PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 16, Fasc. 1 (1996), pp. 131–137

ON THE MOMENT THEOREM OF MEERSCHAERT

Maria Kłosowska

Abstract: Let q be a full operator-stable measure on R^N , and B an exponent of q. Write $m=\min\{\operatorname{Rex}\}$ and $M=\max\{\operatorname{Rex}\}$, where x ranges over the eigenvalues of B. Suppose that the distribution of a random vector X belongs to the domain of attraction of $q, m \neq \frac{1}{2}$ and $\Theta \in R^N - \{0\}$. The object of this note is to show that some results of Hudson et al. [2] can be proved in a simpler way (and somewhat extended) by using the method presented in Meerschaert [4]. Namely, we prove that $E|\langle X,\Theta\rangle|^{\alpha}$ is finite for $\alpha\in(0,1/M)$, and infinite for $\alpha>1/m$. Basing ourselves on this, we can easily obtain a moment theorem which is near the result of Meerschaert [5].

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE