PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 15 (1995), pp. 493-513

INFINITE DIVISIBILITY OF SOME FUNCTIONALS
ON STOCHASTIC PROCESSES
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Abstract. The paper deals with non-negative stochastic processes
X (t, w) (t =0) with stationary and independent increments, con-
tinuous on the right sample functions, non-degenerate to 0 and
fulfilling the initial condition X (0, w) = 0. The main aim is to study
the probability distribution of the functional [, e "**®*)dt for u > 0.1In
particular, the multiplicative infinite divisibility of such functionals is
discussed and a description of corresponding spectral measures is
established.

1. Preliminaries and notation. We denote by .# the set of all non-negative
bounded measures defined on Borel subsets of the half-line R, = [0, c0). By
A, and Z we denote the subsets of .# consisting of measures M with
M(R,) > 0and M (R,) = 1, respectively. Further, by .#, we denote the subset
of .# consisting of measures M fulfilling the condition _[80 ™ M (dx) < oo for all
a < 1. Given M e .# we denote by M and (M) the Laplace transformation and
the Bernstein transformation of M, respectively, ie.

M(z) = ofe‘“M(dx) and (M)(2) = ? ll—e:Z:M(dx)
. 0 o 1€

for z > 0. For x =0 the last integrand is assumed to be z. It is clear that’
Ly M (2)+ (M) (2) = <MD (z+1)

for z > 0. Moreover, it is well known ([4], Chapter XIII,7) that infinitely
divisible measures from £ are of the form e, (M) with Me.# and

(1.2) e, (M)" (2) = exp(— <M (2)).

The uniquely determined measure M is called the spectral measure of e . (M). It
is easy to verify that the following statements are true.

PROPOSITION 1.1. M e .# if and only if the function {M) has an analytic
extension in the half-plane Rez > —1.
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ProrosiTION 1.2. Me#, if and only if e, (M)e.4,.

PrOPOSITION 1.3. For every Me.# and z 2 1 the inequality {M)(z) <
< M(R,)z is fulfilled.

In the sequel we shall frequently use the measure IT defined by the formula
O@dx)=x"1(1—-e e *dx
on R,. It is evident that ITe #,,

1.3). - (II)(z) = log(1+2)
and :
(1.4) e, (I (dx) = e *dx.

By 6, we denote the probability measure concentrated at the point ¢. For
M, Ne# we write M < N whenever M (4) < N (A) for all Borel subsets A of
R, . Further, by M * N we denote the convolution of M and N.

For a = 0 and b > 0 we define two families of transformations T'(a, b) and
U(a, b) by setting
(1.5) (T(a, YyM)(dx)=(1—e ") (1—e **)"exp(b~'—ab™'—1)xM (dx/b)
and

(1.6)  (U(a, byM)(dx) = (1—e ) (1 —e~**) 71 e~/ M (dx/b)

+ab—1 (1 _e—x)e“‘”‘/b _f (1 —e_’)_l M(dy) dx’

x/b

respectively. It is easy to check the inclusions

(L.7) T(@,b)#,<#, foraz=0andb>0,
(18 | T, b) M, =M,

whenever a >0, b>0 and a+b > 1,

(1.9) U(@,b)#,c#, fora=>0 and b>0.

The relation M < N is invariant under both transformations T'(a, b) and
U (a, b). Moreover, the families T(a, b) and U (a, b) (a = 0, b > 0) are semigroups
under the composition on 4, and .# ., respectively, and

T(a,b)T(c,d)=T(ad+c, bd), Ufa,b)U(c,d)= U(ad+c, bd).
From (1.5) and (1.6) by standard ca_.lculation we get
(1.10) (T(a, )M)(z) =<{M)(bz+a+b—1)— {M>(a+b-1),
(L11) e, (T(a, b) M)(dx)
=exp(KM)>(a+b—1)+ (b~ '—ab~'—1)x)e, (M)(dx/b)
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and
(1.12) (U(a, byM) (z) = bz(bz+a)~ ' (M) (bz+a).
We define a binary operation o on .#, by setting
(1.13) (MoN)@dx)=(1—-e"% Oj? (1—e ) te, (¢N)(dx) M (dr).
0
Then

(1.14) <M o'N> @ = }’(1 —e )" (1 —e VD) M (dh) = (M) (N (2),
0

which shows that the set .4, is closed under the operation o. Since
(MY(1)=M(R,)=1 for Me?, we conclude that also the set £ is closed
under the operation o. Moreover, for a; > 0,a, > 0, M, M,, Ne.# , we have
the formulae

(1.15) (@M, +a,M,)oN = a,(M,0oN)+a,(M,0oN),
(1.16) Moédy=0d0p0M =M

and

(1.17) M,oN<M,oN provided M, <M,.

Given a >0 and M, Ne.# ., by (1.12) and (1.14) we have
(M o(aN))(z) = {M>(a{N)(z))
= (U0, a) M) ({NY(2)) = (U0, ) M)o N ) (2),
which yields
(1.18) Mo(aN)=(U(0, a)M)oN.

Suppose that a > 0,b > 0,a+b > 1 and M, Ne .# . Then, by (1.8), (1.10)
and (1.14), we have the formula

(1.19) (T(c, 1)M)o(T(a, b)N) = T(a, b)(MoN)

with ¢ = {(N)(a+b—1).
We define a mapping M - M from .#, onto & by setting M =
=MR,)"'M.

LemMa 1.1. For M, Ne# , and a= N(R,) the formula
MoN =(U(@, aM)oN

is true.
Proof. Introducing the notation b = U (0, a) M(R,) we have

N=aN and U@©,a)M=>bU@0,a)M.
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Consequently, by (1.8),
MoN =Mo(aN)=(U(0, a) M)oN =bU (0, a)MoN.

Since the set # is closed under the operation o, we conclude that
(MoN)(R,)=>b, which yields the assertion of the lemma.

Suppose that Me.# ,. Then, by (1.8), T(1, 1)Me.# . Put
(1.20) SM =Io(T(, 1)M).

In the sequel the mapping S from .# , will play a crucial role. By (1.3), (1.10)
and (1.14) we have the formula

(1.21) {SM>(2) =log {(M>(z+1)
which, by Proposition 1.1, yields the inclusion
(1.22) ' SH, = M,.
Moreover, by (1.5) and (1.16),

(1.23) S0, =11

and

(1.24) SM =SN provided M = N.

Since (M>(1) =1, by (1.11) we have
e, (¢T(1, 1) M) (dx) = &' ~*e., (tM) (dx),
which, by (1.13) and (1.20), yields

(SM)(@x) = (1—e e~ | y~e., (vW) (@) dy.
0

Substituting y = M(R,)t we get the formula

- (1.25) (SM)(dx) = (1 —e”‘)e'"oj? t~le, (EM)(dx)dt.

ExampLE 1.1. Suppose that M (dx) = c(1—e™*) P(dx), where ¢ >0, Pe ?
and P({0}) =0. Then :

e ¢l (Ct)k
e, (tM)=e '(50+ kgIFP*" R
where the power P** is taken in the sense of convolution. By the equality
(1—e"%)d,(dx) =0, we have the formula

-] o ¥k
(1—e™ft e, eM)dx)dt = Y P (dx).
0 k=1 k
Consequently, by (1.25),
* P**(dx)

SM)(dx)=(1—e ¥)e™™ Z

=1k
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ProrosiTION 14. For az=0, b >0 and Me # , the formula
S(U(a, yM) =1 —T(a, b)II1+T(a, b)(SM)
is true. '
Proof. From (1.12) we get

z+1)(a+b){M> (bz+a+b)
(bz+a+b){M>(@+b) °

U(a, b)M>(z+1) =

which together with (1.21) yields
{S(U (a, b) M) (2) = log (1 +z)—log (bz+a+b)+log(a+b)
| +log (M (bz+a+b)—log (M (a+b).
On the other hand, by (1.3), (1.10) and (1.21),
(T(a, b)(SM)) (z) = log (M (bz +a+b)—log {M> (a+b) |
and (T(a, b)IT)(z) = log(bz+a+b)—log(a+b). Thus
(8(U (a, b) M)} (2) = IT>(2)—<T(a, b) IT) (2)+<{T(a, b)(SM)) (2),

which yields our assertion.
ProrosITION 1.5. For M, Ne # , and a = N(R,) the formula

S(MoN) = S(U(O a)M)oT(l 1)N
is true.

Proof. Since ¢<N>(1) = 1. We have, by (1.19) and Lemma 1.1,
(T(1, 1)U, ) M)o(T(1, ) N) = T(1, 1)(U (0, ) Mo N) = T(1, 1)(M o N).
Consequently, by (1.20), ' ‘
S(MoN)=Mo(T(1,)MoN)=(HoT(1,)U (0, ) M)o T(1, )N
=S(U(0, a)M)o T(1, )N, '
which completes the proof.

2. The sets ./, and 5# . We denote by .# , the subset of .# , consisting
of measures M fulﬁlling the condition SM < II.

THEOREM 2.1. The set .M, is invarignt under the semigroup U (a, )
(@=0,b>0). -

Proof. Let Me.# . As we have mentioned, T(a, b)(SM) < T{(a, b)II,
which, by Proposition 14 ylelds the 1nequal1ty S(Uf(a, b) M) < II. The
theorem is thus proved.

32 — PAMS 15
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THEOREM 2.2. The set # ,, is closed under the operation o.

Proof Let M, Ne.# . Setting a = N(R,) we have, by Theorem 2.1,
U(0,a)Me.#, and, consequently, S(U (0, @) M) < II. Taking into account
(1.20) and Proposition 1.5 we have the inequality

S(MoN)< Ho(T(t,)N)=SN< 11,
which completes the proof.
Given Me.# . we put

(2.1) Yo (@x) = M ({0}) 3o (dx)+e ™ | (1—e™%) ™" M (dy)dx.
Integrating by parts we conclude that y,,e 2. Moreover,

Lo M) (z+1)
R () = =

It is evident that the measure y,, and the number M(R,) determine the
measure M uniquely. '

ProposITION 2.1. For every Me . # + the equality
Yu*ey (SM)=e, (1)
holds. ,
Proof. By (1.2) and (1.21) we have the equality
e, (SM)" (2) = exp(— <SM)(2)) = (KM> z+1)) .
Comparing this with (1.4) and (2.2) we get

Tu(2) e, (SM)" (Z) =1 +Z)_1 =&, (H)A (2),

- which yields our assertion.

TueoREM 2.3. M e # _ if and only if the probabilify measure 7y, is infinitely
divisible. In the affirmative case we have the formula - - - '

23) v = e, ([T SM).

Proof. First assume that M e .#  and, consequently, SM < II. Setting
H=I—-SM we get a measure belonging to .# with e, (H) fulfilling the
equation e, (H)*e, (SM) = e, (IT). Comparing this with Proposition 2.1 and
observing that the measures on R, fulfil the cancellation law for convolution
we conclude that y,, = e, (H). Thus the measure y,, is infinitely divisible and
formula (2.3) is true.

Conversely, suppose that the measure y,, is infinitely divisible and, con-
sequently, y,, = e, (H) for some H e .#. Then, by Proposition 2.1, H+SM = I,
which yields the inequality SM < II. Thus M € .# ,,, which completes the proof.
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THEOREM 2.4. The measures cd, with ¢ > 0 are the only measures with
a bounded support belonging to M .

Proof. Suppose that Me.# , and the support of M is bounded. From
(2.1) it follows immediately that the measure y,, has also a bounded support.
By Theorem 2.3, y,, is infinitely divisible. Applying the Chatterjee-Pakshirajan
Theorem from [3] we conclude that the measure y,, is concentrated at a single
point, ie., yy = 8, for some a > 0. Consequently, f,,(z) = e™* and, by (2.2),

AM)(2) = ze" e .
Since the derivative of the Bernstein transformation (M) is non-negative, we
infer that a = 0. Thus {M) (z) = z or, equivalently, M = J,. Hence we get the
formula M = ¢é, with ¢ = M (R ). By (1.23) we infer that the measures of this
form belong to .# ., which completes the proof.

THEOREM 2.5. Let f be a function completely monotone on (0, co) which
fulfils the condition

(2.4) 0< oj?(l—e”‘)f(x)dx < .
0

Then the measure M (dx) = (1—e ") f(x)dx belongs to A .

Proof. It is clear that M e.# .. By the Bernstein Theorem on integral
representation of completely monotone functions ([2], Theorem 93) the
function f can be written in the form

Jfx) = IE"‘yy(1+y)N(dy),
0
where, by (24), Ne .# .. Hence

(My(@) =z I N @dy),
which, by (2.2), yields

, ooy vy S
(2.5) | Tu(2) = £z+1+yN(dy)-

Consider the bfamily A,(dx) = ae”**dx (a > 0) of the exponential probability
distributions on R,. Since Z,(z) = a/(z+a), formula (2.5) shows that the
measure y,, is a mixture of exponential distributions

HuyN(dy)

Thus, by the Steutel Theorem ([4], Chapter XIIL7), y,, is infinitely divisible.
Applying Theorem 2.3 we conclude that M e .# ., which completes the proof.

Denote by s, the set of spectral measures for y, with Me./#.
By Theorem 2.3, Hes#, if and only if H=II—SM for some Me.# .
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Hence we get the inequality H < IT for He s, . Consequently, by (1.22), we
have the inclusion

26 : H, M,
THEOREM 2.6. The set i, is invariant under the semigroup T(a, b)
@=0, b>0).

Proof. Suppose that He 5#,; and, consequently, H = II—SM for some
Me . Applying Theorem 2.1 we conclude that U(a, ))Me.#,. Con-
sequently, by Theorem 2.3,

H, =1I-5(U(a, bM)e #,. )
On the other hand, by Proposition 1.4, H 1 = T(a, b) H, which completes the
proof. . :

A measure M from # is said to be unimodal about 0 if
2.7 M (dx) = ¢dy (dx)+m(x)dx,

where ¢ > 0 and the function m is non-increasing on R, . A measure M from
# is said to be exponentially unimodal about 0 if formula (2.7) is true and the
function e*m(x) is non-increasing on R, .

It is clear that measures exponentially unimodal about 0 belong to ..
Moreover, by (2.1), for every Me.#, the measure y,, is exponentially
unimodal about 0.

LemMA 2.1. Suppose that He .# and e (H) is exponentially unimodal
about 0. Then for every ae(0, 1) there exists a measure M, e .# such that

(M, (2) = zexp(— <H) (z—a)).
Proof. Suppose that He.# and
- (28) e, (H)(dx) = cd, (dx) +g (x)dx,

-‘where ¢ > 0 and the function e*g(x) is non-increasing on R,. As we have
mentioned, the measure e, (H) belongs to .#,. Consequently, by Propositions
1.1 and 1.2, He.#, and the function {(H) is analytic in the half-plane
Rez > —1. Given ae(0, 1) we put H,(dx) = e** H(dx). Of course, H,e .# and

(2.9 ' T(a,1)H,=H,
which, by (1.10), yields

_ ‘ (H) (@) = (Hy) (z+a)— <H,)(a)
for Rez > —1. Thus _
(2.10) (Hpp (2) =<H)(z—a)— (H)(—a)
for z > 0. Further, by (1.11) and (2.9),
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e, (H)(dx) = bye™e., (H,)(dx)

with some positive constant b,. Comparing this with (2.8) we get the formula

IZ
(2.11) e, (H)"(2) = ;Iﬁn(y)dy

for some p,e#. Put

.F,(2) = q,zﬁ,,(y) dy,

where g, = exp(— (H)(—a)). The function F, is continuous on R, its
derivative is completely monotone on the open half-line (0, o0) and F,(0) = 0.
Consequently, by Theorem 9.8 in [2], the function F, has a representation
F,(z) = {M,>(z) with some M, e.# .. On the other hand, by (2.10) and (2.11),

Fa (Z) ={q,ze, (Ha)A (Z) = qazexp(_ <Ha> (Z)) = zexp(— <H> (z—a)),
which completes the proof.

THEOREM 2.7. He 3¢, if and only if He #, e . (H) is exponentially unimodal
about O and ' :

(2.12) logz+ | e~ H(dx) > —
0

as z—-0+.

Proof. Necessity. Let us suppose that He 5, and e, (H) = y,, for
some Me.#,. We know that the measure y,, is exponentially unimodal
about 0 and, consequently, belongs to .#,. Thus, by Propositions 1.1 and 1.2,
the function (H) is analytic for Rez > —1, which, by (1.1), yields the
equality

(2.13) T 9% Hdx) = CHY (2)— <H>(z—1)
()]
for z > 0. Further, by (1.2) and (2.2),
M 1
Fu(e) = exp(~ (Hy () = 2D

Thus (H)(z—1) = logz—log (M) (2). Comparing this with (2.13) we get the
formula

logz-+ | 4~ H(dx) = CH (2)+log (M (2
0

which together with the equality (H) (0) = (M) (0) = 0 yields condition (2.12).
This completes the proof of the necessity of conditions in question.
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Sufficiency. Suppose now that He.#, the measure e, (H) is exponen-
tially unimodal about 0 and condition (2.12) is fulfilled. Then, by Lemma 2.1,
for every ae(0, 1) there exists a measure M e.# with the property

(2.14) {M,>(2) = F,(2) = zexp(—<H) (z—a)).
Put
(2.15) F,(2) = zexp(—(H) (z—1))

for z> 0 and F,(0) = 0. It is clear that the function F, is continuous on the
open half-line (0 oo) and

(2.16) o lim F,() = F, @

forz = 0. Fll‘St we shall prove that the function F, is continuous at 0. Observe
that, by (1 1),

logF,(z) =logz— {H)(z—1) =logz+ oj?e“‘z”‘H(dx)— (H>(2)
0

for z > 0, which, by (2.12), yields log F, (z) » — oo or, equivalently, F, (z) —» 0 as
z — 0+. Thus the function F, is continuous on R, . Now taking into account
(2.14), (2.16) and applying Theorem 9.6 from [2] we infer that F, (z) = (M) (2)
for some M e 4. Since F,(1) = {M)(1)= M(R,) =1, we have M = M and,
by (2.2) and (2.15),

Tu(@) = exp(— CH)(2) = e, (H)" (2).

In other words, y, = e, (H), Wthh shows that Me#,, and He #,. The
theorem is thus proved.

We illustrate Theorem 2.7 by a simple example.

ExawmriE 2.1. Put H = pH for p = 0. By a standard calculation we have
the formulae e, (H,) =

e *xp~1

dx for >6
() d

e, (H,)(dx) =
and
logz+ { e ~?*H (dx) = (1—p)logz+plog(1+2).
: ‘

Applying Theorem 2.7 we conclude that H,e 3, if and only if pe[0, 1).
THEOREM 2.8. If He #,, and [, (1—e %)~ 2 H(dx) < 0, then H = 0 iden-
tically.

Proof. We may assume that e, (H) = y,, for some M e%. On the other
hand, by (2.1), we have the formula
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2.17) Pa(dx) = M ({0}) 8, (dx) +g (x) dx,
where
.18) gO) = e~ [ (1—e™) "1 M (dy).

