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NEYMAN AND THE BEHRENS-FISHER 
PROBLEM - AN ANEmOTE 

BY 

GEORGE A. 5 A R N A R Il (BRIGHTLINGSEA) 

Through disagreement clearly expressed we make progress. 
J. Neyman 

Abstract. A,n anecdote relating to the Behrens-Fisher problem 
illustrates the need for statisticians to be familiar with all four main 
approaches to the foundations of statistical inference, and with their 
relations to each other. 

In 1974 the Indian Statistical Institute organised a memorial conference 
for two great contributors to statistical theory and practice - Prasanta 
Mahalanobis and Yuri Linnik. I was privileged to take part in the conference 
and to deliver a lecture which was attended by Jerzy Neyman. My topic was 
the generaked Behrens-Fisher problem (GBF): 

We are given two samples of independent observations xi, i = 
1,2, . . ., m and yj, j = 1 ,  2, ... , n. The distributions of the two samples are 
specified by taking as the "basic pivotals" 

with joint density 

The parameters A, 6, Q and are unknown and variation-independent of each 
other, while the densities cp and i,b are known only approximately. We wish to 
test the composite hypothesis H,:  6 = 0 with risk of error of the first kind not 
exceeding E. In the original, normal Behrens-Fisher problem (NBF) both 
densities are known to be normal. 
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Neyman and Pearson introduced the concept of "risk of error of the first 
kind" in their classic paper (1933). In the section devoted to composite 
hypotheses Neyman and Pearson wrote: 

In the first place it is evident [my stress - G.B.] that a necessary condition for a critical 
region, w, suitable for testing H ,  i s  that 

P,(w) = SlJ .. . p(x , ,  x,, . . . , xddx, dx ,  . . . dx, = constant = e (72) 
W 

for every simple hypothes~s of the subset o. [J. Neyman and E. S. Pearson, Joint Statistical 
Paper&, p. 1631 - 

The requirement thus imposed became known later as that of "Similarity" 
(S) and it was satisfied by the principal tests involving continuous observations 
in use in 1933. But in 1935 Fisher proposed a "solution" to the NBF problem 
which was shown by Bartlett to fail to satisfy S. 

In the GBF problem, Neyman and Pearson's subset w is the subset of 
points (a, Q, A, 6) in W =  Rf x R+ x R x R in which 6 = 0. For the original 
NBF, a nonrandomised test corresponds to a function ~(s , ,  r, Z, J )  of the 
minimal suflicient statistic (s,, r = s,fi/s,,/%, 2, j) taking only the values 
either O or 1, with the interpretation that ~(s,,, T,, Zo, yo) = 1 implies rejection 
of the hypothesis. Here the suffix , appended to an observable means that it is 
to be replaced by its observed value. To satisfy the condition S, we must have 

(where E(*IH,) denotes expectation on H,) for all points in the subset o. 
In 1962 Linnik showed that such X's exist, but they necessarily have proper- 
ties which rule them out from serving as test functions. For example, there 
would be values (s,,, r,, Z,, 7,) with the standardised observed difference of 
sample means ]J , -%o l / ( s~ , /m+s~o /n )1 /2  arbitrarily small, yet for these values 
~(s,,, r, ,  Z,, yo) = 1 so that H, is rejected. On the other hand, any test 
function which was not a function of the minimal sufficient statistic would be 
equivalent to a randomised test which would also be ruled out on common 
sense grounds, In short, the "similarity" requirement S was, in this problem, in 
conflict with common sense. 

In pivotal inference, when interest is focussed on a parameter function 
a(A, 6, g, a), we attempt to find functions Q, Q', Q" of the basic pivotals such 
that Q is the maximal pivotal function involving only observables, Q' is the 
maximal pivotal function involving only observables and a, while Q" does not 
involve a. It is only when this is possible that we can rigorously infer a "pivotal 
distribution" for a. In the GBF problem we can set 

p = s(t,l +a,), q = zs(t,,l f a , )  

subject to 

lTal = 0, ITa, = 0, aTa, = m(m- I), aTa, = n(n- 1). 
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We then find, with a little algebra, that a = (al, a,) and b = (s, z ,  t,, t,), 
where, with the usual sample notation, 

and 

Obviously, (a,, a,) is the maximal Q. Then with u = (A + 6, @a), for example, 
we note that .A + 6 occurs only in t,,, while ga will occur in the product zs. Thus 
for this a we take Q' = (t,, zs), leaving Q" = (t,, s) or, equivalently, (t,, z). Then, 
if the conditional density pf (Q', Q") given Q = Q,  is approximately c(Q', Q"), 
since a is variation-independent of (A, 01, the parameters involved in Q", our 
information about ct is contained in Qb together with the marginal density 
S { ( Q 1 ,  Q")dQ of Qf. Assuming, with Fisher, that Qb, now a function of a, 
retains this marginal density when the observations are known, we find an 
approximate pivotal density for a which we can use to assess the relative 
plausibility, in the light of the data, of various propositions about a. If, as in the 
NBF problem, the pivotal densities cp and $ were known exactly, this pivotal 
density would be exact, and it would coincide with the Fisher fiducial density 
for a. It often happens that a smoothing effect operates to make the accuracy 
with which the marginal density of Q' is known considerably exceed the 
accuracy with which q and IC, are known. 

But when, as in the GBF problem, the parameter of interest is 6, we note 
that 6 occurs only in t,, and to remove its companion in t,  we must subtract rt,. 
Since r = QZ, we are led to consider 

I 

and this is essentially the only function of pivotals which involves only 
observables and 6. Except that it is not a function of our pivotals! It involves Q. 

If we knew something, apart from the data, about Q, expressible in the 
form of an approximate density ( (q)  for Q, we could express this by taking the 
basic pivotals to be p, g, and Q with joint density: 

Then the above transformations would apply to the distributions within the 
[ j brackets. But the pivotal function ez = r would also be parameter-free, and 
so the maximal Q would extend to [a,, a2, r ] .  Then, conditioning the joint 
density of s, r, t,, t ,  within the [ 1 brackets on r = ro, we could form the pivotal 
function 
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and the marginal density of this, averaged over ( ( p ) ,  will be: 

from which we can derive the pivotal distribution of 6 based on the available 
data. 

In my Calcutta lecture I suggested that to demand "similarity" of tests was 
analogous to making the other demand sometimes made by Neyman - that 
a "point estimate'' of a parameter should be "unbiased." In many cases to 
require unbiasedness of the estimate means that the only v-dues which the 
estimate can take are impossible values for the parameter. Analogously, in the 
GBF and the NBF problems the "similarity" requirement rules out all 
reasonable solutions. 

I was very nearly 60 years old at the time of my Calcutta lecture - 
a dangerous age, when one tends to think one has absorbed what is good in the 
teaching of one's predecessors, whiIe rejecting their mistakes. Thinking my 
forthright criticisms might have upset the 80-year old Neyman, I approached 
him after the lecture to assure him that, in spite of my expressed disagreement, 
I held him personally in the very highest regard. He gave me his always warm 
smile, and said what I have placed in the epigraph to this paper. 

I am now nearly as old as Neyman was then. After 70 one gains in 
hindsight, and even, perhaps, a little in wisdom. Fisher's mistake concerning his 
fiducial argument can now be seen to have arisen from a confusion between 
a "random variable" in the sense of Kolmogoroff and a "random variable" in 
the sense of "a quantity to which a probability distribution can be attached"; 
a footnote added to volume 3, p. 395, of his Collected Papers suggests that, 
when he died at 72, Fisher had begun to perceive the possible confusion. 

In attacking Neyman's c~ndition S, I went too far. I ignored the fact that 
there are two stages in statistical inference - the planning stage and the 
inferential stage. It is often essential to make some advance estimate of the 
number of observations required in an experiment to achieve a specified low 
risk E of drawing the wrong condusion. And for this purpose a serious attempt 
needs to be made to secure the condition S. Furthermore, it is important that 
the plans should be followed so far as possible lest bias in treatment allocation 
or in assessment of outcome should arise. But once the data begin to come in, 
we know more than we did when we were planning and our final inferences 
must take account of this additional knowledge as far as possible. 

In both the GBF and the NBF problems the analysis above shows that the 
unknown value of p is important. Thus in practice we must make an advance 
guess about the value of e, expressible in the form of an approximate prior I(@). 
Then for a given m +n (or, more generally, given cost c, m + c,n) we can adjust 
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m/n so as to give the best chance of obtaining a z value which gives maximal 
sensitivity. 

Fisher's solution to the NBF problem arises if we take p and r(l to be 
normal and log Q to be (approximately) uniformly distributed. The condition 
S will then be satisfied "on the average," in repeated sampling provided the 
Q values follow the assumed distribution. But in practice log q is unlikely to be 
uniformly distributed; in the recovery of interblock information, for example, 
the between block variance is usually larger than that within blocks. And, more 
generally, taking log p to be uniformly distributed independentiy of log CJ 

suggests a degree of ignorance about the x and the y errors which is most 
exceptional. 

Nowadays we have four broad approaches to statistical inference, one due 
to Fisher, another due to Neyrnan and Pearson, another due to Ramsey and de 
Finetti, and a fourth due to Jeffreys. Each can be seen to have its appropriate 
sphere of application. In planning a trial we must make guesses which should 
be checked for coherence in the sense of de Finetti; in applying the guesses to 
our choice of sample sizes etc. we need to use the Neyman-Pearson concept of 
the power function and to aim at the condition S; and finally, if we wish to 
make inferences with maximal objectivity, we need the Fisher-Jeffreys ap- 
proach, conditional on the data. Finally, if we are prepared to accept some 
degree of subjectivity in our personal conciusions, we can condition not only 
on the data but also on our personal priors and in that way complete the 
circuit. What Neyman said about Merences clearly expressed is true, though 
clear expression is often hard to achieve. 

George A. Barnard 
Mill House, 54 Hurst Green 
Brightlingsea 
Colchester, Essex 
England, 3070 EH 

Received on 3.9.1994 




