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Le raisonnemenb est manifestement sans vaIeur; muis 
il n'en est pas  noi ins remmqunble que la formule put s m i r  
ii Gompertz pour reprisenter la loi de suruie de la table de 
CarZisle. entre 10 et 60 ans. 

Henri Galbrun, 1924 

I. htrcsducdoa. Neyman is well known for his fundamental contributions 
to the theory of statistics, but he started his statistical career by a series of 
papers on applications of statistics. These were applications to agricultural 
experiments. Later on he was to spend much time and effort on applications to 
various scientific domains. We shall be concerned here with a particular aspect 
of Neyman's interests, namely the building and use of stochastic models. He did 
that in very many fields, from astronomy to zoology following a consistent 
philosophy throughout: Given a question about a particular phenomenon, 
Neyman tried to visualize the "mechanism" underlying the phenomenon. He 
then translated this vision into mathematical assumptions and formulas. After 
devising the stochastic model to his satisfaction, he would derive the statistical 
methods appropriate to the case at hand. 

This procedure sets Neyman apart from the more typical "applied 
statistician" who has learned a large number of statistical methods and 
applies to the particular problem one of the procedures in his tool kit. It 
meant that Neyman had to learn about the field and consult with experts 
in it. 

Of course, when trying to decipher the mechanism behind a particular 
phenomenon, one cannot be sure that one has really caught what makes it 
work. Neyman's philosophy was that one should try anyway and that it is 
better to catch a bit of the mechanism than to use sundry "interpolation 
formulas." When pressed on this point he would occasionalIy quote 
H. Galbrun who wrote about the Gompertz-Makeham derivation of a dis- 
tribution for human survival. 
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Here we shall sketch Neyman's construction of a few particular stochastic 
models. It will be seen that, even in very different fieIds, the models are often 
related to each other. 

2. The theory of clusters. In 1939, Neyman published a paper [S] entitled 
On a new class of contagious distributions applicable in entomology and 
bacteriology. He describes the origin of the problem as that of comparing 
effects of insecticides by counting larvae in plots in a field. The paper is notable 
for its main contribution but also for several discussions of the role of models 
in statistics. 

Neyman notes that observed distributions of counts of larvae cannot be 
fitted by a Poisson distribution. There are too many empty plqts and too few 
with one larva. He goes on to say that it is not dificult to find one of the 
reasons: 

Larvae are hatched from eggs which are being laid in so-called "masses." After being 
hatched they begin to travel in search of food. Their movements are slow.. . 

He then goes on to say that 

A similar explanation may apply to microorganisms counted in single squares of 
a haemacytometer or to colonies on parallel plates. However, here the situation is not as 
clear as in the case of larvae. 

Later, on the same page, he says: 

Owing to the fact that the cause of the contagiousness of the distribution of larvae is 
clear.. . Consequently, if the theoretical distributions that we shall deduce fit the empirical 
ones, we shall be more or less justified in assuming that we guessed the actual machinery of 
movements of larvae. On the other hand, if the same theoretical distributions appear also to 
fit satisfactorily empirical counts of bacteria then in respect of these applications it will be 
safer to consider that we were lucky enough to find a suficiently flexible interpolation 
formula. 

The passage set very clearly a philosophy that Neyman would apply in 
many other domains: If the "machineryn is clear and the formula fits, one is 
more or less justified in assuming that our guess at the machinery was correct. 
However, if the machinery is not clear, we just have an "interpolation formula." 

The actual assumptions made in the derivation are as follows: 
(A) A larva born at (5 ,  v )  and surviving at the time of observation will be 

found a random location according to a density f (x - 5 ,  y - q). 
(B) The mass of eggs located at ( 5 ,  q) will furnish a random number S of 

survivers with P [ S  = a] = p(n). 
(C) The various larvae are asocial and behave independently. 
(D) There are N masses of eggs on the field. They are distributed there 

independently and uniformly. 
Eyentually, Neyman fixes the average number of masses of eggs per unit 

area to a value rn and lets the number of unit areas in the field go to infinity. 
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It is possible to put the assumptions (A) to (D) together and obtain 
a formula as follows: 

Let M be the measure that counts how many larvae are in any set and let 
y be an arbitrary positive bounded measurable function, perhaps with compact 
support. Look at the random variable Z = S ~ ( X ) M ( ~ X ) .  One can easily see 
that 

Eexp{-Z) = [J ~ ~ h t t l l d ~ l ~ ,  
where . 

G t u ) = z u n ~ ( n )  and hIO=jex~(-~(x))fIx15)dx.  
n . - .  

Here for simplicity of notation we have abbreviated f (x - T ,  y - g) to f (x 1 c), 
x and ( being points in the plane. 

It is seen that this expression depends on two arbitrary functions: the 
generating function G and the dispersal function f (x lc) .  To obtain specific 
formulas, Neyman makes various choices for G and f ;  explaining that the 
choices are really arbitrary, because not much is known about either G or f: 
The choice where G is Poisson and f is uniform over an area A gives the 
cGcontagious distributions of type A." 

It is interesting to note that, at the start of his argument and later in the 
conclusion, Neyman mentions that numbers of larvae in adjacent plots are 
dependent random variables. However, he does not attempt to compute any 
correlations. They can readily be obtained from the generating function written 
above. 

Some 25 years later Neyman, with Elizabeth L. Scott, was going to 
consider a mechanism for the spread of epidemics in some respects analogous 
to the spread of the larvae. It starts with a population of susceptibles 
distributed geographically and a population of infected people who, after an 
incubation period, become infectious. In the meantime they have travelled to 
some random geographical location and they infect the susceptibles they meet 
there. The difference between the larvae model and the epidemic one is that the 
newly infected people will become infectious after the required incubation 
period. They have travelled in the meantime and the process feeds on itself and 
can continue indefinitely. 

Neyman and Scott give formulas for the generating functions of the 
number of infected people to be found in any finite system of disjoint regions in 
the habitat. This is done for the n-th generation in the epidemic process as well 
as for an epidemic continuously nurtured by mutations of the pathogens. 

Neyman and Scott point out two unexpected results of that study. One is 
that the probability of an epidemic getting out of hand in a small community is 
just the same as the probability of the epidemic becoming explosive in the 
entire habitat. The other is that vaccinating at random a proportion B of 
the population reduces the expected total size of the epidemic by a factor 
(1 - 0)/(1+ OA), where A is the expected size of the epidemic without vaccination. 
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Another paper of Neyrnan, with Grace E. Bates, deals (see [6]) with 
another aspect of "contagion." It is about accident proneness. It had been 
observed that in many instances the number of accidents occurring in a given 
period of.time in a well-defined population (such as bus drivers in London) has 
a distribution that is well fitted by a negative binomial. 0. Lundeberg [3] and 
W. Feller [I] observed that the same negative binomial can be obtained from 
two entirely different mechanisms. One is that different individuals have 
different proneness to accidents, but a proneness that does not change in time. 
A different mechanism would be that all individuals start alike but that each 
accident disturbs the situation and makes the affected individual more 
susceptible to further accidents. The particular disturbance of proneness was 
imitated from a paper of G. Pdlya. The basic assumption slxates that if an 
individual has by time S incurred m accidents, then the probability P,,,(S, T )  
of having zero accidents in the interval (S, TJ is such that 

where A, p and v are numerical coeficients. Grace E. Bates and Neyrnan [ti] 
argue that if one counts the number of accidents in several intervals 
I , ,  I,, . . . , I,, then the mixture possibility with individuals of diflerent prone- 
ness can be distinguished from the Polya contagion process if k 2 2, except for 
the odd case where v = Ap. 

The problem was of much interest to the U.S. Air Force who was trying to 
predict the probability that a pilot would have severe accidents by recording 
his past number of minor accidents. Neyman did not get to try his model on 
actual Air Force data because as a resuIt of the political climate of the time he 
was denied clearance to look at the data. 

Turning his attention from larvae to galaxies, Neyman, around 1950 was 
to argue that galaxies occur in clusters, probably by a mechanism similar to the 
one he had guessed in 1939 for haemacytometer counts or bacteria on Petri 
plates: They might attract each other. That such is the case for galaxies is 
certainly true. He embarked, with E. L. Scott, in a long study of the spatial 
distribution of galaxies. They assumed that clusters occur around "centers" 
distributed Poissonwise uniformly, gave each "center" a random number of 
galaxies and placed them independently of one another at random distances 
from the center. This simple clustering model seemed to fit reasonably well the 
observed counts of galaxies in the sky. However, when Neyman and Scott 
produced a simulated appearance of the sky from their model, they were very 
surprised: The actual pictures of the sky were a lot more lumpy than what their 
simulation had produced. A picture of a piece of that simuIation appears in 
Scientific American (Sept. 1956). 

One had to cluster more. Neyman and Scott proceeded to do so, 
introducing recursively what they called n-th order clustering. The first 
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order clustering consists of the system we just described with "centers" around 
which one places galaxies. An n-th order clustering process proceeds in the 
same way but the "centers" instead of being taken Poissonwise are themselves 
taken from an (n - -)-st order clustering process. Even with only a second order 
clustering process the simulated appearance of the sky looked much more like 
the real thing. Neyman and Scott pursued that study for many years, working 
in particular on the abundance of different types of galaxies (elliptical, spirals, 
etc.). 

This clustering picture was the one almost universally used by astron- 
omers till the late seventies. By that time many more observations were 
available, in particular for estimates of the distance of various galaxies. Due to 
the work of G. I3. Abell and others we have now a different view of the 
organization of the universe. It looks more like a mass of (empty) soap bubbles 
with galaxies strewn around the places where bubbles touch each other. As said 
above, that picture became available only shortly before Neyman's death. One 
wonders what he would have done with it had he had a chance. 

The Neyman-Scott model of the spatial distribution of galaxies was 
motivated by the fact that galaxies attract each other. Nowadays several 
cosmologists go further. They attribute the bumpy appearance of the skies to 
minute local fluctuations in the radiation soup that followed the Big Bang and 
are trying to argue from the basic physical principles of quantum theory. The 
fact that to get something similar to the actual sky they have to assume that 
9&99% of the matter in the universe is "dark" and invisible certainly should 
incite some caution. 

3. Carcinogenesis. The collaboration between Neyman and Scott on 
cosmology extended from around 1950 to Neyman's death in 1981. Another 
collaboration of long duration had to do with carcinogenesis. This started 
around 1957, then around 1960 Neyman spent several months at the National 
Institutes of Health in Washington D. C. There he met M. 3. Shimkin who 
with collaborators had been studying the experimental induction of lung 
tumors in mice by injection of urethane. 

Urethane is a water soluble fairly simple chemical that had a history of 
use as a veterinary anesthetic. Shimkin and Polissar had carried out ex- 
periments where mice were sacrificed at various times after urethane injec- 
tion. They found not only frankly cancerous cells but also modified cells 
occurring in what they called "hyperplastic loci." They adduced that these 
may be precursors of cancer cells. For more information on this point see the 
article by M. B. Shimkin et al. in the 4-th volume of the Fifth Berkeley 
Symposium. 

Neyman, who had earlier (unpublished) proposed a two-stage theory of 
carcinogenesis, seized the opportunity to test a theory on actual experimental 
data. 
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Multistage theories of carcinogenesis have a long history. A short 
summary is given by P. Armitage and R. Doll in the 4-th volume of the 
Proceedings of the Fourth Berkeley Symposium. 

The particular model considered by Neyman and Scott is one in which: 
(i) The growth of both benign and cancer tumors are described by birth 

and death processes. For benign tumors the process is subcritical. For cancer it 
is supercritical. 

For injection at time zero, let D f ( t )  be the amount of carcinogen present in 
the time at the moment t for a function f such that f ( t )dt  = 1. Then: 

- . (ii) Cells will suffer first order mutations according to a Poisson process 
of intensity proportional to D f (t) .  

(iii) Cells that are daughters of first order mutants and their descendants 
can suffer a second mutation with intensity a + b D f ( t ) .  If so, they become 
cancerous, subject to the supercritical branching process. 

Neyman and Scott also incorporate in the model a provision for counting 
errors, with small clones more likely to be missed than larger ones. 

Some of the conclusions derived are as follows. Let X be the tumor count 
at the end of the experiment. Then, if excretion of the carcinogen is rapid, the 
expectation of X for a single injection is linear in the dose D. Under the 
one-stage hypothesis, or if b = 0, the expectation of X is always proportional to 
the dose D and does not depend on the function f. 

On the contrary, for a two-stage model, the expectation of X will depend 
on f. 

These conclusions, when compared to experimental results, favor a two- 
-stage model with b > 0. 

It should be noted that Neyman and Scott express this conclusion very 
cautiously. They had obtained the collaboration of Dr. Margaret White and 
colleagues at the Donner Laboratory, Berkeley. Dr. White performed many 
experiments on mice, including some where the time pattern of excretion of 
urethane was determined. One of the conclusions is that the rate of excretion 
decreases when the dose is increased. This, if taken into account in the 
Neyman-Scott model, would further enhance the parabolic shape of the 
dose-response relation. 

Many other conclusions were tested including the effect of giving a total 
dose D but in a fractionated protocol. This, for adult mice, decreases the tumor 
yield, but may increase it for young mice. The model can fit these observations 
at least qualitatively, but the case is not closed. 

4. Struggle for existence. In a totally different domain Neyman and Scott 
became interested in the experiments carried out by Thomas Park on the 
struggle for existence. Park had two species of flour beetles Tribolium 
castaneum and Tribolium confusum. They were bred in small vials with monthly 
replacement of the flour and counts of all present, eggs, larvae, pupae and 
adults. The two species at adult stage could only be distinguished under the 
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microscope. Park had surmised that, since the two species were very much 
alike, competition would be severe. 

One of his observations was that - if bred separately - each one of the 
two species survived "indefinitely" that being of the order of 30 years in Park's 
experiments. They established stable populations. If, however, two or four 
beetles of each species were placed in the same vial, then, within a year or so, 
there was only one species left in the population. 

It was not always the same and the proportion of vials where castaneum 
won over confusum depended on temperature and humidity conditions. 

Flour beetles behave in a most disgraceful manner: They cannibalize their 
eggs and pupae, be they of their own species or another. 

Neyman, Park and Scott built models of such interacting population with 
different fertility and voracity. The model was a stochastic version of the 
deterministic struggle for life of Volterra and Lotka. As is well known, the 
resulting equations are not solvable in any analytic manner. 

Neyman with Park and Scott give a report in the Third Berkeley 
Symposium, Vol. 3 (see [7]). 

The total population in Park's vials was of the order of 400 beetles per 
8 grams of flour. It would be interesting to find solutions of the equations on 
a high speed computer. 

5. Radiation. Neyman was concerned for a long time with effects 
of radiation. Together with Prem S. Puri he devised models of the action 
of radiation on cells in culture. One irradiates the cells, separates them 
and plates them on petri dishes. The "survivors" form colonies that can 
be counted. Some of the colonies are disorganized and aberrant. They 
represent cells that underwent a malignant mutation in the process. 

One of the typical results of such experiments can be described as 
follows. One plots the logarithm of the surviving fraction as a function 
of the radiation dose in rads or Grays. f the radiation operates in such 
a way that any single hit on the nucleus of the cells will kill it, the 
dose response curve would be a straight line. This is what is usually 
observed for high LET irradiation, say, by neutrons or accelerated heavy 
ions. 

On the contrary, low LET radiation such as X-rays or gamma rays, or 
electrons, produces a different type of dose response curves. They have 
a "shoulder." That is, the response is curved and concave, looking straighter 
for large doses that kill a high proportion of the cells. 

Neyman and Puri attempted to construct a stochastic model that would 
accommodate both possibilities (see [8]). The model has a mechanism for the 
induction of lesions and for their repair or misrepair. 

Neyman and Puri do get a shoulder but that is at the cost of representing 
the length of time T the cell was irradiated as T = D/e,  where D is the total 



dose and Q is the dose rate. Later Yang and Swenberg [lo] were to modify the 
model. They introduced a different definition of "death." The Neyman-Puri 
cells could survive with an indefinite number of unrepaired lesions (that did not 
become "lethal"). The Yang-Swenberg cells die if they have unrepaired lesions. 
Also Yang and Swenberg modified the initiation of lesion process in a manner 
analogous to the Kellerer-Rossi idea: The effect of incoming radiation becomes 
more severe as the lesions accumulate. Such a model does produce shoulders 
without any difficulty. However, the Yang-Swenberg model, just as the 
Neyman-Puri one,- uses a linear mechanism for repair. That is, lesions are 
repaired independently of each other. There is considerable evidence that such 
is not the case. C. Tobias and colleagues (see [9]) have proposed mechanisms 
where a form of repair is an interaction of two lesions. A stochastic, Markov 
chain version of the Tobias mode1 was investigated by N. Mbright. One could 
insert that in the Yang-Swenberg model, but then the equations are impossible 
to solve. Further investigations by R. Sachs and others are likely to shed some 
light on what is really happening, but at the time of this writing the case is not 
closed. 

6. ConcIusiw. The above are just a few of Neyman's contributions to 
applications of statistics. They have been chosen mostly because the stochastic 
models he used had a reasonable background of "mechanism" behind them 
instead of mere "interpolating formulas." He clearly preferred the "mecha- 
nisms." Some of Neyman's other contributions are very good indeed but they 
do not quite carry that flavor. 

One can cite, for instance, his thesis [4] of 1923, partly translated in 
StatisticaI Science of November 1990. Neyman considers therein fictitious 
quantities called Ui,k which would be the true yield of variety i if grown on 
plot k. He allows for measurement errors and random variability but bases his 
estimates and calculations of variances on the assumption that the assignment 
of varieties to plots is completely random. This is a model in a sense but it 
could also be taken as an instruction to the experimenter to "randomize," but 
Neyman himself says that he did not mean it that way. He attributes to 
R. A. Fisher the idea that one must randomize. For the analysis Neyman 
introduces "fertility gradients" with polynomial form. The paper is now 
considered a classic. 

Another part of Neyman's work was his discussion of sampling human 
populations. The methods he introduced have now been adopted almost 
everywhere. 

He did much more, but it would be too long to report it here. Still one can 
say that Neyman had a particular flair for those domains of science where 
sound statistical thinking would be useful. As far as I know he was one of the 
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first statisticians to look at applications of statistics in molecular biology. This 
is reflected in a large volume of the Sixth Berkeley Symposium. 

He was always full of energy and ideas and "imprinted" them on his 
students in courses or in individual contacts. 
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