a 2 0 and b > 0 we define two families of transformations T(a ,  b) and 
U ( a ,  6)  by setting 

and 

respectively. It is easy to check the inclusions 

(1.7) T (a,  b) A, CAI for a 2 0 and b > 0, 
. .. 

(1.8) T ( a ,  b ) A +  c A+ 

whenever a 2 0,  b > 0 and a+ b 2 1, 

(1.9) U ( a ,  b ) A +  c A!+ for a 2 0 and b > 0. 

The relation M < N is invariant under both transformations T(a ,  b) and 
U(a ,  b). Moreover, the families T(a, b) and U ( a ,  b) (a 2 0, b > 0) are semigroups 
under the composition on A, and A!,, respectively, and 

From (1.5) and (1.6) by standard calculation we get 
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and 

We define a binary operation o on A+ by setting 

Then 
.. . 

m 

(1.14) <Mo N) (I) = ( 1  -e-?-' (1 - e - ' { N " 2 ) ) ~ ( d t )  = (M) ((N) (z)), 
0 

which shows that the set M +  is closed under the operation 0. Since 
{M) (1) = M@+) = 1 for M €9, we conclude that also the set 9 is closed 
under the operation o. Moreover, for a, 2 0, a, 2 0, M , ,  M,, N E A + we have 
the formulae 

and 
(1.17) MI o N < M ,  o N provided 'M,  < M,.  

Given a > 0 and M, N E 4 + , by (1.12) and (1.14) we have 

which yields 

Suppose that a 2 0, b > 0, a + b 3 1 and M ,  N E A + . Then, by (1.8), (1.10) 
and (1.14), we have the formula 

with c = (N) (a + b - 1). 
We define a mapping M + Xl from A+ onto S by setting M = 

= M(R+)-I M. 

LEMMA 1.1. For M, N E A +  and a = N ( R + )  the formula 

M o N  =(U(O,  a)M)om 

is true. 

Proof. Introducing the notation b = U (0, a)M(R +) we have 

N = a N  and U(O,a)M=bU(O,a)M. 
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Consequently, by (1.8), 

Since the set B is closed under the operation o, we conclude that 
(M o N)(R,) = b, which yields the assertion of the lemma. 

Suppose that M E & + .  Then, by (1.8), T(1, l ) h f ~ A ! , .  Put 

In the sequel the mapping S from J#+ will play a crucial role. By (1.31, (1.10) 
and (1.14) we have the formula 

(1.21) { S M )  (z) = log ( M )  (z + 1) 
which, by Proposition 1.1, yields the inclusion 

(1.22) SAY+ c A,. 

Moreover, by (1.5) and (1.16), 

(1.23) s6, = n 
and 
(1.24) SM = SN provided M = N .  

Since ( M )  (1) = 1, b y  (1.1 1) we have 

e  + ( t  T(1, 1) M )  (dx) = ei -" e+ Om ( d ~ h  

which, by (1.13) and (1.20), yields 
m 

(SM)(dx)  = (1 -e-")e-" j y V 1 e +  (yM)(dx)dy .  
0 

Substituting y = M (R +) t  we get the formula 
m 

(1.25) (SM)(dx) = (1-e-")e-" j t - le+( tM)(dx)dt .  
0 

E ~ L E  1.1. Suppose that M (ax) = c (1 - e-") P (dx), where c > 0,  P E 9 
and P ( (0 ) )  = 0. Then 

where the power P * ~  is taken in the sense of convolution. By the equality 
(1 - e-") do (dx) = 0, we have the formula 

m P*k (dx) 
(1 -e -3  1 t - ' e ,  ( tM)(dx)dt  = - 

0 k =  1 k a  
Consequently, by (1.25), 
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PROPOSITION 1.4. For a 3 0, b > O and M E  A', the formula 

S(U(a, b ) ~ )  = n-T(a,  b)n+T(a ,  b)(SM) , 

is true. 

Proof. From (1.12) we get 

which together with (1.21) yields 

(S(U(U, b ) ~ ) ) ( z )  = log(1 +z)-log(bz+a+b)+log(a+b) 

+log<M) (bz+a+b)-log(M) (a+b). 

On the other hand, by (1.3), (1.10) and (1.211, 

<T(a, b) (SM)) (2)  = log ( M )  (bz +a+  b)- log {M) (a + b) 

and {TIa, b) 17) (2) = log (bz + a  + b) - log (a + b). Thus 

(s(uCa, b ) M ) ) ( z )  = (n>tz)-<T(a, b)n)Iz)+{T(a, b)(SM))Cz), 

which yields our assertion. 

PROPOSITION 1.5. For M, N E A+ and a = N (R, )  the formula 

S(MoN) = S(U(0, a ) ~ ) o  T(1, l ) N  

is true. 

Pr  o of. Since (N) (1) = 1. We have, by (1.1 9) and Lemma 1.1, 

( ~ ( 1 ,  1) U(0, a) M)o(T(l , 1)N) = T(1, I)(U(O, a ) ~ o N )  = T(1, 1)(M o N). 

Consequently, by (1.20), 

~ ( M O N )  = n o ( ~ ( 1 ,  I)MON) = (noT(1,  I)U(O, a)M)o ~ ( 1 ,  1)N 

= S(U(0, a)M)oT(l ,  l)N, 

which completes the proof. 

2. The sets dm and 2,. We denote by A, the subset of d+ consisting 
of measures M fulfilling the condition SM < 17. 

THEOREM 2.1. The set A, is invariant under the semigroup U(a, 5) 
(a 2 0, b > 0). 

P r o  of. Let M E  dm. AS we have mentioned, T(a, b) (SM) < T(a, b) 17, 
which, by Proposition 1.4, yields the inequality S(U(U, b) M) < II. The 
theorem is thus proved. 

32 - PAMS 15 
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T H ~ R E M  2.2. The set dm is closed under the operation o. 

Proof. Let M, N E ~ , .  Setting a = N ( R + )  we have, by Theorem 2.1, 
U(O, a) M E  Am and, consequently, S (U (0, a) M )  < i7. Taking into account 
(1.20) and Proposition 1.5 we have the inequality 

which completes the proof. 

Given M E JY + we put 
g, 

(2.1) yM(dx) = M ( { O ) ) 6 , ( d ~ ) + e - ~ ~  ( l - e - ~ ) - '  M(dy )dx .  - 
X 

Integrating by parts we conclude that ~~€9'. Moreover, 

It is evident that the measure y, and the number M ( R + )  determine the 
measure M uniquely. 

PROPOSITION 2.1, For every M E A ,  the equality 

Y M "  e+ (SM)  = e+ (17) 
holds. 

Proof. By (1.2) and (1.21) we have the equality 

e+ (SM)" (2) = exp(- (SM)( z ) )  = ( ( ~ ) ( z + l ) ) - ' .  

Comparing this with (1.4) and (2.2) we get 

which yields our assertion. 

THEOREM 2.3. M E  A!, i f  and only i f  the probability measure y ,  is inJinitely 
divisible. In the ajfirmative case we have the formula - 

P r o  of. First assume that M E  &, and, consequently, SM < 17. Setting 
H = l7-SM we get a measure belonging to A% with e+ (H) fullilling the 
equation e+ ( H )  * e ,  (SM)  = e+ (17). Comparing this with Proposition 2.1 and 
observing that the measures on R+ fulfil the cancellation law for convolution 
we conclude that y, = e+ (H). Thus the measure y, is infinitely divisible and 
formula (2.3) is true. 

Conversely, suppose that the measure y ,  is infinitely divisible and, con- 
sequentIy, y, = e+ (H) for some H E M .  Then, by Proposition 2.1, H + S M  = l7, 
which yields the inequality SM < 17. Thus M E A,, which completes the proof. 
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THEOREM 2.4. The measures cc6, with c > 0 are the only measures with 
a bounded support belonging to A,. 

Proof.  Suppose that M E M ,  and the support of M is bounded. From 
(2.1) it follows immediately that the measure y, has also a bounded support. 
By Theorem 2.3, y, is infinitely divisible. Applying the Chatterjee-Pakshirajan 
Theorem from [3] we conclude that the measure y, is concentrated at a single 
point, i.e., y, = 6, for some a 2 0. Consequently, .FM (z) = e-az and, by (2.21, 

. . {A} (z) = zea el"'. 

Since the derivative of the Bernstein transformation (M) is non-negative, we 
infer that a = 0. Thus (M) (2) = z or, equivalently, M = 6,. Hence we get the 
formula M = cd, with c = M (R +). By (1.23) we infer that the measures of this 
form belong to A!,, which completes the proof. 

THEOREM 2.5. Let f be a function completely monotone on (0, m) which 
fuIJiIs the condition 

m 

(2.4) 0 < j (1-em*)f(x)dx < 00. 
0 

Then the measure A4 (dx) = (I - e-") f (x)dx belongs to A', . 
Proof. It is clear that M E  4,. By the Bernstein Theorem on integral 

representation of completely monotone functions ([2], Theorem 9.3) the 
function f can be written in the form 

where, by (2.4), NE&+. Hence 

which, by (2.2), yields 

Consider the family R,(dx) = ae-""dx (a > 0) of the exponential probability 
distributions on R + .  Since ia(z) = a/(z+a), formula (2.5) shows that the 
measure y, is a mixture of exponential distributions 

m 

Y M  = J L I + , ~ ~ Y ) .  
0 

Thus, by the Steutel Theorem ([4], Chapter XIII,7), y, is infinitely divisible. 
Applying Theorem 2.3 we conclude that M E  d,, which completes the proof. 

Denote by Zrn the set of spectral measures for y, with ME&,. 
By Theorem 2.3, H E Xm if and only if H = l7- SM for some M E  A!,. 
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Hence we get the inequality H < I7 for HE Xm. Consequently, by (1.22), we 
have the inclusion 

THEOREM 2.6. The set Sfm is invariant under the semigroup T(a, b) 
(a 2 0, b > 0). 

P r o of. Suppose that H E Sm and, consequently, H = II - SM for some 
M E  A,. Applying Theorem 2.1 we conclude that U (a, b) M E A,. Con- 
sequently, by Theorem 2.3, 

On the other hand, by Proposition 1.4, HI = T(a, b)H,  which completes the 
proof. 

A measure M from is said to be unimodal about 0 if 

12.7) M (ax) = ~ d ,  (dx) + rn ( x )  dx, 

where c 2 0 and the function ne is non-increasing on R,. A measure M from 
A is said to be exponentially unimodaI about 0 if formula (2.7) is true and the 
function exm(x) is non-increasing on R,. 

It is clear that measures exponentially unimodal about 0 belong to A,. 
Moreover, by (2.11, for every M E A ,  the measure y, is exponentially 
unimodal about 0. 

LEMMA 2.1. Suppose that H E A  and e+ ( H )  is exponentially unimodal 
about 0. Then for euery a ~ ( 0 ,  1) there exists a measure Ma€& suck that 

Proof.  Suppose that H  EA and 

where c 2 0 and the function exg (x) is non-increasing on R , .  As we have 
mentioned, the measure e ,  ( H )  belongs to A,. Consequently, by Propositions 
1.1 and 1.2, HE A1 and the function (H) is analytic in the half-plane 
Rez > - 1. Given a E (0, 1) we put Ha (dx) = eaX H(dx). Of course, Ha E J? and 

which, by (1. lo), yields 

(H) tz) = (Ha> (2 + a) - (Ha) (a) 

for Rez > - 1. Thus 

(2.10) ( H a )  tz) = < H )  (z--1- (-4 
for z 2 0. Further, by (1.1 1) and (2.9), 
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e ,  (H) (dx) = b, e-Ox e+ (H,)(dx) 

with some positive constant b,. Comparing this with (2.8) we get the formula 

for some ~ ~ € 9 .  Put 

where q, = exp (- ( H )  (-a)). The function Fa is continuous on R,, its 
derivative is completely monotone on the open half-line (0, oo) and F ,  (0) = 0. 
Consequently, by Theorem 9.8 in [2], the function Fa has a representation 
Fa(z) = (M,)(z) with some Ma€&+. On the other hand, by (2.10) and (2.11), 

which completes the proof. 

THEOREM 2.7. H E  Xm ifand only i f H  E 4, e ,  (H) is exponentially unimodal 
about 0 and 

Proof .  Necessity.  Let us suppose that  HEX^ and e+(H) = y, for 
some M €dm. We know that the measure y, is exponentially unimodal 
about 0 and, consequently, belongs to A,. Thus, by Propositions 1.1 and 1.2, 
the function (H) is analytic for Rez > -1, which, by (1.1), yields the 
equality 

m 

(2.13) j e(l -')" H (dx) = (H) (z) - (H) (z- 1) 
0 

for z > 0. Further, by (1.2) and (2.2), 

Thus (H) (z- 1) = log z -log < M )  (2). Comparing this with (2.13) we get the 
formula 

m 

log z + j e ( l -  '1" H (dx) = (H) (2) + log (M) (z) 
0 

which together with the equaIity <H) (0) = (M) (0) = 0 yields condition (2.12). 
This completes the proof of the necessity of conditions in question. 
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Sn ffi cie n cy. Suppose now that H E M ,  the measure e + (H) is exponen- 
tially unimodal about 0 and condition (2.12) is fulfilled. Then, by Lemma 2.1, 
for every a ~ ( 0 ,  1) there exists a measure M,E AY with the property 

(2.14) (Ma) (z) = F,  (2)  = z exp (- ( H )  ( z -  a)). 

Put 

(2.15) F , ( z )  = z e x p ( - ( H ) ( z - 1 ) )  

for z > 0 and F ,  (0) = 0. It is clear that the function F, is continuous on the 
open half-line (0, m) and 

(2.16) lim F,  (2) = F ,  (z)  
a - 1  - 

for z 2 0. First we shall prove that the function F ,  is continuous at 0. Observe 
that, by (1.1), 

m 

l ogF , ( z )  = l o g z -  ( H ) ( z - 1 )  = logz+ e ( l - z )xH(dx ) -  ( H ) ( z )  
0 

for z > 0, which, by (2.12), yields log F ,  (2)  + - cn or, equivalently, F ,  ( z )  + 0 as 
z + O+. Thus the function F ,  is continuous on R , .  Now taking into account 
(2.14), (2.16) and applying Theorem 9.6 from [2] we infer that F ,  (2) = ( M )  (z) 
for some M E  A. Since F ,  (1) = (M) ( 1 )  = M ( R + )  = I, we have M = M  and, 
by (2.2) and (2.15), 

fM (z) =  ex^ (- < H )  (z)) = e+ (H) A Cz). 
In other words, y, = e+ (H), which shows that M E  Am and H E  AYm. The 
theorem is thus proved. 

We illustrate Theorem 2.7 by a simple example. 

EXAMPLE 2.1. Put H p  = pI l  for p 2 0. By a standard calculation we have 
the formulae e+ (H,) = 

e - x X ~ - l  

e + (H,) (dx) = r (PI 
dx for p > 0 

and 

Applying Theorem 2.7 we conclude that H,  E Sm if and only if p E 10, 1). 

THE~REM 2.8. If H E Sm and j: (1 -e-") H (dx) < oo, then H = 0 iden- 
tically. 

Proof.  We may assume that e+ (H) = y, for some M E  9. On the other 
hand, by (2.1), we have the formula 
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where 

(2.18) 
w 

g(x)  = e-x ( l - e - Y ) - l  M (dy ) .  
X 

Setting N(dx) = ( 1 - e - " ) - l H ( d x )  and Q ( d x )  = ( l - e - X ) - 2 H ( d x ) ,  we have 
N ,  QEM and 

41 

e+ (H)" ( z )  = exp (e -"- l )N(dx) ,  
0 

which shows that e, (H) is a compound Poisson distribution 

where b = N ( R + ) .  Moreover, by induction, we get the inequality 

Nek (dx)  < (1 -e -x)k  Q*k (dx) (k = 1,  2, . . =) 

which, by (2.17) and (2.19), yields 

By (2.18) the function g  is non-increasing. Setting q = Q (R,), from the last 
inequality we get 

for u > 0 .  Letting u + O+,  we obtain g ( O + )  = 0, which, by (2.18), yields 
( ( 0  0 Since M E @ ,  we have M = S o  and, consequently, 
e ,  ( H )  = y, = 6,. Hence it follows that H = 0 identically, which completes the 
proof. 

3. Some functionals on stochastic processes. In the sequel L(5) will denote 
the probability distribution of a random variable T.  Let AY be the class of 
nonnegative stochastic processes X = {X ( t ,  a): t  2 0) with stationary and 
independent increments, continuous on the right sample functions, 
non-degenerate to 0, and fulfilling the initial condition X(0, w )  = 0. It is well 
known that to every process X from 3 there corresponds a measure M E  A + 

satisfying the condition 

or, equivalently, 

(3.2) Z ( X  (t , w)) = exp ( - t < M) (z)) 
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for t 2 0. This uniquely determined measure M is called the representing 
measure for X.  

A stochastic process X from 2F is said to be deterministic if X ( t ,  o) = ct for 
a positive constant c with probability 1 or, equivalently, c6, is the representing 
measure for X. 

It is evident that, for any a > 0, ~ X E X  provided XE% and, by (1.12) 
and (3.21, 

L ( ~ x  (t  , a)) (2) = exp ( - t ( M )  (az)) = exp ( - t ( U (0, a) M )  (z)) . 
This yields the following proposition. 

PRQPOSIT~QN 3.1. i f  M is the representing measure for X and a > 0, then 
U(0 ,  a) M is the representing measure for aX. 

Two processes X and Y from % are said to be independent if for all finite 
collections t,, t,, ... , t, and u,, u,, .. ., u, of non-negative numbers the vec- 
tor-valued random variables 

( X ( t l , ~ ) , X ( f Z , ~ ) , . . * , X l t n , w ) )  and (Y(u, ,m) ,  Y(u,, o),..., Y(u,,w)) 

are independent. One can easily check that for independent processes X and 
Y from X the composition Y ( X ( t ,  w), w) also belongs to 9". Moreover, if 
A4 and N are the representing measures for X and Y, respectively, then 

W(X ( t ,  4, m)) (2) = exp I -t <M> (<N> (2))). 

Comparing this with formula (1.14) we get the following proposition. 

PROPOSITION 3.2. Let X and Y be independent processes $+om X with 
representing measures M and N, respectively. Then M o N is the representing 
measure for the cornposition Y ( X  (t  , a), o) . 

It was proved in [S], Example 3.4, that for every process X from X and 
u > 0 the integral functional 

m 

(3.3) I(u, 0) = J e-ux(t,m)dt 
0 

is finite and positive with probability 1. The aim of this section is to study the 
multiplicative infinite divisibility of L( l  (u, a)), i.e., the infinite divisibility of 
L(logI(u,  a)). By formula (3.15) in [8], all moments of i ( u ,  w)  are finite and 

n 

(3.4) Eln(u,  co) = n! fl <M>(ku)-l, 
k = 1  

where M stands for the representing measure for X. 
Given a probability measure A on the real line ( -  c ~ ,  , a), by 1 we denote 

its characteristic function, i.e., 
m 

X(s)= j eisxA(dx) ( - c o < s < m ) .  
- m  



Infinite divisibility of functionals 505 

By the Lkvy-Khinchin Representation Theorem ([4], Chapter XVII,2), 
infinitely divisible probability measures on ( -  coy co) are of the form e(a, N), 
where a is a real number, N is a bounded non-negative Bore1 measure on 
( - 0 0 ,  a), and 

(3.5) Z(a, N ) ( s )  = exp N (dx) ] 
f + x Z  (1-e-lrl)2 

where for x = 0 the integrand is assumed to be -s2/2. 
It is easy to verify that the following statement is true. 

PROPOSITION 3.3. Suppose that the support of N is contained in R+ and 
N E A V ~ .  Then for every real number a the characteristic function g(a, N) is 
analytic in the hralj"-plane Ims  > -1. 

Given N E A  we shall use the notation 

where for x = 0 the integrand is assumed to be 1/2. In the sequel we shall 
frequently use the measure e(E(n), 17). Applying Malmsten's formula ([I], 1.9) 
we have 

On the other hand, 

which yields the formula 

(3.8) e(I(17), n)(dx) = exp(-x-e-")x 

for x€(-oo, Go).  

THEOREM 3.1. Let X be a processfiom X with the representing measure M. 
Then the probability distribution 

fuljits the equation 

(3.10) pM *e(-log M(R+)+I(SM), SM) = e(E(n), n). 
Proof. Consider a triplet (, pl and [ of random variables with the prob- 

ability distributions p,, e (- log M (R +) + 1 (SM), SM) and e ( l  (n), n), respec- 
tively. Moreover, assume that the random variables 5 and q are independent, 
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By (3.4) and (3.7) we have the formulae 

and 
(3.12) Ee-"'=e"(l(n),lT)(in)=n! ( n = 1 , 2  ,... ). 

Since, by. (1.22), SM E A?, , we conclude, by Proposition 3.3, that the charac- 
teristic function of -L(q) is analytic in the half-plane Im s > - 1. Thus 

whence, by standard calculation, we get the formula 

Now applying formula (1.21) we have 
n n 

(3.13) ~e-""  M (R,)" n {a} (k )  = fl { M } ( k ) .  
k =  1 k =  1 

Taking into account the independence of 5 and we get from (3.1 1H3.13) the 
equalities 

Observe that, by (3.8), L (e-[)(dx) = e-"dx for x 2 0. Since the characteristic 
function of the exponential distribution is analytic in the circle jsl < 1, we 
conclude, by (3.14), that the moments determine the probability distributions 
L(e-(S+q)) and L (e-5) uniquely and 

Hence we get the equality L(4: + q)  = L([) which, by the independence of 5 and 
q, yields L(5)* L(1) = L(0. This completes the proof. 

Observe that the characteristic function z(-log M (R,)  + E (SM),  S M )  
does not vanish on the real line. Consequently, equation (3.10) determines the 
probability measure p, uniquely. Moreover, if p, = p,, then SM = SN and 
M ( R + )  = N ( R + ) ,  which, by (1.21), yields M = N. Thus the following corollary 
is true. 

COROLLARY 3.1. Let X and Y be processes @om 5 with the representing 
measures M and N, respectively. If 

then M = N. 
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In the following limit theorem we consider the weak convergence of 
probability distributions. 

THEOREM 3.2. k t  XI ,  X,, . . . be a sequence of independent non-deteuminis- 
tic processes porn 9 with the same representing measure M €9'. If 

Yl( t lw)=X, ( t , 4  and K + l ( t , ~ ) = X n + l ( ~ ( t , w ) , w )  
for n = 1 ,  2, ..., 

then w 

Iim L (j e-Yn(t~w~ dt)  (dx)  = e - .  d x .  
n - r m  

Proof .  Denote by M, the representing measure for the process Y,. 
By Proposition 3.2 we have the formula M ,  = Mon, where the power is taken 
in the sense of operation o. Since ( M )  (1) = M ( R , )  = 1, we have, by 
Proposition 1.3 and formula (1.14), 

( M , )  (1) = M,, ( R , )  = 1 and, consequently, (M,) (z) 2 1 for z 2 1. Hence it 
follows that for z 2 1 the limit 

F (2) = lim ( M , )  (z) 
n+m 

exists and fulfils the conditions 

and F(z )  = (M) (F(z))  for z 2 1. Moreover, by Theorem 9.6 in [2], the 
function F is continuous for z > 1. We shall prove that the function P is 
constant. Suppose the contrary. Then the equation w = ( M )  (w) holds for 
w belonging to an open non-empty interval contained in [I, a). But this yields 
( M )  (z )  = z  for z > 0 because the function (M) is analytic in the half-plane 
Rez > 0. Hence we get the formula M  = So which shows that the processes X, 
are deterministic. This contradiction proves that the function P is constant for 
z > 1. Taking into account (3.15) we conclude that F (z) = 1 for z 2 1. 
Consequently, by (1.21), 

(SM, )  (z) = log ( M , )  (z + 1) + 0 as n -, co. 

This yields the relation SM, -+ 0 as n -, c~ which together with the equality 
M,(R+)  = 1 and Theorem 3.1 shows the convergence 

e ( ( , )  as n + a .  

Now our assertion is a direct consequence of formula (3.8). 

Denote by Xm the set of all stochastic processes X from X for which the 
probability distribution L(-logJ: e-x(t,")dt) is infinitely divisible. In other 



words, X E 57, if and only if the probability distribution ~(j," e-x(t.w)dt) is 
multiplicatively infinitely divisible. We are now in a position to prove 
a characterization of the class 5Cm in terms of the representing measures. 

THWREM 3.3. Let X be a procmsfiom S with the representing measure M .  
Then X E Srn if and only if M E  Am. In  the afirmutive case the formula 

03 

(3.16) L(-lag J e-X(t*w)dt) = e(logM(R+)+Z(n-SM), 27-SM) 
0 

is true. 

Proof.  Using notation (3.9) we infer, by Theorem 3.1, that the probability 
distribution p, is infinitely divisible if and only if SM < L!. In other words, 
X E ~ ~  if and only if ME dm. Formula (3.16) is a straightforward consequence 
of (3.10). The theorem is thus proved. 

Theorems 3.3 and 2.3 show that the set of all spectral measures H for 
which 

41 

e ( a , H ) = ~ ( - l ~ g ~ e - ~ ( ' ~ " ) d t )  for some X E S ,  and a€(-oo,co)  
0 

coincides with Zm. 
As an immediate consequence of Theorem 2.1 and Proposition 3.1 we get 

the following theorem. 

THEOREM 3.4. If X E Xrn and a > 0, then a x  E Xrn . 
This theorem yields the following rather unexpected statement. 

COROLLARY 3.2. Let us assume that X E X. If the probability distribution 
L(- log j," e-x('*m)dt) is infinitely divisible, then for every a > 0 the probability 
distribution ~ ( - l o ~ ~ , " e - ~ ~ ( ' . " ) d t )  is also infinitely diuisible. 

Similarly, from Theorem 2.2 and Proposition 3.2 we get the following result. 

THEQREM 3.5. If X and Y are independent processes j b m  %,, then the 
composition Y ( X ( t ,  w), o) belongs to Xm. 

THEOREM 3.6. Let X be a non-deterministic process from Trn. Then the 
probability distribution L(!," e-x('ym)dt) is absolutely continuous with respect to 
the Lebesgue measure on 22,. 

Proof.  Denote by M the representing measure for X .  Since the process 
in question is non-deterministic, we have li;i # So, which, by (1.23), yields 
SM # ZT. Moreover, by Theorem 3.3, M E  A , .  Consequently, the spectral 
measure H = l7 -SM appearing in (3.16) does not vanish identically and, 
by Theorem 2.3, belongs to Zm. Applying Theorem 2.8 we conclude 
that 

41 

J (1 - e - T 2 H ( d x )  = m, 
0 
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which, by the Tucker Theorem on absolute continuity of infinitely divisible 
measures in [7] and formula (3.16), shows that the probability distribution 
L( -log l," e-X(t .m)dt)  is absolutely continuous with respect to the Lebesgue 
measure on the real line. This yields the assertion of the theorem. 

4. Exarnpjes. The results of the preceding section may serve for the 
determining of the probability distribution L(-log J," e-XQ,m'dt) with X E Sm. 
We shall illustrate this by some examples. The right-hand side of formula (3.16) 
is determined by M ( R + )  and SM. Consequently, in what follows we shall 
calculate .these -only. 

EXAMPLE 4.1. Stable processes. For stable processes from I we have 
( M )  (z) = cz* with c > 0 and p ~ ( 0 ,  I]. By (1.3) and (1.21) we get (M) (z) = 
= p log (1 + z) = ( p l l )  (z), which yields SM = pH. Moreover, { M )  (1) = 

= M(R+) = c. It is evident that stable processes belong to =Fa. 
EXAMPLE 4.2. Bessel processes. For Bessel processes X from X we have 

e - x t  
L(X (t , m)) (dt) = - I ,  ( x )  dx = e + ( t  M )  (dx),  

X 

where t is positive and 

([4], Chapter XIII,7). Here I, denotes the modified Bessel function of the first 
kind. Moreover, we have the formula 

which yields M (R +) = { M )  (1) = log (2+ $). Setting 

we have M (dx)  = (1 -e-")(x) dx and, by the integral representation 

the function f is completely monotone on (0, oo) and fulfils condition (2.4). 
Applying Theorems 2.5 and 3.3 we infer that Bessel processes belong to Xm 
and, by (1.25), 

In the forthcoming examples we shall use the following notation. Given 
s > 0, we denote by Ps the gamma probability distribution on R+:  

, - x x s - 1  

Ps (d x) = dx. 
r (4 
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It is clear that P, a; P, = P,,, and 

(4.1) PS = e +  (sn). 

Given s > 0 we denote by E, the Mittag-Zemer function 

In particular, for n being positive integers we have the formula 

where q(k ,  n) = exp (2nki/n) (k  = 0,  1 ,  . . . , n - 1 ) .  

EXAMPLE 4.3. The gamma process. The gamma process X from 9 is defined 
by assuming L(X(t, w)) = P, for t > 0. By (4.1) we have M = I7 and, 
consequently, M ( R + )  = log2. Setting f (x) = e-'/x we infer that M ( d x )  = 
= (1  -a-")(x) dx, the function f is completely monotone on (0, m) and fulfils 
condition (2.4). Thus, by Theorems 2.5 and 3.3, X E Sm. Using formula (1.25) we 
get 

EXAMPLE 4.4. Consider a process X from 55 with the representing measure 

A4 (dx)  = e-" x - ' - ,  (1 -e-x)dx,  where p ~ ( 0 ,  1). 

Setting f ( x )  = e - " ~ - l - ~  we infer that the function f is completely monotone 
on (0% a), M (dx)  = (1 -e-x) f ( x )  dx, and condition (2.4) is fulfilled. Applying 
Theorems 2.5 and 2.3 we conclude that XE%~. Moreover, by standard 
calculation, 

Thus M(R +) = (M) (1 )  = p r  (1 -p) (2P-  I). Using formula (1.21) we get the 
equality 

(4.3) ( S M )  (z)  = log ((z + 2)P - I) -log (2' - 1). 

Put 

( 1  - e - x ) e - 2 x  
(4.4) N ,  (dx)  = 

X 
PE, (xP) dx Y 

Q, (dx)  = (1 - e-") e-"p, (dx)  for s > 0 and Q,  (dx)  = e-" I7 (dx).  
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By standard calculation we get the formulae 

{ Q o )  (z) = log(z+2)-log2, ( Q , )  (z) = 2-'- (z+2)-' for s > 0 
and 

which yield 
(N,) ( z )  = log ((z + 2)P - 1) -log (ZP - 1). 

- - 

Comparing this with (4.3) we get the equality SM = N,. Since M E A ~ ,  we 
have N ,  < 27, which, by (4.41, yields the inequality 

(4.5) pE,(xP) 6 eX 

for x 3 0 and p E (0, 1). 

EXAMPLE 4.5. Gamma Poisson processes. Given s > 0 we denote by X, 
a process from 5? with the representing measure M,(dx) = (1-e-")P,(dx). 
Then we have 

Taking into account Example 1.1 we get the formula 

P,, (dx) (1 -e-") e-2x s 
(SM,)(dx) = (1 -eW")e-" - - 

k 
(E, (x") 1) d x .  

k =  1 X 

As an immediate consequence of the above formula we obtain the following 
lemma. 

LEMMA 4.1. M,€drn  if and only if sE,(d) < s+eX for x 2 0. 

Observe that, by (4.2), 4 E,(x4) = ex +e-" +2 cosx < 3 + 8 for x > 0. 
Consequently, by Lemma 4.1, we have the following corollary. 

LEMMA 4.2. If M, E Am, then M, E dm for every r E (0, s). 

Proof. Suppose that M,E Am. Then, by Lemma 4.1, the inequality 

is fulfilled for x 3 0. Given r ~(0, S) we put p = r/s. Of course, p ~ ( 0 ,  1). 
Denote by g, the density function of the stable probability distribution v, on R+ 
with the Laplace transformation $,(z) = e-". Zolotarev proved in 191, 
Theorem 2.10.3, the formulae 

m m 

E , ( ~ ) = J E , I ~ Y - ' ) ~ , I Y ) ~ Y ~  E , ( x ) = J e x ~ ( x ~ - P ) g , ( ~ ) d y .  
0 0 
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The above formulae and inequality (4.6) yield 

Now, by (43, we get the inequality rEr(xq < r+e" for x 2 0 which, by 
Lemma 4.1, shows that M,E&. This completes the proof. 

LEMMA 4.3. If M , E L # ~ ,  then SE(O, 41. 
P r o  of. Denote by P the set of all complex-valued Bore1 functions f on 

R; fulfilling the condition If (x)l < aebx ( x  E R+) with some positive constants 
a and b. Let be the subset of P consisting of bounded functions. We define 
the operator K on 9 by setting for f ~ 9  and x 2 0 

and (Kf) (0) = f(0). It is clear that K g  c F and KB c a. We define the 
mapping w + F(w) from the complex plane into F by setting F (w ) (x )  = ewx 
(x E R +). By standard calculation we get the formula 

KF (w) - 2F (w2) E 49 provided Re w > 0 and Re w2 > 0 

and K F ( w ) E ~  otherwise. Hence, by induction, we get for r = 1, 2 , .  . . 

(4.7) K'F (w)- 2'F (w21 E 33 provided ~ e w ' j  > 0 for j = 0, 1, . . . , r 

and KrF (w) E B otherwise. Further, we define the mapping s + G (s) for s > 0 
by setting 

where E, is the Mittag-Leffler function. From '(4.2) it follows that G(n )€F  
(n = 1, 2, . ..). Moreover, by the Humbert formula from C63, 

G(n/23=KrG(n) ( n , r = l , 2  ,... 1,-- 
which, by (4.2) and (4.7), yields 

where k ~ Z ( r ,  n) if and only if Req(k, n)" > 0 for j = 0, 1, ..., r. It is easy to 
check that a non-negative integer k belongs to Z(r, n) if and only if either 
O<k<2- ' -2n  or n(1-2-'-')<k<n-1. Hence Z(r ,2r f2+1)={0,1 ,  
2" '). Setting 
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A I L  

v(r) = Imq(1, 2 r + 2 + 1 ) 2 r =  sin- 
s (4' 

we infer, by (4.8) and (4.91, that the function s (r)  E,(,, (x"'") -ex - 2eu1r)x cos v (r)x 
is bounded on R ,  . Observe that u (r) > 0. Consequently, the relation 

lim (s (r) E,(,, (x"(')) - 8) = co 
3- c0 

is true. Comparing this with Lemma 4.1 we conclude that M,(,,$.km 
(r = 1 ,  2;. . .). Of course, s ( v )  -i 4 as r -+ m, which, by Lemma 4.2, yields the 
assertion of Lemma 4.3. 

As an immediate consequence of Corollary 4.1, Lemmas 4.2 and 4.3 and 
Theorem 3.3 we get the following statement. 

P R ~ P O ~ I U N  4.1, X ,  E Xm if and only if S E  (0, 41. 
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