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Abstract. The problem of combining experimental results to test 
sharp null hypotheses is considered from a Bayesian viewpoint. 
Relying on results of Berger and Sellke [S], lower bounds on the 
posterior probability of the null are obtained based on classes of 
priors. It is suggested that plots of these lower bounds, as functions of 
the prior probability, provide a useful summary of results for ap- 
praising evidence. An example involving the combination of ex- 
periments concerning the value of aspirin usage for heart attack 
patients is presented. The discussion includes comparison with clas- 
sical p-values associated with meta-analysis. 

The general problem of combining information from a variety of sources is 
both challenging and important. Types of information available are typically 
categorized as "Data," by which statisticians usually mean observational 
results of experiments, and "Judgment," which refers to expert scientific 
opinion concerning the phenomena under study as well as beliefs about the 
how the data is relevant to inference. A highly recommended review of 
statistical issues and methods for combining information is available in [la. 
For the sake of brevity, I will not offer a review, nor complete references to the 
literature here, but rather refer the reader to [16]. 

It is natural to ask how and to what degree of success the recognized 
approaches to statistical analysis offer solutions for combining information. 
Consider the usual classification of statistical approaches into three basic 
schools: Fisherian, Neyman-Pearson(-Wald), and Bayesian. Consider first some 
general observations before turning to combining information. The notions that 
statistical inference should be objective and in some sense optimal (Fisher), and, 
in addition, have frequency based validity (Neyman), appear appealing. How- 
ever, in the minds of many, the notion of "objectivity," in the sense of Fisher, is 
not typically achievable (see [a). Also, assuming frequency properties to be the 
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primary basis for valid inference requires the creation of an often imaginary 
universe of replication and can lead to poor "conditional" properties. Such 
arguments are readily available in the literature. For general discussions and 
references, see [I]. 

To focus on combining information, consider a setting in which the results 
of k experiments are to be combined. Suppose that each experiment produces 
a natural summary statistic, say Xi.  As a potential model, suppose that each 
Xi - N ( 8 ,  at), and that inference concerning 0 is desired. For exampje, 
suppose that a hypothesis test with null hypothesis H,: 8 = 8, versus 
H,c 8 # 8, is desired. For k = 1 the Fisherian view that the p-value provides an 
objective measure of the evidence in the data against the null is at least 
implementable as a procedure, To combine experiments in a natural fashion, 
we could impose an undeniably subjective assertion that the experiments are 
independent. Fisher (see 1141) indeed suggested a method for combining 
p-values directly for "a number of quite independent tests." This work, along 
with suggestions by K. Pearson and L. H. C. Tippett, all done in the 1930's (see 
[16]), has led to an active area of research in combining p-values and 
meta-analysis. However, concern over the interpretation of the p-value, 
especially in the context of taking an action of acceptance or rejection of the 
null, was a source of debate between Fisher and Neyman (see [14]). Also, the 
usefulness d p-values has been questioned and debated from a variety of 
viewpoints. See [I] for discussion. 

A natural extension to the above model involves the consideration of what 
we might call biases for experiments. Namely, each experimental result is 
modeled as Xi - N(8+qi, a;), where qi represents the bias in the i-th 
experiment. Though this seems a more plausible than assuming all the qis are 
zero in general, it poses foundational problems to both the objective Fisherian 
and the objective frequentist. The first point is how are the qis to be modeled. 
Of course, the familiar notions of "random" and "fixed effects models can be 
brought to bear. Beyond introducing questions of objectivity, such models also 
introduce a variety of devils in the paradise of frequency. Specifically, where 
shall we envision our infinite sequence of results? If the frequency inference 
basis is to be valid as the number of experiments tends to infinity, crucial 
difficulties arise. At a foundational level, frequency validity will generally 
require the consideration of an infinite sequence of parameter values, as 
opposed to just an infinite sequence of experimental results based on 
a common parameter value. This distinction and a corresponding frequentist 
philosophy were considered by Neyman; see [2] for critical discussion and 
further results. Furthermore, some difficulties inherent in inference in the 
presence of an infinite number of nuisance parameters were originally 
documented by Neyman and Scott [17]. 