Setting N(dx) = (1—e %) ' H(dx) and Q(dx)= (1—e *)~2 H(dx), we have
N,QeM and

e, ()" () = exp | (€=~ 1) N (dx),
1]

which shows that e, (H) is a compound Poisson distribution
o0 N*k
(2.19) _ e, (H)= e"’(é + Z i )

where b = N(R,). Moreover, by induction, we get the inequality
N*¥@dx) < (1—e Q¥ dx) (k=1,2,..)

which, by (2.17) and (2.19), yields

e > k
gxydx <e™® Z ) Q*"(dx)

By (2.18) the function g is non-increasing. Settlng q = Q(R,), from the last
inequality we get ‘
(1 e ! 2 o qk

“o 5

for u > 0. Letting u — 0+, we obtain g(0+) =0, which, by (2.18), yields
M((©, oo)) =0. Since Me#, we have M =g, and, consequently,
e, (H) = yy = J,. Hence it follows that H = 0 identically, which completes the
proof.

gW) < I g(x)dx <

3. Some functionals on stochastic processes. In the sequel L(£) will denote
the probability distribution of a random variable £. Let & be the class of
non-negative stochastic processes X = {X (¢, ): ¢t > 0} with stationary and
independent increments, continuous on the right sample functions,
non-degenerate to 0, and fulfilling the initial condition X (0, w) = 0. It is well
known that to every process X from & there corresponds a measure Me.# |
satisfying the condition ‘

3.1 _ L(X(t, w) = e, (tM)
or, equivalently,
(3.2) L(X (t, w) = exp(—t{M>(2)
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for ¢t > 0. This uniquely determined measure M is called the representing
measure for X. :

A stochastic process X from & is said to be deterministic if X (t, w) = ct for
a positive constant ¢ with probability 1 or, equivalently, ¢d, is the representing
measure for X.

It is evident that, for any a > 0, aXe®Z provided X €% and, by (1.12)
and (3.2),

L(aX(t, 0))(2) = exp(—t (M) (az)) = exp(—t<U (0, a) M) (2)).
This-'yields the following proposition.

ProrosITION 3.1. If M is the representing measure for X and a > 0, then
U(0, a) M is the representing measure for aX.

Two processes X and Y from & are said to be independent if for all finite
collections ¢,, t,, ..., t, and u,, u,, ..., 4, of non-negative numbers the vec-
tor-valued random variables

(X (ty, ), X(t5, @), ..., X (t,, @) and (Y(uy, o), Y(uy, @), ..., Y(u,, )

are independent. One can easily check that for independent processes X and
Y from % the composition Y(X (¢, w), @) also belongs to %. Moreover, if
M and N are the representing measures for X and Y, respectively, then

L(Y(X (t, 0), 0))(2) = exp (— 1t (M) (KN (2))-
Comparing this with formula (1.14) we get the following proposition.

ProroSITION 3.2. Let X and Y be independent processes from & with
representing measures M and N, respectively. Then Mo N is the representing
measure for the composition Y (X (t, ), ).

It was proved in [8], Example 3.4, that for every process X from & and

~u >0 the integral functional

(33) I(u, w) = [ e "X gy

1] -
is finite and positive with probability 1. The aim of this section is to study the
multiplicative infinite divisibility of L(I (4, w)), i.e., the infinite divisibility of
L(logI(u, w)). By formula (3.15) in [8], all moments of I (u, w) are finite and

(3.4) EI"(u, ») = n! n (M) (ki)™
. k=1

where M stands for the representing measure for X.
Given a probability measure A on the real line (—co, o), by 4 we denote
its characteristic function, i.e.,

A(s) = Ojo e*1(dx) (—o0 <s< ).
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By the Lévy-Khinchin Representation Theorem ([4], Chapter XVIL2),
infinitely divisible probability measures on (— o0, o0) are of the form e(a, N),
where a is a real number, N is a bounded non-negative Borel measure on
(— o0, ), and

(3.5 é(a, N)(s) = exp I:ias+ _aji (eisx_ 1— isx )(1 fg’gl)z],

1+x?

where for x = 0 the integrand is assumed to be —s?/2.
It is easy to verify that the following statement is true.

PROPOSITION 3.3. Suppose that the support of N is contained in R, and
Ne#,. Then for every real number a the characteristic function é(a, N) is
analytic in the half-plane Ims > —1.

Given Ne.# we shall use the notation

(3.6) t(N)=°f(e-x—1+ -l )(N(dx)

2 1+x2)(1—e"%*

where for x = 0 the integrand is assumed to be 1/2. In the sequel we shall
frequently use the measure e(I(II), II). Applying Malmsten’s formula ([1], 1.9)
we have

3.7) &(1(), IT)(s) = exp | <eisx__lx——is>e_xdx = I (1—is).
o\l—e x

On the other hand,
rl—is)= [ & *exp(—e ¥)dx,

which yields the formula
(38) e(I(IT), IT)(dx) = exp(—x—e ) dx
for xe(— oo, o).

THEOREM 3.1. Let X be a process from & with the representing measure M.
Then the probability distribution

(3.9 Hy = L(—log | e ¥® dp)
[}

Julfils the equation
(3.10) ty *e(—log M (R,)+1(SM), SM) = e(I(IT), II).

Proof. Consider a triplet £, n and { of random variables with the prob-
ability distributions p,,, e(—log M (R ,)+!(SM), SM) and e(!(IT), II), respec-
tively. Moreover, assume that the random variables € and #» are independent.
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By (3.4) and (3.7) we have the formulae

(3.11) Ee ™ = n! f[ MYKk)™Y (n=1,2,..)
k=1

and

(3.12) Ee ™ = é(I(H), H)(in) =n! @m=1,2,..)

Since, by. (1.22), SM e .#,, we conclude, by Proposition 3.3, that the charac-
teristic function of ‘L(n) is analytic in the half-plane Ims > —1. Thus

Be™™ = &(—log M (R,)+1(SM), SM)(in) (n=1,2,..),

whence, by standard calculation, we get the formula

n—1

Ee™™ = MR.) [] exp{SM>(k) (m=1,2,..).
k=0 :

Now applying formula (1.21) we have
(3.13) Ee™™ = M(R, )" [] <M (k) = [] <M (®).
k=1 k=1

Taking into account the independence of ¢ and # we get from (3.11}—(3.13) the
equalities

(3.14) Ee "é+m = Ee™™ Ee ™™ =Ee™ (n=1,2,..).

Observe that, by (3.8), L (e%)(dx) = e *dx for x > 0. Since the characteristic
function of the exponential distribution is analytic in the circle |s] < 1, we
conclude, by (3.14), that the moments determine the probability distributions
L(e"“*m) and L (e”°) uniquely and

Le™¢*m)y = L(e™).

" Hence we get the equality L{&+#) = L({) which, by the independence of £ and
n, yields L(&)* L(n) = L({). This completes the proof.

Observe that the characteristic function &(—logM (R,)+I(SM), SM)
does not vanish on the real line. Consequently, equation (3.10) determines the
probability measure p,, uniquely. Moreover, if u,, = py, then SM = SN and
M(R,) = N(R,), which, by (1.21), yields M = N. Thus the following corollary
is true.

COROLLARY 3.1. Let X and Y be processes from & with the representing
measures M and N, respectively. If

L([ =X dr) = L({ e~ 7 di),
0 ]

then M = N.
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In the following limit theorem we consider the weak convergence of
probability distributions.

THEOREM 3.2. Let X, X,, ... be a sequence of independent non-determinis-
tic processes from % with the same representing measure Me?. If

Yl (. (D) = Xl(ta w) and Y16, @) = Xn+1(y;|(t5 w)s (D)
forn=1,2,...,

then
lim L _f ~Ynw) de) (dx) = e * dx.

n— o

Proof. Denote by M, the representing measure for the process Y,.
By Proposition 3.2 we have the formula M, = M©", where the power is taken
in the sense of operation o. Since (M ) 1= M (R,)=1, we have, by

Proposition 1.3 and formula (1.14),

Mys1y (@) < M) (2) < z if z

{M,y(1) =M, (R,) =1 and, consequently, {(M,)(2)
follows that for z= 1 the limit

F(z) = lim <M, (z)

=1,
=1 for z = 1. Hence it

exists and fulfils the conditions
(3.19) , 1<F@z) <z

and F(z) = {M)(F(z)) for z> 1. Moreover, by Theorem 9.6 in [2], the
function F is continuous for z > 1. We shall prove that the function F is
constant. Suppose the contrary. Then the equation w = (M) (w) holds for
w belonging to an open non-empty interval contained in [1, o). But this yields
{M)>(z) = z for z > 0 because the function (M) is analytic in the half-plane
Rez > 0. Hence we get the formula M = 3§, which shows that the processes X,
are deterministic. This contradiction proves that the function F is constant for
z> 1. Taking into account (3.15) we conclude that F(z)=1 for z> 1.
Consequently, by (1.21),

SM,)(@@)=log{M,>(z+1) -0 as n— oo,

This yields the relation SM, — 0 as n— oo which together‘with the equality
M,(R,)=1 and Theorem 3.1 shows the convergence

pu, —e(l(D), II) as n— o0,

Now our assertion is a direct consequence of formula (3.8).

Denote by &, the set of all stochastic processes X from & for which the
probability distribution L(—log [, e *““)dt) is infinitely divisible. In other
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words, X e &, if and only if the probability distribution L({y e ¥ dt) is
multiplicatively infinitely divisible. We are now in a position to prove
a characterization of the class %, in terms of the representing measures.

THEOREM 3.3. Let X be a process from & with the representing measure M.
Then XeZ,, if and only if Me #,. In the affirmative case the formula

(3.16)  L(—log aj? e X&) dt) = e(log M (R )+ 1(IT - SM), IT—SM)
1]

is true.

Proof. Using notation (3.9) we infer, by Theorem 3.1, that the probability
distribution p,, is infinitely divisible if and only if SM < II. In other words,
XeZ, if and only if M e #,,. Formula (3.16) is a straightforward consequence
of (3.10). The theorem is thus proved.

Theorems 3.3 and 2.3 show that the set of all spectral meaéures H for
which

e(a, Hy = L(—log { e"*®?dt) for some Xe%, and ae(—o0, )
! ;

coincides with .
As an immediate consequence of Theorem 2.1 and Proposition 3.1 we get
the following theorem.

THEOREM 34. If XeZ,, and a >0, then aXeX%,,.
This theorem yields the following rather unexpected statement.

COROLLARY 3.2. Let us assume that X € X. If the probability distribution
L(—log [y e *®*\dt) is infinitely divisible, then for every a >0 the probability
distribution L(~log [y e **®®)di) is also infinitely divisible.

Similarly, from Theorem 2.2 and Proposition 3.2 we get the following result.

THEOREM 3.5. If X and Y are independent processes from X, then the
composition Y(X (t, »), o) belongs to Z,. )

THEOREM 3.6. Let X be a non-deterministic process from Z,,. Then the
probability distribution L(fy e~ *“*)di) is absolutely continuous with respect to
the Lebesgue measure on R, .

Proof. Denote by M the representing measure for X. Since the process
in question is non-deterministic, we have M # J,, which, by (1.23), yields
SM # II. Moreover, by Theorem 3.3, M e.#,. Consequently, the spectral
measure H = IT—SM appearing in (3.16) does not vanish identically and,
by Theorem 2.3, belongs to ,. Applying Theorem 2.8 we conclude
that

'Ofu—e-xrzﬂ(dx) = o0,
0
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which, by the Tucker Theorem on absolute continuity of infinitely divisible
measures in [7] and formula (3.16), shows that the probability distribution
L(—log [, e”*®“dt) is absolutely continuous with respect to the Lebesgue
measure on the real line. This yields the assertion of the theorem.

4. Examples. The results of the preceding section may serve for the
determining of the probability distribution L(—log [, e~ *®*)dt) with X e Z,, .
We shall illustrate this by some examples. The right-hand side of formula (3.16)
is determined by M (R,) and SM. Consequently, in what follows we shall
calculate theése parameters only. '

ExaMPLE 4.1. Stable processes. For stable processes from % we have
{M>(z) = czP with ¢ > 0 and pe(0, 1]. By (1.3) and (1.21) we get <M (z) =
=plog(1+2z) = {pIT)(z), which yields SM = pII. Moreover, {M)>(1) =
= M(R,)=c. It is evident that stable processes belong to Z,.

ExaMpLE 4.2. Bessel processes. For Bessel processes X from & we have

L(X (¢, 0))(df) =*

where ¢ is positive and

M(dx) =

QL_"’_;E I, (x)dx

([4], Chapter XIIL,7). Here I, denotes the modified Bessel function of the first
-kind. Moreover, we have the formula

(M) () =log(l+z+ /(1 +2)*—1)
which yields M (R,) = (M>(1) = log(2+ ./3). Setting
e—x
fo)=—1x)
we have M(dx)=(1—e %) f (x) dx and, by the 1ntegra1 representatlon

\[ I (1—y%)"

the function f is completely monotone on (0, co) and fulfils condition (2.4).
Applying Theorems 2.5 and 3.3 we infer that Bessel processes belong to Z,
and, by (1.25),

Io(x) = 2e™ dy,

1l—e~ —2x @
(SM) (dx) = (—Wre—x)e— j 1,(x) dt dx.
In the forthcoming examples we shall use the followmg notation. leen
s >0, we denote by P, the gamma probability distribution on R,

e—xxs—l

I (s)

P (dx) = dx.
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It is clear that P,xP,= P ,, and

4.1) P =e, (sII).
Given s > 0 we denote by E, the Mittag-Leffler function

3] k

X
E() = ,Eol"(ks+ 0
In particﬁlar, for n being positive integers we have the formula
. - © xkn 1n-1
4.2) E,(x" = kg“om = ;kgo exp (q (k, m)x),

where q(k, n) = exp(2nki/n) (k=0,1,...,n—1).

EXAMPLE 4.3. The gamma process. The gamma process X from & is defined
by assuming L(X (¢, w))=P, for t>0. By (41) we have M =1II and,
consequently, M (R,)=1log2. Setting f(x) =e */x we infer that M (dx) =
= (1—e™*)f(x)dx, the function f is completely monotone on (0, c0) and fulfils
condition (2.4). Thus, by Theorems 2.5 and 3.3, X € Z_ . Using formula (1.25) we
get

«© i—1
SM)(dx) =(1—e ") e™%* g TeT l)dt dx.

ExampLE 4.4. Consider a process X from & with the representing measure
M@dx)=e*x"17?(1—e *)dx, where pe(0, 1).

Setting f(x) = e”*x~ 1”7 we infer that the function f is completely monotone
“on (0, o), M(dx) =(1—e *}f(x)dx, and condition (2.4) is fulfilled. Applying
Theorems 2.5 and 2.3 we conclude that X eZ%,. Moreover, by standard
calculation,

{M>(2) =pl (1-p)((1+2)P-1).
Thus M(R,)=<{M)>(1) = p'(1—p)(2?—1). Using formula (1.21) we get the
equality
4.3) {SM)(z) = log((z+2)P—1)—log (27 —1).
Put
4.4 N,(dx) = (l;%e_zx PE,(x")dx,

O,dx)=(1—e" e *p,(dx) for s>0 and Q,(dx)=e *II(dx).
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By standard calculation we get the formulae

Qo> (2) =log(z+2)—log2, <@ >(2)=2"°—(z+2)° for s>0
and '
N, =000+ Y, 2,
k=1 K
which yield
(N> (2) = log((z+2)"—1)—log (2P —1).
Comparin’gthis with (4.3) we get the equality SM = N . Since M e #,,, we
have N, < I, which, by (4.4), yields the inequality
4.5) PE,(x) < &
for x 20 and pe(0, 1).

ExAMPLE 4.5. Gamma Poisson processes. Given s > 0 we denote by X,
a process from & with the representing measure M, (dx) = (1—e™*) P (dx).
Then we have

L(X,(t, w) = e“(50+ i ;—,:P,,‘).
. k=1""

Taking into account Example 1.1 we get the formula

SM (i) = (1—ee~ 3 LoD A= DT (o

As an immediate consequence of the above formula we obtain the following
lemma.
LEMMA 4.1. M e 4, if and only if SE,(x°) < s+e* for x = 0.

Observe that, by (4.2), 4E,(x*) = e*+e *+2cosx < 3+¢€* for x> 0.
Consequently, by Lemma 4.1, we have the following corollary.

COROLLARY 4.1. M, e 4,
Lemma 4.2. If M e #,, then M, e ¥, for every re(0, s).
Proof. Suppose that M e .#,,. Then, by Lemma 4.1, the inequality

(4.6) SE,(x) < s+e

is fulfilled for x > 0. Given re(0, s) we put p =r/s. Of course, pe(0, 1).
Denote by g, the density function of the stable probability distribution v, on R,
with the Laplace transformation ¥,(z) = e~ *. Zolotarev proved in [9],
Theorem 2.10.3, the formulae

E(9)= [ Eo™g,0)dy,  E,(9 = T exp(xy~?)g, () dy.
4]
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The above formulae and inequality (4.6) yield

rE,(x) <r+p | exp(xPy~P)g,(y)dy = r+pE, (x”).
(V]
Now, by (4.5), we get the inequality rE,.(x") <r+e* for x >0 which, by
Lemma 4.1, shows that M,e.#,. This completes the proof.
LemMA 4.3. If M,eH#,, then se(0, 4].

Proof. Denote by # the set of all complex-valued Borel functions f on
R fulfilling the condition |f(x)| < ae®™ (xe R ) with some positive constants
a and b. Let # be the subset of # consisting of bounded functions. We define
the operator K on & by setting for fe# and x >0

(KF)() = —— | () exp(—y2/dx) dy
Jmx0

and (Kf)(0) = f(0). It is clear that KF < & and K% < #. We define the
mapping w — F(w) from the complex plane into & by setting F (w)(x) = "~
(xeR,). By standard calculation we get the formula

KF(w)—2F(w?)e# provided Rew >0 and Rew? >0
and KF(w)e# otherwise. Hence, by induction, we get for r=1, 2, ...
4.7 K'Fw—-2FWw")e# provided Rew* >0 for j=0,1,...,r

and K'F (w)e # otherwise. Further, we define the mapping s — G(s) for s > 0
by setting

(4.8) G(s)(x) = E;(x7),

- where E is the Mittag-Leffler function. From (4.2) it follows that G (n)e #

(n=1,2,..). Moreover, by the Humbert formula from [6],
Gm2)=K'Gmn) @mr=1,2,..),-
which, by (4.2) and (4.7), yields

. (49) %G(n/2’)— Y F(q(k, n)*)e®

keZ(r,n)
where ke Z (r, n) if and only if Req(k, )? >0forj=0, 1, ..., r. It is easy to
check that a non-negative integer k belongs to Z(r, n) if and only if either
0<k<27"2p or n(1-2""" 2) k<n—1. Hence Z(r,2"*?+1)={0, 1,
27*2}1. Setting

n=2%241, s@E=4+r"", u(r)=Req(, 2'+2+1)2'—-cosﬂ
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b(r) =Img(l, 22 +1)2 = sin%,

we infer, by (4.8) and (4.9), that the function s(r) Eyy) (x*®) —e* —2e“"* cos v (r)x
is bounded on R,. Observe that u(r) > 0. Consequently, the relation

EI‘E(S (N Espy(x*")—€*) = o0

is true. Comparing this with Lemma 4.1 we conclude that My ¢ A,
(r=1, 2,.:7). Of course, s(r) =4 as r —» oo, which, by Lemma 4.2, yields the
assertion of Lemma 4.3.

As an immediate consequence of Corollary 4.1, Lemmas 4.2 and 4.3 and
Theorem 3.3 we get the following statement.

ProposiTION 4.1. X € X if and only if s€(0, 4].
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