TR

PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 16, Fasc. 1 (1996), pp. 143-156

ON SZASZ’S COMPACTNESS THEOREM
AND APPLICATIONS TO GEOMETRIC STABILITY ON GROUPS

BY
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Abstract. Within the rapidly developing theory of random limit
theory for real-valued random variables the concepts of geometric
convolution and geometric stability play a fundamental role. In several
recent investigations it was pointed out that there is a one-to-one

- correspondence between “classical” limit theorems and stability con-
cepts and their geometric counterparts (cf. [2], [3], [5]. [11],

[14]-{16]).

We are going to prove analogous results for randomized
products of random variables taking values in a simply connected
nilpotent Lie group G. This class of groups is natural in this setup
since classical stability concepts were generalized to nilpotent groups
(cf. [6] and [17]).

0. In the following, G is a locally compact second countable topological
group (especially, a simply connected nilpotent Lie group), and Aut(G) is the
group of topological automorphisms of G. Let us put

R,=[0,0), Z,={0,1,2,..}, N={1,2,..}.

M (G) and 41 (R,) are the sets of all Borel probability measures on G and
R, respectively. Convergence of probability measures is always understood as
weak convergence o (#'(G), C°(G)), where C*(G) is the space of bounded
continuous complex-valued functions on G. In this case .4 (G), supplied with
convolution product *, is a topological semigroup with identity ¢,, where e is
the identity in G, and ¢, is the probability measure degenerated at the point
x€G. Let v* denote the n-th convolution power of ve .#*(G), v°:= ¢,. In the
sequel, (¢):>0 usually denotes a continuous convolution semigroup (c.c.s.) in
M1 (G), ie.
Be¥ s = s £, 520, p—e, 0.
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If ve#*(G), (u)>o is a c.cs., and &, ge #'(R.), then

o

vei= Tvmf(dt)= 2 Ve(k, k1)) =
1]

k=0

u,e(dr).

O e, B

The mappings £— v* and gy, are continuous semigroup homomorphisms
from #(Z.,), respectively .#1(R.), into .#*(G) (see [7]). Moreover,

(1) = v(§1’52>’ ¢, E el (Z,).

If ©,: ar—>oac, o, ceR,, and acAut(G), then 7,(¢) and a(v) are the images of
(e M (R,) and ve.#'(G) under 1, and a, respectively.

If X is a random variable with values in G (respectively R, ), we denote by
X (P) the distribution of X.

Let (X ), n, k = 1, be an array of rowwise i.i.d. G-valued random variables
with distributions X, (P) =:v,e #*(G), k > 1. Define X,o:=e, n > 1. Let T,
be an R, -valued random variable (“random time”) independent of (X ,;)x»1
with distribution T, (P) =:¢,€ #*(R,). Then a random product

Tn
Zn:= 1_[ X"k
k=0

has the distribution Z,(P) = v~ :

Let (Y),»0 be a G-valued random process with stationary independent
increments, the distributions of which are a c.c.s. (¢,);» . Let T be an R -valued
random variable (“random time”) independent of (Y),», with distribution
T(P)=:9e.#*(R,). Then U:= Y; has the distribution Y;.(P) = p,. (Cf. [7] for
a survey on limit theorems for randomized products of group-valued random
variables.)

Now we formulate several results which are the essential tools for the
following investigations.

0.1. TuHEOREM (transfer theorem of Gnedenko and Fahim [4]). Let
v,e M (G), k,eZ,, k, » o, and E,e M (R,). Assume that V¥, the distributions
of the deterministic products 2‘:; X ., converge to i, the distributions of Y,
t = 0. Assume further that 1,4, (¢,), the distributions of normalized random times
T,/k,, converge to g, the distribution of T. Then vi, the distributions of the

randomized products H;‘T ~ o Xuo cOnverge to p,, the distribution of Yr. (See [71)

0.2. THEOREM (see Nobel [17]). Let G be aperiodic and strongly root-
-compact (e.g., a simply connected nilpotent Lie group) and let v,, pe.#'(G),
k,eZ., k, 7 o0, n>1. Assume v~ — u. Then there exists a c.c.s. ()0
satisfying p, = u and there exists a subsequence (n') such that

vl = u, for every t>0.
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0.3. COROLLARY. Let v,e #'(G), k,eZ,, k, 7o0, and let (vi"),», be

relatively compact. Assume &,e M (R,) and let (typ,(E))az1 be relatively
compact. Then (Vi"),», is relatively compact.

In Section 1 we prove an inverse result to Theorem 0.1, which is due to
Szasz for real-valued random variables (see [19]), namely that under natural
assumptions the convergence of the distributions of the randomized products
vin -k yields the relative compactness of the normalized random time
distributions 4, (¢,) and the existence of deterministic limits v — u,, ¢ > 0,
at least for a subsequence (n).

The investigations in Sections 2 and 3 are based on Szasz’s theorem and
on the transfer theorem, as well as on the limit behaviour of deterministic
products (see [10], [13], and [17]). In Section 2 the limit behaviour of
geometric convolutions is considered. The limit of normalized geometric
distributions is the exponential distribution E. Hence limit measures of
geometric convolutions take the form

Hg = _[yte"dt.
o

In Section 3 we introduce the notions of geometric stability, semistability
and the domains of attraction (cf. [14] for G = R'). We will see that these
measures have representations x =y as exponential mixtures of stable
(respectively semistable) c.c.s.

Note that we have only weak limit laws in mind, therefore throughout we
consider only the distributions vé, vin, &, p,, 4, instead of the corresponding
random variables or processes.

1. The inverse transfer theorem. For real-valued random variables an
inverse transfer theorem was first proved in [19]. We prove an analogous result
for simply connected nilpotent Lie groups under slightly stronger conditions
on the random times.

1.1. THEOREM. Let G be a simply connected nilpotent Lie group Let
v,eM(G), and & e M (R,). Furthermore assume that

(1) there exist h,eN, h, 7 oo, such that {ty,(£,)}n>1 IS relatively compact
and &, is not an accumulation point;

(2) vir > ke A1 (G)

Then:

(a) {vin},>, is relatively compact;

(b) there exist a c.c.s. (u,, t = 0) in M (G), g #"(R.) and a subsequence
(n') such that

vE'h,,t] g ,U!, t 2 09 Tl/h,. (En) - Q9 ne(an

and hence k = p,.

10 — PAMS 16.1
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The proof is based on several steps which are of independent interest, and
therefore are formulated in a more general setup of locally compact groups.

1.2. DeFINITION. Let K = G be compact, ve.#'(G). The concentration
function of v is defined as

Qx(v):=supv(Kx).

xeG

Note that m+—Qg(v™) is non-increasing. Furthermore, a subset
o < M (G) is relatively shift-compact iff for every ¢ > 0 there exists a compact
K, such that Qg (v) > 1—¢ for every ve.

1.3. PrRoPOSITION. Let v, e #*(G), k, » . Let K be a compact subset of
G and ¢ e M (R,). Then

QK (vgn) < 5;. ([Oa kn)) + QK (Vﬁ") ﬁn ([kns OO))
The inequality follows immediately from the representation

Vi (Kx) = (Y + Y )VE(Kx)E,([k, k+1)).

k<kn k=zk,

1.4. COROLLARY. Let (vi"),», be relatively shift-compact and assume that
o := lim inf &, ([k,, o)) > 0.

Then (Vi"), s is relatively shift-compact.

Proof Assume that

inf Qp (Vi) S 1-fp < 1

for all compact K. Then
liminf Qg (vi") < liminf[1—(1— Q¢ (Vi) &, ((k,, )] < 1—PBo oo

for all K. But this contradicts the relative shift-compactness of (vi"),s,. ®

- 1.5. PrROPOSITION. Assume (1) and (2) of Theorem 1.1 hold true. Then there
exists some cy€(0,1) such that (vi"),», is relatively shift-compact, where
k, = [coh,), and (1) is fulfilled (if h, is replaced by k,, n > 1).

Proof. 1. First we show that there exists ¢,€(0, 1) such that

oo := liminf &, ([cy h,, ) > 0.

Indeed, assume that &,([ch,, o)) =0, ne(n’), as n— oo for all ¢ > 0. Then
T1)hn ﬁn([c, CO)) -0 for all ¢ > 0,

and hence 7., &, - &,. But this contradicts (1).
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2. Put k, = [cyh,]. By Corollary 1.4, (v, is relatively shift-compact.
3. On the other hand,
Tijky En = Tea Tam, Cns  Where ¢, = h,/[cohy] — 1/coe(1, 0).

Hence (7,4, £y)n>1 inherits the properties of (1, &)pz1. ®

In the next step we use for the first time the special structure of G.

1.6. LEMMA. Let G be a simply connected nilpotent Lie group, and N ~ R!
be a central subgroup. Let v,e #*(G), k,eN, k, » co. Assume (1) (where h, is
replaced by k,) and (2) of Theorem 1.1 hold true. Furthermore, assume the

existence of x,€ N such that (Ve x ¢, )5, is relatively compact. Then (vir),s is
relatively compact.

Proof Let ¢: R — N be an (algebraic and topological) isomorphism. For
teR and xe N define tx:= ¢ (t- ¢~ ! (x)). Hence, especially, x,/k,, n > 1, is well
defined.

1. Since N is central, we obtain

vﬁn * ﬁx" = (vn * £':Jlin/kn)k'l =. A’ﬁn
Hence (A"),>, is relatively compact. According to Corollary 0.3, (45", is
relatively compact.

2. Let {X,} be an array of rowwise iid. random variables with
distribution X,,(P) =v,. Let T, be random times independent of the row X,
k > 1, with distributions T, (P) = ¢,. Put

Zyi= T W= T (K ik) = 2, (T ).

Then we have Z,(P)= v and W,(P) = A$", respectively.

3. The group G is topologically isomorphic to a vector space R“
Analogously, since N =R!, G/N~R’!, we obtain a decomposition
G =~ R*"! xR'. For any vector YeRlet Y = (YY) be the corresponding
decomposition with YW eR?™!, Y@ eR!, Hence, if we apply this decom-
position to Z, and W,, we obtain

ZO = WO, WO = (T/k)x,
(Here we identify x,e N with the ¢~! picture in R')
4, The sets of distributions of Z& and W2 are relatively compact. Then

(x)s=1 is also relatively compact since g, is not a limit point of
{(T./k)(P) = T4, (&)} Therefore (vir = Aﬁ"*sxn- 1),>1 18 relatively compact. =

1.7. CorOLLARY (cf. [19]). Let G = R. Then conditions (1) and (2) of
Theorem 1.1 imply that (v*"),», is relatively compact.

In [19] this result is proved with (1) replaced by the condition
(1'y T, = oo stochastically.
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Proof of Theorem 1.1. (a) Assume (1) for some sequence {h,} and (2)
hold true. Choose k,:= [ch,] for some ¢ > 0 according to Proposition 1.5.
Hence especially (1) holds for k,, and (v&"),», is relatively shift-compact.

1. We have to prove that (v),, is relatively compact. We prove this by
induction on the dimension d = dim(G).

For d =1, G ~ R, see Corollary 1.7. Assume the assertion holds for
dim (G) € d. Let dim(G) =d+1. The group G, being nilpotent and simply
connected, has a central subgroup N ~ R!. Let n: G — G/N be the canonical
projection, Since n(v,), £,, and k, fulfil the assumption of the induction
hypothesis, (7 (v,)"), 1 is relatively compact in .#" (G/N). On the other hand,
(V*),»1 is relatively shift-compact. Hence there exist x,e N such that
(Vi % g, )an 4 18 relatively compact. Now Lemma 1.6 is applied and yields the
relative compactness of (vin),s ;.

2. Now we have to prove that {vi"},., is relatively compact.

This is obvious, since vi» =+l where c,eR,, 0<c,=hJk,
< [1/c]+1. Hence (a) is proved.

(b) follows from the transfer theorem 0.1. Indeed, for any subsequence (n’)
there exist another subsequence (1”) and a c.cs. (g, t = 0) such that

ylfnt] e £ 0, and 744, (E) w0

(See Theorem 0.2 and (1).) According to the transfer theorem we obtain x = p,.
The theorem is proved. m

1.8. Remarks. (a) Obviously, if P(T, =0)— 0, then (1) implies (1').

(b) Assume conditions (1) and (2) with x = ¢, x€ G, are satisfied. Then
there exists some sequence k, » oo such that vi~—>e, and (typ, (E))esy is
relatively compact (cf. [19]).

To see this, let K, be compact, K, | {x}, ¢, |0, without loss of generality
¢? < 1/2, and choose a sequence N+—>ny,(N)eN such that

ene1 SV (CK,) <ey, no(N)<n<ny(N+1).
(Note that n,(N)To.) Let

m,:=min{keZ  : £ ([k, ©0)) < 1— \/g}
be the (1—\/5 )-quantile. We have
ey 2 (CK) = Y E(CK,)E,([k, k+1)).

kZm,

Hence there exist k, = m,, ny(N) < n <ny(N+1), such that

W (CK,) < ey
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Then v¥» — ¢, as n— oo. On the other hand,

T1/k,.f ([0, 1)) = Tum,, ([0, 1) =1- \/’_’1

and hence {714,¢&,} is relatively compact.

(c) For G = R! it is sufficient to assume that (1') holds if k # ¢, (see [19]).
Then (1) is satisfied. This holds true for nilpotent groups if we assume that x is
a full measure.

Indeed, if x is full (see [9]), then there exists a projection n: G — R with
n(x) # &, Hence Szasz’s proof for G = R is applicable.

(d) Assume (1) and (2) with x # e, are satisfied. Assume moreover that
(VeY,»1 and (typ,(E,))as1- are relatively compact. Then (1) holds true.

To see this let for some subsequence (n’)
kn
ylnt] 7 Mo £ 0, and 1,4.¢, w7 @

Then, again by the transfer theorem, we have x = y, # ¢, by assumption.
Hence we have proved that g # g, for any accumulation point of (T, &,).

2. Geometric convolutions. Following the development for real-valued
random variables (cf. [2], [3], [5], [14], and [15]) we assume now that the
random times 7, have geometric distributions. We start with definitions and
more or less well-known arithmetic properties of geometric and exponential
distributions, which can easily be checked using generating functions.

2.1. DeFINITIONS. Let 0 <p <1, g:= 1—p, a > 0. Define the geometric
distributions as

Ep):=p Y. 4 e n):=pY qde.
k=1 k=0
Furthermore we define the Poisson distribution

k
n—Ze —ak,
k=0

and the exponential distribution E = E, with parameter 1.

2.2. LEMMA. (a) &(p) = &, #1(p), pe(0, 1).

(b) E(p )™ = E(pypy), Py, P2€(0, 1)
(© n(p)*®? = y(p), where p, p,, p,€(0, 1) are related by

p=p.p.f(1—(1-p)p) or py=p/p+p,(1—-p)

(d) 7, (E)*™ = E, pe(0, 1).

(e) (n,) =n(p), >0, pe(0, 1), p=1/(1+a) or o =g/p.

2.3. COROLLARY. Let G be a locally compact group, ve #*(G). Then
(a) P — y ‘,n(p) = 1P 4 v;
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(b) v = A = | A,e”"dt, where

A, = exp (t%(v —-se)>,

ie. generalized geometric distributions v'"P are representable as exponential
mixtures of compound Poisson distributions, and conversely:
(©) let A, = exp(ta(v—eg,)), t = 0, « > 0; then Ay = v"'?, where p = 1/(1+a).

2.4. LemMA. (a) 7,(¢(p) = E as p—0.
{b) 1,(n(p) > E as p—0.
(c) Therefore, for any sequence p,|0, k,eZ ., k,t o0, with k,p,— 1 as
n— o, and &, 1= &(p,) (respectively, £, : = n(p,)), condition (1) from Theorem 1.1
is fulfilled.

2.5. LeMMA. Let G be a locally compact group, (u,, t = 0) and (4,, t = 0) be
c.cs. in M (G). Assume pp = Ap. Then p,= 4, t = 0. :

Proof. For ce . #'(G)let T,: f > o *f be the convolution operator on the
Banach space C,(G). Then (7,,t>0) and (T, t > 0) are C,-contraction
semigroups, the resolvents of which coincide:

To=|T,e'dt=[T,e ' dt=T,,.
0 °

Let M and L be the generators of (7,,) and (7). Then equality of resolvents
(M—I)"'=(L-I)"" implies M = L, and therefore T,, =T, t > 0. m

2.6. PROPOSITION. Let G be a simply connected nilpotent Lie group. Let
Vo KEM(G), p,l0. Then (i) vi® — x iff (i) vI®? — , and in this case v, > ¢,
(infinitesimality).

Proof. Choose k,foo such that k,p,— 1. Then according to Lem-
ma 2.4 (c) and Theorem 1.1 each of the conditions (i) and (ii) implies that (vi»)
- is relatively compact. Hence infinitesimality follows from Proposition 1
of [17]. Now Corollary 2.3 (a) shows the equivalence of (i) and (ii). =

We give by analogy with the case of real-valued random variables (cf.
[14]) the following

2.7. DEFINITION. k€ .#1(G) is called geometrically infinitely divisible if for
any pe(0, 1) there exists x,e.#'(G) such that (x)*” =«. (See [14] for
G = RL)

The “compound geometric” distributions v*? play the role of compound
Poisson distributions within the class of infinitely divisible distributions.

2.8. PROPOSITION. Let ve #*(G), pe(0, 1). Then x:=v"P is geometrically
infinitely divisible.

The proposition follows immediately from Lemma 2.2 (c). Indeed, let
p,€(0, 1), py = p/(p+p,(1—p)), and put x,,:= v, Then (x,,)""> = k.
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More generally, we have

2.9. PROPOSITION. Let (A);0 be a c.cs. in #"(G). Then the exponential
mixture k.= Ag is geometrically infinitely divisible.

Indeed, applying Lemma 2.2 (d) we have (t (E))é(p ) = E. Hence for

p

o
Kp:= A(Tp(E)) = I A.t/pe_tdt
0

we obtain
kP = Ap = k.

The following theorem will enable us to describe completely the structure
of geometrically infinitely divisible laws on simply connected nilpotent Lie
groups.

2.10. Turorem. Let p, |0, k,eZ ., k,} oo, and k,p, — 1. Let v,, k€ 4" (G).
Then the following assertions are equivalent:
(i) vﬁ(l’n) > K;
(i) vIe - k;
(iii) v >, t =0, a c.cs., and K = py.

Proof For (i)<-(ii) see Proposition 2.6; (iii) = (i) follows from Theo-
rem 0.1 and Lemma 2.4 (a). To prove (ii) = (iii) we consider the representation

Vi®) = {exp(tB,) e " dt,
0

where B, is the Poisson generator B, :=q,p, ' (v,—¢,) (cf. Corollary 2.3 (b)).
Let A, be the Poisson generator A,:=k,(v,—¢,). By the choice of k,,
obviously, exp(tB,) = u,, t = 0, iff exp(tA4,) - p,, t = 0 (where () is a c.cs.).
Furthermore, we have v — u_ t > 0, iff exp(t4,) > u,, t = 0 (cf, e.g., [17],
Remark 2; [12], Section IX, § 2; see also [18]).

Now we apply Theorem 1.1 to (vI®"),,,. Note that 7., (n(p,)— E
implies (1). Hence (v¥"),», is relatively compact. Let (n') be any subsequence
of N. There exist a subsequence (1) < (') and a c.cs. (y,, ¢t = 0).such that

[knt]

Vn (,,_u)).u'ta t2 09

and x = ;. Therefore, by the considerations above, we obtain the convergence
of the resolvents of convolution semigroups

oc o0
Vi = gexp(tB,,)e“dt a7 (j) e tdt =x.
Moreover, according to Lemma 2.5, (1,) is uniquely determined. Hence we have

{exp(tB,)e " dt -2 §metdr.
0 0
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But the convergence of resolvents is equivalent to the convergence of
convolution semigroups (see [12], [1], [8]). Hence we obtain

exp(tB) -y, t=0.

The theorem is proved. =

2.11. Remark. The assertions (i}~(iii) of Theorem 2.10 are further
. equivalent to

(iv) vi» — x, where &, e 41 (R,) fulfil the “geometric law of large numbers”
Tp, (&n) = E (equivalently, 7y, () — E).

Indeed, (iii)=(iv) follows from Theorem O0.1. Assume (iv) holds. By
Theorem 1.1, (vi"),»; is relatively compact. Hence, for any T> 0, {vin
0 <t < T, n > 1} is uniformly tight. The assertion follows since Ty, (11 (p.) — &)
—0, n— oo.

Now we are ready to characterize completely the set of geomet-
rically infinitely divisible distributions on simply connected nilpotent Lie
groups.

2.12. TueoREM. The following assertions are equivalent for xe .#*(G):
(i) k is geometrically infinitely divisible,

(ii) there exist sequences p,l0, v,e #*(G) such that Vi = x;

(iii) there exist sequences p,|0, v, #*(G) such that vi?” — ;

(iv) there exist sequences p,|0, v,e.#*(G) such that vi® - x;

(v) there exists a c.c.s (U)>0 in M*(G) such that x = g

Obviously, (i) =>(ii) = (iii). The equivalence (iii) <> (iv) holds according to
Proposition 2.6. (iv) = (v) by Theorem 2.10, and (v)=(i) by Proposition 2.9.

2.13. CorOLLARY. The set 4:= {ke.#*(G): k is geometrically infinitely
divisible} is closed in #'(G).

The corollary follows immediately from the equivalence (i)<>(v) in 2.12
and from the closedness of the set of exponential mixtures of c.c.s.

3. Geometrically stable and semistable measures. In this section we apply
the previous considerations in order to obtain a complete description of
geometrically (semi-) stable distributions. These concepts were introduced for
real-valued random variables in [14].

Note that the underlying groups are in general non-Abelian, therefore
throughout our concepts are generalizations of strict (semi-) stability.

3.1. DeFINITION. K €.#" (G) is called geometrically ((a, p)-) semistable if for
some aeAut(G), pe(0, 1), the relation

a(;c‘f(")) =x

holds.
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x is geometrically stable if for any pe(0, 1) there exists a, € Aut(G) such that
ap (Ké(p)) =K

holds.

If T=(b,, t > 0) = Aut(G) is a continuous one-parameter group, we call
x geometrically T-stable if we can choose a,e T, pe(0, 1).

Stability concepts in the usual sense (cf. [17]) are closely related to
domains of attraction. Hence we have

3.2. DEFINITION. Let v, ke .#* (G). v belongs to the geometric domain of

partial attraction of the measure x if there exist p,€(0, 1), p, 10, a,€ Aut(G) such
that

a, (V) > k.

v is in the domain of geometric p-semistable attraction of k, denoted by
veDGSSA (k, p), if v is in the geometric domain of partial attraction and
Pn+1/P,. —’PE(O, 1]

v is in the domain of geometric stable attraction of x, denoted by
ve D DGSA (x), if there exist a,eAut(G), pe(0, 1), such that

a,(V¥™) >k, p-0.

(Obviously, DGSA (k) = () 0<p<1 DGSSA(x, p).)

Recall that a c.c.s. (u,) is called (a, c)-semistable for ae Aut(G), c€(0, 1), if
a(u) =y, t=0. Let T=(a,);»o be a continuous one-parameter group of
automorphisms of G. Then (u,) is called T-stable if a,(u) = phs, t >0, s = 0.

We say that v belongs to the domain of partial attraction of (u,) if

(A) there exist sequences a,e Aut(G), k,eZ ., k, 7 oo, such that g, v~
-, t=0.

v belongs to the domain of semistable attraction of (u,) if (A) is satisfied with
k,/k,+,—c€(0, 1].

v belongs to the domain of stable attraction of (u,) if (A) is satisfied with
k,/k,+1— 1. (Cf. [17] and [6].)

3.3. PROPOSITION. Let v, k€ M (G), (11,);> o be a c.c.s. Furthermore, let p, |0,
k,eZ,, k,p,— 1, a,€Aut(G).

(a) Assume that v belongs to the domain of partial attraction of (u,), i.e.
a, (v " — p,, t > 0. Then v belongs to the geometric domain of partial attraction

of K:= uyg, precisely
a, (vVie) > .
(b) Conversely, let v belong to the geometric domain of partial attraction of

x, i.e. a,(v"®) > k. Then there exists a c.c.s. () such that a,(*N - p, .t >0,
and K = pug.

The proposition is a reformulation of Theorem 2.10 with v,:= a,(v).
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3.4. CorROLLARY. Let x be geometrically (a, p)-semistable (respectively,
geometrically stable with respect to T= (a,) < Aut (G)). Then there exists an
(a, p)-semistable (respectively, a T-stable) c.c.s. with k = yg.

Proof. The existence of (g, = lim,a"(k? ™)), , follows from Proposi-
tion 3.3 since by assumption a(k*?) = k. Hence a" (x*"") = «. It is easily seen
then that a(g,) = u,, t = 0. The proof for the stable case is analogous. =

3.5. CorROLLARY. Conversely, let the c.cs. (g,)»0 be (a, p)-semistable
(respectively, T-stable). Then py = x is geometrically (a, p)-semistable (respec-
tively, T-stable).

Proof. We use Lemma 2.2 (d): 7,(E)*P = E. Let A:=a"' () = pyp,
t 2 0. Then

(”LE)ﬂp) = (#:,,(E))é(p) = U m)ie = Ug = K.

The proof for the stable case is analogous. m

3.6. COROLLARY. v belongs to the geometric domain of semistable (respec-
tively, stable) attraction of x € M (G) iff there exists a c.c.s. ()y> o With k = ug
such that v belongs to the domain of semistable (respectively, stable) attraction of

(e o-

Note that, in Corollary 3.6, (1,),>0 need not be semistable (respectively,
stable). To prove sharper results we need by analogy with the classical situation
the notion of full measures in order to obtain the convergence-of-types-
-theorem. Recall that a probability measure 1€ .#*(G) is called full if it is not
concentrated on a proper closed connected normal subgroup of G (cf. [9] and
[17]). Obviously, an exponential mixture k = yu is full iff g, is full, ¢t > 0. Hence
we obtain

3.7. PrOPOSITION. Let x be full. Then v belongs to the domain of geometric
semistable (respectively, stable) attraction of x iff there exists a semistable
(respectively, stable) c.c.s. (i), > o With k = ug, and v is in the domain of semistable
(respectively, stable) attraction of (u);>o0- N

" Indeed, according to Corollary 3.6 we have to show that for full x the
convolution semigroup (i), in 3.6 is semistable (respectively, stable). But
()30 is full and the domain of (semi-) stable attraction is nonempty. The
assertion follows from Corollary 4 in [17].

As an immediate consequence we obtain

3.8. COROLLARY. Let x be geometrically semistable (respectively, stable).
Then the domain of geometric semistable (respectively, stable) attraction is
nonempty. Conversely, let x be full and assume the domain of geometric semistable
(respectively, stable) attraction is nonempty. Then x is geometrically semistable
(respectively, stable).
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Proof. The first assertion is obvious, since we have a"(x*?") =, n > 1,
and hence x e DGSSA (k, p) (respectively, xk e DGSA (x)). Conversely, let x be
full and ve DGSSA (x, p). Then, according to Propositions 3.3 and 3.7 there
exists a semistable c.c.s. (4,);» o With k = ;. Hence Corollary 3.5 yields that « is
geometrically semistable (respectively, stable). m

In the group case we have to distinguish between domains of attraction of
convolution semigroups (“functional attraction” [10]), i.e., a, (V) > pu,, t = 0,
and domains of attraction of a single measure, ie., a,(v*") > u. For full
measures we can improve Proposition 3.7 in the following way:

3.9. PROPOSITION. Let p be a full measure in M (G). Let v belong to the
domain of semistable attraction of u, ie. for a,eAut(G), k,eN, k, 7 o,
k,/kn+1 — ce(0, 1], we have a,(v*")— pu. Let p,e(0, 1), k,p,— 1. Then there
exist b,el(u):= {aeAut(G): a(u)=u} such that b,a,(v**) -« and x is
geometrically semistable, i.e. v belongs to the domain of geometrically semistable
attraction of .

Furthermore, if c = 1, then p is stable and in this case we can choose b, = id,
nzl.

Proof. u is embeddable into a semistable c.c.s. (1), such that p;, = pu
and b, a, (W) — p,, t > 0 ([10], Theorem 4.2). Therefore, b, a, (v**”) > k = g
and the assertion follows from Proposition 3.7. If ¢ = 1, u is stable, and then
(i)i= 0 is uniquely determined by u, = p ([17], Proposition 6). Hence we can
choose b, =id in this case ([10], Corollary 4.2). =

Semistable (respectively, stable) c.c.s. (&,);> o on nilpotent simply connected
Lie groups correspond in a one-to-one way to operator semistable (respec-
tively, operator stable) c.c.s. (7,);>0 on the tangent space & (see [10]). Now we
are ready to show that this holds true for geometric (semi-) stability.

Let ¥ ~ R? be the Lie algebra of G. We use the notations introduced in
[10] to denote the correspondence between c.c.s. (4);>0 On G and (J,);»0 on
% via-the generating distributions.

3.10. PROPOSITION. Let k € #* (G) be geometrically semistable (respectively,
stable). Then k = pg, where (1,),;» ¢ is a semistable (respectively, stable) c.c.s. Let
(7) be the corresponding operator semistable (respectively, stable) c.c.s. on the
vector space 9 and define 6:= y;. Then 6 is geometrically semistable (respec-
tively, stable) on the vector space 9. Conversely, to any geometrically semistable
(respectively, stable) 6 on % the corresponding geometrically semistable (respec-
tively, stable) x on G is uniquely determined.

The assertion follows easily from Theorems 0.1 and 2.10 (see also [7]).

Note added in proof. The investigations in geometric divisibility and
semistability are continued by the first-named author in: On geometric
convolutions of distributions of group-valued random variables, in: Probability
Measures on Groups and Related Structures. XI (Proc. Oberwolfach 1994),
World Scientific, 1995, pp. 167-181.
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