Turning to the Bayesian viewpoint, combining information appears to be 
a natural setting for Bayesian analysis. First, classical statistics is in principle 
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and by design unable to incorporate the accumulation of scientific thought and 
judgment. In particular, as suggested in [16], the notion of combining p-values 
does not appear to lead to satisfactory results in general. Second, as also 
suggested in [16], the use of hierarchical Bayesian models offers a way of 
formulating and analyzing a variety of stages associated with combining 
information. This suggestion is in accord with the view commonly expressed by 
Bayesians concerning the value of hierarchical analyses in general; see [12]. 
Third, combining experimental results demands subjective determination of the 
degree of relevance and ._"_weight7' individual experiments should have. In 
addition to -[16], discussion of Bayesian combining of information may be 
found in [6], [lo], and [15]. 

In this article I will only consider a form of a Bayesian hypothesis test 
using a hierarchical model to combine results from different experiments. 
(Though the emphasis in the article is on combining experiments, the analyses 
presented actually apply to any hierarchical model of the form given in Sec- 
tion 2, including traditional one-way random effects models.) The analysis 
given relies heavily on the work of Berger and Sellke [83. The basic idea is to 
find ranges of Bayesian tests for a collection of prior models. In this sense the 
ideas and methods are drawn from Robust Bayesian Analysis; see [I], [3], and 
[4] for review. Berger and Sellke [8] concentrated on testing a sharp null 
hypothesis, and produced lower bounds on the posterior probability of the 
null. A primary goal was the demonstration of their contention that the p-value 
tends to overstate the evidence against the null. A counterpoint was given by 
Casella and Berger [9]; these two papers, along with the accompanying 
discussions, are highly recommended. 

In the next section a simple testing problem involving the combination of 
experiments will be analyzed based on a "ranges of posterior probability" 
argument. Section 3 is devoted to a brief illustration of the results in a specific 
problem involving the combination of studies concerning the effect of aspirin 
usage on heart disease. The final section of the paper offers additional 
discussion. 

2. FORMULATION AND RESULTS 

I begin with a hierarchical Bayesian formulation of the specialized 
combining experiments problem discussed in Section 1. First, assume that the 
k experiments each produce a summary statistic Xi. Conditional on a collection 
of experimental parameters, $ = (B, ,  . . . , B,)', assume that 2 = (XI, . . . , X jt 
has the following multivariate normal distribution: 

(1) - ~ ( e ' ,  diag [a;]), 

where the a? are known. In typical applications, we would have that each 
experiment is based on a reasonably large sample size, and that as an approx- 
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imation the Xi and s: are relevant point estimates and squared standard 
errors. To relate this model to that of Section 1, we simply write Oi = B+ qi. 

The first stage of the hierarchical prior models a "similarity" or "ex- 
changeabiIity7' assumption concerning the experiments. Namely, assume that, 
given hyperparameters p and T ~ ,  

The ha1  stage of the modeling requires specification of prior models for p and 
2'. First, I will assume that p and tZ are independent. In a single prior Bayesian 
analysis, whose intent is to provide a test of the null and alternative hypotheses 
suggested in Section 1, a natural specification of the model is then 

~"%<00)+(1-n,)g(~) and r 2 - h ,  

where x, is the prior probability of the null, (8,) denotes a degenerate 
distribution assigning probability one to O,, and the distributions g and k are 
still to be chosen. Rather than specifying g and k ,  only classes of distributions 
for these inputs will be chosen. Before proceeding, note that the models in (1) 
and (2) reduce to 

after integrating out a Let f(Zlp, t2) denote the corresponding probability 
density function. 

2.1. Lower bounds on posterior probabilities. For each g and h, the posterior 
probability of the null hypothesis, denoted by no(2), is given by 

It will be convenient to write a,(3) as 

where 

Note that b-I is typically called the Bayes factor. 
To obtain lower bounds on the posterior probability of the null hypo- 

thesis, we obtain upper bounds on b. To do so first note that 

sup b = sup 1 {SUPG Sf ( z l ~ ~  z2)gb)d~)  h(T2)dz2 

G,H H S f (2 I&, z2) h ( ~ ~ ) d ~ '  
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(Berger and Mortera [7] also make use of this observation.) In the balance of 
this article, we make the conservative assumption that H = (all distributions). 
This leads to a further reduction, based on a result of Sivaganesan and Berger 
([HI, Lemma A.1, p. 887): 

supb = sup S ~ P G  Sf (2 l P, T"dP)dP 

G.H 9 . f ( W o ,  T ~ )  

Let 

Note that for fixed z2 and under the model in (3), fi  is the usual weighted least 
squares estimate of p. Furthermore, the distribution of fi  is N ( p ,  I/), and hence 
t is the test statistic used in testing the null hypothesis. With these definitions, 
simple manipulation yields the representation 

Finally, combining these results, the desired bound on b, denoted by b(G), 
is given by 

(6) b(G) = sup exp{0.5t2} {sup j exp{-0-5(~- f i )~ /V-)g(~jd~) .  
r= G 

The result from (6) is substituted into (4) to yield the final lower bound on the 
posterior probability of the null. 

2.2. Examples. The first step in computing b(G) defined by (6) involves the 
calculation of 

s u ~ j e x ~ { - 0 . 5 t P - P ) ~ / ~ ) g ( ~ ) d ~ .  
G 

We next consider the same four specific choices for G as used in [a]. The 
calculations have been set-up so that their results can be applied directly. The 
presentation is quite brief; the reader may found the relevant discussion in 181, 
pp. 116-118. -. 

Case 1. GA = (All Distributions). The key result for this case is due to 
Edwards et al. [ll]. It is clear that 

results when the prior assigns probability one to p = P.  Hence 

(7) b(GJ = sup exp{0.5t2). 
t2 

Case 2. Gs = {All Symmetric (about 6,) Distributions}. Berger and Sellke 
[8] show that if t < 1, then b(Gs) occurs when the distribution on p assigns 
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probability one to the point 0,. For t > 1, they approximate the optimizer by 
a two-point distribution assigning probabilities of 0.5 to each of the points 
fi  and 28,-p. Combining these results, we find that 

(8) b(Gs) = sup [ll(-,,,,(t), 0.5exp(0.5t~)(1 +exp(-2t2))f(~,,~(t)1, 
~2 

where I,(t) denotes the usual indicator function on a set M. 
Case  3. Gus = {All Unitnodal, Symmetric (about 0,) Distributions). As in 

Case 2, if t $ 1, then b(G& occurs when the distribution on p assigns 
probability one to the point 19,. For t > 1, Berger and SeIIke [8] show that the 
optimizing distribution is uniform on an interval (8, - x ,/f, 0, + r fl). The 
problem is then to find the optimal K. Their analysis shows that the desired 
value of K is the solution to 

where cp and @ denote the density and distribution function, respectively, of an 
N(0,  1) random variable. As a result we have 

Case  4. GNOR = {All Normal Distributions}. The underlying result in this 
case is again due to Edwards et al. [I l l :  

To complete the analyses, we are to perform the indicated optimizations 
with respect to r2 in each of equations (7H10). This step is rather formidable 
since t is a nontrivial function of 2'. Case 3 is particularly tedious since K is the 
solution to a transcendental equation which must be solved for each ?. Hence, 
closed form general solutions will not be sought. However, numerical, and, in 
particular, graphical procedures are conceptually straightforward. The results 
of the next section were obtained in this fashion. Regarding Case 3, a simple 
recursive formula for IC, as given in formula (4.112) of [I], p. 234, was used. 

3. EXAMPLE: ASPIRIN AN13 HEART DISEASE 

To illustrate the lower bound calculations discussed in Section 2, I present 
analyses for an important example used often in [16]. The example involves the 
use of aspirin for heart patients. Quoting from Chapter 1 of [16]: "From 1970 to 
1979 six major multicenter randomized trials of the use of aspirin and placebo 
by patients following a heart attack.. . were conducted in the United States and 
Europe." The following table summarizes results in the notation of Section 2. 
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The sample sizes for the first five studies ranged between 300 and 850 on each 
arm; the sample sizes on each arm of the last study were both over 2200. The 
X values represent the difference (placebo-aspirin) between mortality rates, 
and the a values are the corresponding standard errors. Note that the last, and 
by far, largest study yielded results at odds, with respect to the indicated 
usefulness of aspirin, with the other five studies. I have also included classical 
p-vaIues for each experiment, based on a normal approximation. The row of 
2-sided p-values are based on the alternative hypotheses that 8, # 0, while the 
I-sided p-values are for..the alternatives Oi > 0 raspirin reduces mortal- 
ity rate"); 

TABLE 1. Aspirin experiments data 

Consider combining these experiments to test the null hypothesis that the 
mean difference between placebo and aspirin effects is zero. Setting 8, = 0, all 
numerical inputs to the analyses of Section 2 are specified. 

The numerical analysis of the four cases considered in Section 1 leads to 
the following values of b(G): 

respectively. These results are of some interest themselves. Their inverses 
correspond to the lowest value, for each class considered, of the Bayes factor 
for the null versus alternative hypotheses. To inspect the combined effects of 
the Bayes factors and the prior probabilites, no, of the null, Figure 1 is 
presented. In this figure each of the resulting lower bounds of the posterior 
probabilities of the null are graphed as functions of no for 0 < 7c0 < 0.5. This 
figure summarizes the analysis for the scientists inspection. 

I now turn to a comparison of these results with more classical 
approaches. In [I61 a variety of p-value analyses for this example is reviewed. 
First, the combined p-value approach due to Fisher involves computation of 
the quantity -210g(n:=, pi), where each Pi is the p-value from the i-th 
experiment. Under the null, this quantity has a x2 distribution with 2k degrees 
of freedom. The final overall p-value, denoted by P,, for the aspirin example is 
0.035. By comparison to Figure 1, P ,  seems to greatly exaggerate the evidence 
against the null. Even for the GNOR class, the no would have to be quite small 
(less than 0.08) to match the evidence against H,. (This comparison is based on 
the notion that such comparisons of p-values and posterior probabilities are 

AMIS 

-1.15 
0.90 
0.204 
0.898 

UK-2 

2.56 
1.67 
0.124 
0.062 

Study 

X 
o 
2-sided p-value 
1-sided p-value 

PARIS 

2.31 
1.98 
0.258 
0.129 

CDPA 

2.50 
1.31 
0.056 
0.028 

UK- 2 

2.77 
1.65 
0.044 
0.047 

GAMS 

1.84 
2.34 
0.432 
0.216 
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reasonable.) In this sense, the conclusion is in accord with those of Berger and 
Sellke 181. Also, two natural competitors to Fisher's p-value due to Tippett, 
P, = 1 -(I - ~ ~ ~ ] ) k ,  where PI,] is the smallest of the original k p-values, and 
Pearson, P,  = nF= (I -Pi), lead to 0.29 and 0.25, respectively. These values 
do not seem particularly unreasonable, in the sense of comparison fo Figure 1, 
for this example. 

Lower bounds 

Prior probability 

Fig. 1 

For the aspirin data, it seems quite natural to consider 1-sided, rather than 
2-sided, alternatives. Specifically, we might hope to find evidence that aspirin 
actually is beneficial in reducing mortality rates. This corresponds to an 
alternative hypothesis that p > 0 for our set-up. We can quickly provide 
a comparison for the assumption that G = G,. For this case it is clear that the 
bounds reflected in Figure 1 remain unchanged. The corresponding p-values 
are given in Table 1. These result in P,  = 0.01, P, = 0.157, and P, = 0.06. Note 

I 

that comparison to Figure 1 suggests that both Fisher's and Pearson's rules 
grossly overestimate the evidence against H,. 

4. DISCUSSION 

4.1. Choosing hypotheses in testhg. The most immediate question involves 
my choice of this example in illustrating approaches for testing a precise null. 
In the context of the aspirin example, it may seem natural to consider the 
"broad" null hypothesis H,: p 6 0. I elected a sharp null analysis for two 
reasons. First, lower bound arguments with large classes of priors and normal 
likelihoods tend to be uninteresting in the case of broad nulls [9]. 
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Secondly, I believe that testing a broad null often has little justification in 
practical settings. For the aspirin example, as soon as we start to consider 
negative versus positive effects, we should take more care in the form of 
analysis taken. The losses for various actions (e.g., what happens if we 
recommend aspirin and it turns out to not just be ineffective, but in fact 
harmful) for various actions become paramount. Such concerns raise decision 
theoretic issues. Though Neyman-Pearson testing is a decision theoretic 
approach, my perhaps limited imagination cannot come up with many examples 
in which constant losses 0.n the alternatives are reasonable. In a discussion of 
p-values, Jeffreys ([13], pp. 387-388) wrote "... the total area of the tail 
represents the probability, given the data, that the estimated difference has the 
wrong sign - provided that there is no question whether the difference is 
zero." He continued ". . , These are all problems of pure estimation. But their 
use as significance tests covers a looseness of statement of what question is 
being asked." We should then ask how much "looseness of statement" should 
be tolerated in a given problem. Counterarguments concerning the validity of 
"point nulls" are also often made [9 ] .  However, Jeffreys again wrote "Some 
feeling of discomfort seems to attach itself to the assertion of the special value 
as right, since it may be slightly wrong but not sufficiently to be revealed by 
a test on the data available; but no significance test asserts it as certainly right. 
We are aiming at the best way of progress, not at the unattainable ideal of 
immediate certainty." Berger and Sellke [8], offer results along these lines. 

4.2. The valne of bounds. The analyses presented here are intended to offer 
a low level, and perhaps much needed, replacement for the use of p-values in 
meta-analysis; at the least, they can be used in assessing classical results. In 
defense of this suggestion, it can be argued that results such as those depicted in 
Figure 1 may be interpreted as "objective" summaries of the data. This version 
of objectivity is achieved by displaying the range of Bayesian answers that 
could occur from a wide variety of prior beliefs. But lower bounds cannot 
generally replace the need for consideration of prior information. Their chief 
weakness involves their one-directional interpretation: If, based on a large class 
of priors, the lower bound on the posterior probability of the null is small, we 
cannot generalIy claim to have strong evidence against the null. However, such 
bounds can be used as a supporting tool for Bayesian sensitivity analyses, in 
which results corresponding to a few plausible candidate priors are inspected. 
(A natural, and recommended when feasible, suggestion is to also compute 
upper bounds. For the formulation and the first three large classes considered 
in Section 2, upper bounds unfortunately offer no information. More refined 
classes of priors are required.) Perhaps the most important use of lower bounds 
is the identification of what prior information is crucial in judging the evidence 
available in data. I think many shun Bayesian methods when the prior matters, 
but are willing to use Bayesian approaches if the prior is not relevant. Perhaps 

6 - PAMS 15 
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this view should be questioned. Indeed, von Mises reversed this logic. He 
argued that one must be a Bayesian when the prior matters because the prior 
matters; see [19], pp. 158-159. 

I do not mean to suggest that the sort of anaIysis suggested here should be 
viewed as a replacement for a careful and complete Bayesian and robust 
Bayesian approach. On the other hand and especially in the context of 
meta-analysis, it may well be preferable for scientists to argue and debate over 
a result like that in Figure 1 than expend the same effort interpreting a variety 
of combined p-values. We Bayesians base our philosophy on the belief that 
a full) Bayesian approach to inference is the best and most eficient way to do 
induction based on data. However, optimal information processing may not 
actually be the goal in all scientific investigations. Indeed, this is a possible 
explanation for why Bayesian methods do not dominate practical statistics. 
Many scientists interpret the "scientific method" as requiring external verifica- 
tion of hypotheses, rather than arriving at the "best" answer based on all 
information available. (If this view has a role in science, I would hope that 
engineers, physicians, etc., take a different view when making decisions.) That 
is, a scientist may wish to deliberately avoid use of well-founded judgment in an 
attempt to defend such judgment. Much like a legal court room setting in 
which jurors are often sheltered from relevant information, the scientist may 
want to use the data to bear fair witness on the hypotheses. However, it should 
be emphasized that Bayesian statistics can be used in both "trial" and "optimal 
information processing" modes. (I. J. Good's ideas concerning Bayes/non- 
-Bayes compromise are highly relevant; see 1121.) Bayesian "trial" methods 
include both the notions of "noninformative priors" and ranges of posterior 
results. In doing such analyses, it is important that the evidence-seeking nature 
be remembered. In the same way that many non-Bayesians treat p-values as 
indicators of interest, rather than a basis for decision making, we can provide 
ranges arguments that are suggestive and useful. In the end, however, real 
decisions of real import usually require real Bayesian analyses. 

- -  
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