ON THE KOLMOGOROV QUASIMARTINGALE PROPERTY

Bernard Heinkel

Abstract: Let (X_k) be a sequence of real-valued random variables (r.v.), which are centered, square integrable and independent. A well-known result, due to Kolmogorov, states that if

$$\sum_{k>1} \frac{E(X_k^2)}{k^2} < +\infty,\tag{i}$$

then (S_n/n) converges almost surely (a.s.) to 0, where $S_n=X_1+\ldots+X_n$.

This paper is devoted to the interpretation of condition (i). For instance, it is shown that if the r.v. X_k are weighted Rademacher r.v., then (i) is equivalent to the fact that $((S_n/n)^2, \mathcal{G}_n)$ is a quasimartingale $(\mathcal{G}_n$ being the natural filtration associated with the sequence (X_n)).

The problem of the interpretation of (i) for Banach space valued r.v. X_k is also studied.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE