ON SZASZ'S COMPACTNESS THEOREM AND APPLICATIONS TO GEOMETRIC STABILITY ON GROUPS

RV

W. HAZOD (DORTMUND) AND YU. S. KHOKHLOV* (Moscow)

Abstract. Within the rapidly developing theory of random limit theory for real-valued random variables the concepts of geometric convolution and geometric stability play a fundamental role. In several recent investigations it was pointed out that there is a one-to-one correspondence between "classical" limit theorems and stability concepts and their geometric counterparts (cf. [2], [3], [5], [11], [14]-[16]).

We are going to prove analogous results for randomized products of random variables taking values in a simply connected nilpotent Lie group G. This class of groups is natural in this setup since classical stability concepts were generalized to nilpotent groups (cf. [6] and [17]).

0. In the following, G is a locally compact second countable topological group (especially, a simply connected nilpotent Lie group), and Aut(G) is the group of topological automorphisms of G. Let us put

$$\mathbf{R}_{+} = [0, \infty), \quad \mathbf{Z}_{+} = \{0, 1, 2, ...\}, \quad \mathbf{N} = \{1, 2, ...\}.$$

 $\mathcal{M}^1(G)$ and $\mathcal{M}^1(R_+)$ are the sets of all Borel probability measures on G and R_+ , respectively. Convergence of probability measures is always understood as weak convergence $\sigma(\mathcal{M}^1(G), C^b(G))$, where $C^b(G)$ is the space of bounded continuous complex-valued functions on G. In this case $\mathcal{M}^1(G)$, supplied with convolution product *, is a topological semigroup with identity ε_e , where e is the identity in G, and ε_x is the probability measure degenerated at the point $x \in G$. Let v^n denote the n-th convolution power of $v \in \mathcal{M}^1(G)$, $v^0 := \varepsilon_e$. In the sequel, $(\mu_t)_{t \geq 0}$ usually denotes a continuous convolution semigroup (c.c.s.) in $\mathcal{M}^1(G)$, i.e.

$$\mu_t * \mu_s = \mu_{t+s}, \ t, \, s \geqslant 0; \qquad \mu_t \rightarrow \varepsilon_e, \, t \rightarrow 0.$$

^{*} The second-named author was supported by a DFG research fellowship during his visit at the University of Dortmund.

If $v \in \mathcal{M}^1(G)$, $(\mu_t)_{t \ge 0}$ is a c.c.s., and ξ , $\varrho \in \mathcal{M}^1(\mathbf{R}_+)$, then

$$v^{\xi} := \int_{0}^{\infty} v^{[t]} \, \xi \, (dt) = \sum_{k=0}^{\infty} v^{k} \, \xi \big([k, \, k+1) \big), \qquad \mu_{\varrho} := \int_{0}^{\infty} \mu_{t} \, \varrho \, (dt).$$

The mappings $\xi \mapsto v^{\xi}$ and $\varrho \mapsto \mu_{\varrho}$ are continuous semigroup homomorphisms from $\mathcal{M}^{1}(\mathbf{Z}_{+})$, respectively $\mathcal{M}^{1}(\mathbf{R}_{+})$, into $\mathcal{M}^{1}(G)$ (see [7]). Moreover,

$$(v^{\xi_1})^{\xi_2} = v^{(\xi_1^{\xi_2})}, \quad \xi_1, \, \xi_2 \in \mathcal{M}^1(Z_+).$$

If $\tau_c: \alpha \mapsto \alpha c$, $\alpha, c \in \mathbb{R}_+$, and $a \in \operatorname{Aut}(G)$, then $\tau_c(\xi)$ and $a(\nu)$ are the images of $\xi \in \mathcal{M}^1(\mathbb{R}_+)$ and $\nu \in \mathcal{M}^1(G)$ under τ_c and a, respectively.

If X is a random variable with values in G (respectively R_+), we denote by X(P) the distribution of X.

Let (X_{nk}) , $n, k \ge 1$, be an array of rowwise i.i.d. G-valued random variables with distributions $X_{nk}(P) =: v_n \in \mathcal{M}^1(G), k \ge 1$. Define $X_{n0} := e, n \ge 1$. Let T_n be an R_+ -valued random variable ("random time") independent of $(X_{nk})_{k \ge 1}$ with distribution $T_n(P) =: \xi_n \in \mathcal{M}^1(R_+)$. Then a random product

$$Z_n := \prod_{k=0}^{T_n} X_{nk}$$

has the distribution $Z_n(P) = v_n^{\xi_n}$.

Let $(Y_t)_{t\geq 0}$ be a G-valued random process with stationary independent increments, the distributions of which are a c.c.s. $(\mu_t)_{t\geq 0}$. Let T be an R_+ -valued random variable ("random time") independent of $(Y_t)_{t\geq 0}$ with distribution $T(P) = : \varrho \in \mathcal{M}^1(R_+)$. Then $U := Y_T$ has the distribution $Y_T(P) = \mu_\varrho$. (Cf. [7] for a survey on limit theorems for randomized products of group-valued random variables.)

Now we formulate several results which are the essential tools for the following investigations.

- **0.1.** THEOREM (transfer theorem of Gnedenko and Fahim [4]). Let $v_n \in \mathcal{M}^1(G)$, $k_n \in \mathbb{Z}_+$, $k_n \nearrow \infty$, and $\xi_n \in \mathcal{M}^1(\mathbb{R}_+)$. Assume that $v_n^{[k_n t]}$, the distributions of the deterministic products $\prod_{k=0}^{[k_n t]} X_{nk}$, converge to μ_t , the distributions of Y_t , $t \ge 0$. Assume further that $\tau_{1/k_n}(\xi_n)$, the distributions of normalized random times T_n/k_n , converge to ϱ , the distribution of T. Then $v_n^{\xi_n}$, the distributions of the randomized products $\prod_{k=0}^{T_n} X_{nk}$, converge to μ_ϱ , the distribution of Y_T . (See [7].)
- **0.2.** THEOREM (see Nobel [17]). Let G be aperiodic and strongly root-compact (e.g., a simply connected nilpotent Lie group) and let v_n , $\mu \in \mathcal{M}^1(G)$, $k_n \in \mathbb{Z}_+$, $k_n \nearrow \infty$, $n \geqslant 1$. Assume $v_n^{k_n} \to \mu$. Then there exists a c.c.s. $(\mu_i)_{t\geqslant 0}$ satisfying $\mu_1 = \mu$ and there exists a subsequence (n') such that

$$v_n^{[k_n t]} \xrightarrow[(n')]{} \mu_t \quad \text{for every } t \geqslant 0.$$

0.3. COROLLARY. Let $v_n \in \mathcal{M}^1(G)$, $k_n \in \mathbb{Z}_+$, $k_n \nearrow \infty$, and let $(v_n^{k_n})_{n \ge 1}$ be relatively compact. Assume $\xi_n \in \mathcal{M}^1(\mathbb{R}_+)$ and let $(\tau_{1/k_n}(\xi_n))_{n \ge 1}$ be relatively compact. Then $(v_n^{\xi_n})_{n \ge 1}$ is relatively compact.

In Section 1 we prove an inverse result to Theorem 0.1, which is due to Szasz for real-valued random variables (see [19]), namely that under natural assumptions the convergence of the distributions of the randomized products $v_n^{\xi_n} \to \kappa$ yields the relative compactness of the normalized random time distributions $\tau_{1/k_n}(\xi_n)$ and the existence of deterministic limits $v_n^{[k_n t]} \to \mu_t$, $t \ge 0$, at least for a subsequence (n').

The investigations in Sections 2 and 3 are based on Szasz's theorem and on the transfer theorem, as well as on the limit behaviour of deterministic products (see [10], [13], and [17]). In Section 2 the limit behaviour of geometric convolutions is considered. The limit of normalized geometric distributions is the exponential distribution E. Hence limit measures of geometric convolutions take the form

$$\mu_E = \int_0^\infty \mu_t e^{-t} dt.$$

In Section 3 we introduce the notions of geometric stability, semistability and the domains of attraction (cf. [14] for $G = \mathbb{R}^1$). We will see that these measures have representations $\kappa = \mu_E$ as exponential mixtures of stable (respectively semistable) c.c.s.

Note that we have only weak limit laws in mind, therefore throughout we consider only the distributions $v_n^{k_n}$, $v_n^{\xi_n}$, ξ_n , μ_t , μ_ϱ instead of the corresponding random variables or processes.

- 1. The inverse transfer theorem. For real-valued random variables an inverse transfer theorem was first proved in [19]. We prove an analogous result for simply connected nilpotent Lie groups under slightly stronger conditions on the random times.
- 1.1. THEOREM. Let G be a simply connected nilpotent Lie group. Let $v_n \in \mathcal{M}^1(G)$, and $\xi_n \in \mathcal{M}^1(\mathbf{R}_+)$. Furthermore assume that
- (1) there exist $h_n \in \mathbb{N}$, $h_n \nearrow \infty$, such that $\{\tau_{1/h_n}(\zeta_n)\}_{n \ge 1}$ is relatively compact and ε_0 is not an accumulation point;
 - (2) $v_n^{\xi_n} \to \kappa \in \mathcal{M}^1(G)$.

Then:

- (a) $\{v_n^h\}_{n\geq 1}$ is relatively compact;
- (b) there exist a c.c.s. $(\mu_t, t \ge 0)$ in $\mathcal{M}^1(G)$, $\varrho \in \mathcal{M}^1(\mathbf{R}_+)$ and a subsequence (n') such that

$$v_n^{[h_n t]} \to \mu_t, \ t \geqslant 0, \quad \tau_{1/h_n}(\xi_n) \to \varrho, \ n \in (n'),$$

and hence $\kappa = \mu_{o}$.

The proof is based on several steps which are of independent interest, and therefore are formulated in a more general setup of locally compact groups.

1.2. DEFINITION. Let $K \subseteq G$ be compact, $v \in \mathcal{M}^1(G)$. The concentration function of v is defined as

$$Q_K(v) := \sup_{x \in G} v(Kx).$$

Note that $m\mapsto Q_K(v^m)$ is non-increasing. Furthermore, a subset $\mathscr{A}\subseteq \mathscr{M}^1(G)$ is relatively shift-compact iff for every $\varepsilon>0$ there exists a compact K_ε such that $Q_{K_\varepsilon}(v)>1-\varepsilon$ for every $v\in\mathscr{A}$.

1.3. PROPOSITION. Let $v_n \in \mathcal{M}^1(G)$, $k_n \nearrow \infty$. Let K be a compact subset of G and $\xi_n \in \mathcal{M}^1(\mathbf{R}_+)$. Then

$$Q_K(v_n^{\xi_n}) \leqslant \xi_n([0, k_n]) + Q_K(v_n^{k_n}) \, \xi_n([k_n, \infty]).$$

The inequality follows immediately from the representation

$$v_n^{\xi_n}(Kx) = \left(\sum_{k < k_n} + \sum_{k \ge k_n} \right) v_n^k(Kx) \, \xi_n([k, k+1)).$$

1.4. COROLLARY. Let $(v_n^{\xi_n})_{n\geq 1}$ be relatively shift-compact and assume that $\alpha_0 := \lim_n \inf \xi_n([k_n, \infty)) > 0.$

Then $(v_n^{k_n})_{n\geq 1}$ is relatively shift-compact.

Proof. Assume that

$$\inf_{n} Q_K(v_n^{k_n}) \leqslant 1 - \beta_0 < 1$$

for all compact K. Then

$$\lim\inf Q_K(v_n^{\xi_n})\leqslant \lim\inf \left[1-\left(1-Q_K(v_n^{k_n})\right)\xi_n\left([k_n,\,\infty)\right)\right]\leqslant 1-\beta_0\cdot\alpha_0$$

for all K. But this contradicts the relative shift-compactness of $(v_n^{\xi_n})_{n\geq 1}$.

1.5. PROPOSITION. Assume (1) and (2) of Theorem 1.1 hold true. Then there exists some $c_0 \in (0, 1)$ such that $(v_n^{k_n})_{n \ge 1}$ is relatively shift-compact, where $k_n = [c_0 h_n]$, and (1) is fulfilled (if h_n is replaced by k_n , $n \ge 1$).

Proof. 1. First we show that there exists $c_0 \in (0, 1)$ such that

$$\alpha_0 := \liminf \xi_n ([c_0 h_n, \infty)) > 0.$$

Indeed, assume that $\xi_n([ch_n, \infty)) \to 0$, $n \in (n')$, as $n \to \infty$ for all c > 0. Then

$$\tau_{1/h_n} \xi_n([c, \infty)) \to 0$$
 for all $c > 0$,

and hence $\tau_{1/h_n} \xi_n \to \varepsilon_0$. But this contradicts (1).

- 2. Put $k_n = [c_0 h_n]$. By Corollary 1.4, $(v_n^{k_n})_{n \ge 1}$ is relatively shift-compact.
- 3. On the other hand,

$$\tau_{1/k_n} \xi_n = \tau_{c_n} \tau_{1/k_n} \xi_n$$
, where $c_n = h_n/[c_0 h_n] \to 1/c_0 \in (1, \infty)$.

Hence $(\tau_{1/k_n}\xi_n)_{n\geq 1}$ inherits the properties of $(\tau_{1/k_n}\xi_n)_{n\geq 1}$.

In the next step we use for the first time the special structure of G.

1.6. LEMMA. Let G be a simply connected nilpotent Lie group, and $N \approx \mathbb{R}^1$ be a central subgroup. Let $v_n \in \mathcal{M}^1(G)$, $k_n \in \mathbb{N}$, $k_n \nearrow \infty$. Assume (1) (where h_n is replaced by k_n) and (2) of Theorem 1.1 hold true. Furthermore, assume the existence of $x_n \in \mathbb{N}$ such that $(v_n^{k_n} * \varepsilon_{x_n})_{n \ge 1}$ is relatively compact. Then $(v_n^{k_n})_{n \ge 1}$ is relatively compact.

Proof. Let $\phi: \mathbf{R} \to N$ be an (algebraic and topological) isomorphism. For $t \in \mathbf{R}$ and $x \in N$ define $tx := \phi(t \cdot \phi^{-1}(x))$. Hence, especially, x_n/k_n , $n \ge 1$, is well defined.

1. Since N is central, we obtain

$$v_n^{k_n} * \varepsilon_{x_n} = (v_n * \varepsilon_{x_n/k_n})^{k_n} =: \lambda_n^{k_n}.$$

Hence $(\lambda_n^{k_n})_{n\geq 1}$ is relatively compact. According to Corollary 0.3, $(\lambda_n^{\xi_n})_{n\geq 1}$ is relatively compact.

2. Let $\{X_{nk}\}$ be an array of rowwise i.i.d. random variables with distribution $X_{nk}(P) = v_n$. Let T_n be random times independent of the row X_{nk} , $k \ge 1$, with distributions $T_n(P) = \xi_n$. Put

$$Z_n := \prod_{0}^{T_n} X_{nk}, \qquad W_n := \prod_{0}^{T_n} \left(X_{nk} \cdot (x_n/k_n) \right) = Z_n \cdot \left((T_n/k_n) x_n \right).$$

Then we have $Z_n(P) = v_n^{\xi_n}$ and $W_n(P) = \lambda_n^{\xi_n}$, respectively.

3. The group G is topologically isomorphic to a vector space \mathbb{R}^d . Analogously, since $N \cong \mathbb{R}^1$, $G/N \cong \mathbb{R}^{d-1}$, we obtain a decomposition $G \cong \mathbb{R}^{d-1} \times \mathbb{R}^1$. For any vector $Y \in \mathbb{R}^d$ let $Y = (Y^{(1)}, Y^{(2)})$ be the corresponding decomposition with $Y^{(1)} \in \mathbb{R}^{d-1}$, $Y^{(2)} \in \mathbb{R}^1$. Hence, if we apply this decomposition to Z_n and W_n , we obtain

$$Z_n^{(1)} = W_n^{(1)}, \quad W_n^{(2)} - Z_n^{(2)} = (T_n/k_n) x_n.$$

(Here we identify $x_n \in N$ with the ϕ^{-1} picture in \mathbb{R}^1 .)

- 4. The sets of distributions of $Z_n^{(2)}$ and $W_n^{(2)}$ are relatively compact. Then $(x_n)_{n\geq 1}$ is also relatively compact since ε_0 is not a limit point of $\{(T_n/k_n)(P) = \tau_{1/k_n}(\xi_n)\}$. Therefore $(v_n^{k_n} = \lambda_n^{k_n} * \varepsilon_{x_n^{-1}})_{n\geq 1}$ is relatively compact.
- 1.7. COROLLARY (cf. [19]). Let $G = \mathbb{R}$. Then conditions (1) and (2) of Theorem 1.1 imply that $(v_n^{k_n})_{n \ge 1}$ is relatively compact.

In [19] this result is proved with (1) replaced by the condition

(1') $T_n \to \infty$ stochastically.

Proof of Theorem 1.1. (a) Assume (1) for some sequence $\{h_n\}$ and (2) hold true. Choose $k_n := [c h_n]$ for some c > 0 according to Proposition 1.5. Hence especially (1) holds for k_n , and $(v_n^{k_n})_{n\geq 1}$ is relatively shift-compact.

1. We have to prove that $(v_n^{k_n})_{n\geq 1}$ is relatively compact. We prove this by induction on the dimension $d = \dim(G)$.

For d=1, $G\approx \mathbb{R}^1$, see Corollary 1.7. Assume the assertion holds for $\dim(G) \leq d$. Let $\dim(G) = d+1$. The group G, being nilpotent and simply connected, has a central subgroup $N \approx \mathbb{R}^1$. Let $\pi: G \to G/N$ be the canonical projection. Since $\pi(v_n)$, ξ_n , and k_n fulfil the assumption of the induction hypothesis, $(\pi(v_n)^{k_n})_{n\geq 1}$ is relatively compact in $\mathcal{M}^1(G/N)$. On the other hand, $(v^{k_n})_{n\geq 1}$ is relatively shift-compact. Hence there exist $x_n \in N$ such that $(v_n^{k_n} * \varepsilon_{x_n})_{n \ge 1}$ is relatively compact. Now Lemma 1.6 is applied and yields the relative compactness of $(v_n^{k_n})_{n \ge 1}$.

2. Now we have to prove that $\{v_n^{h_n}\}_{n\geq 1}$ is relatively compact. This is obvious, since $v_n^{h_n} = v_n^{[k_n \cdot c_n]}$, where $c_n \in \mathbf{R}_+$, $0 \leq c_n = h_n/k_n$ $\leq \lceil 1/c \rceil + 1$. Hence (a) is proved.

(b) follows from the transfer theorem 0.1. Indeed, for any subsequence (n')there exist another subsequence (n'') and a c.c.s. $(\mu_t, t \ge 0)$ such that

$$v_n^{[h_n t]} \xrightarrow[n']{} \mu_t, \ t \geqslant 0, \quad \text{and} \quad \tau_{1/h_n}(\xi_n) \xrightarrow[n']{} \varrho.$$

(See Theorem 0.2 and (1).) According to the transfer theorem we obtain $\kappa = \mu_a$. The theorem is proved.

- **1.8.** Remarks. (a) Obviously, if $P(T_n = 0) \rightarrow 0$, then (1) implies (1').
- (b) Assume conditions (1') and (2) with $\kappa = \varepsilon_x$, $x \in G$, are satisfied. Then there exists some sequence $k_n \nearrow \infty$ such that $v_n^{k_n} \to \varepsilon_x$ and $(\tau_{1/k_n}(\xi_n))_{n \ge 1}$ is relatively compact (cf. [19]).

To see this, let K_n be compact, $K_n \downarrow \{x\}$, $\varepsilon_n \downarrow 0$, without loss of generality $\varepsilon_1^2 < 1/2$, and choose a sequence $N \mapsto n_0(N) \in N$ such that

$$\varepsilon_{N+1} \leqslant v_n^{\xi_n}(\mathbb{C} K_n) \leqslant \varepsilon_N, \quad n_0(N) \leqslant n < n_0(N+1).$$

(Note that $n_0(N) \uparrow \infty$.) Let

$$m_n := \min \{ k \in \mathbb{Z}_+ : \xi_n([k, \infty)) \leq 1 - \sqrt{\varepsilon_N} \}$$

be the $(1-\sqrt{\varepsilon_N})$ -quantile. We have

$$\varepsilon_N \geqslant v_n^{\xi_n}(\mathbb{C} K_n) \geqslant \sum_{k \geqslant m_n} v_n^k(\mathbb{C} K_n) \, \xi_n([k, k+1)).$$

Hence there exist $k_n \ge m_n$, $n_0(N) \le n < n_0(N+1)$, such that

$$v_n^{k_n}(\mathbb{C}K_n) \leqslant \sqrt{\varepsilon_N}$$
.

Then $v_n^{k_n} \to \varepsilon_x$ as $n \to \infty$. On the other hand,

$$\tau_{1/k_n}\xi_n([0, 1]) \geqslant \tau_{1/m_n}\xi_n([0, 1]) \geqslant 1 - \sqrt{\varepsilon_N} \to 1,$$

and hence $\{\tau_{1/k_n}\xi_n\}$ is relatively compact.

(c) For $G = \mathbb{R}^1$ it is sufficient to assume that (1') holds if $\kappa \neq \varepsilon_e$ (see [19]). Then (1) is satisfied. This holds true for nilpotent groups if we assume that κ is a full measure.

Indeed, if κ is full (see [9]), then there exists a projection $\pi: G \to \mathbb{R}$ with $\pi(\kappa) \neq \varepsilon_0$. Hence Szasz's proof for $G = \mathbb{R}$ is applicable.

(d) Assume (1') and (2) with $\kappa \neq \varepsilon_e$ are satisfied. Assume moreover that $(v_n^{k_n})_{n\geq 1}$ and $(\tau_{1/k_n}(\xi_n))_{n\geq 1}$ are relatively compact. Then (1) holds true.

To see this let for some subsequence (n')

$$v^{[k_n t]} \xrightarrow[(n')]{} \mu_t, \ t \geqslant 0, \quad \text{and} \quad \tau_{1/k_n} \xi_n \xrightarrow[(n')]{} \varrho.$$

Then, again by the transfer theorem, we have $\kappa = \mu_{\varrho} \neq \varepsilon_{\varrho}$ by assumption. Hence we have proved that $\varrho \neq \varepsilon_{0}$ for any accumulation point of $(\tau_{1/k_{n}} \xi_{n})$.

- 2. Geometric convolutions. Following the development for real-valued random variables (cf. [2], [3], [5], [14], and [15]) we assume now that the random times T_n have geometric distributions. We start with definitions and more or less well-known arithmetic properties of geometric and exponential distributions, which can easily be checked using generating functions.
- **2.1.** DEFINITIONS. Let 0 , <math>q := 1 p, $\alpha > 0$. Define the geometric distributions as

$$\xi(p) := p \sum_{k=1}^{\infty} q^{k-1} \varepsilon_k, \quad \eta(p) := p \sum_{k=0}^{\infty} q^k \varepsilon_k.$$

Furthermore we define the Poisson distribution

$$\pi_{\alpha} := \sum_{k=0}^{\infty} e^{-\alpha} \frac{\alpha^k}{k!} \varepsilon_k,$$

and the exponential distribution $E = E_1$ with parameter 1.

- **2.2.** Lemma. (a) $\xi(p) = \varepsilon_1 * \eta(p), p \in (0, 1).$
- (b) $\xi(p_1)^{\xi(p_2)} = \xi(p_1 p_2), p_1, p_2 \in (0, 1).$
- (c) $\eta(p_1)^{\xi(p_2)} = \eta(p)$, where $p, p_1, p_2 \in (0, 1)$ are related by

$$p = p_1 p_2/(1-(1-p_2)p_1)$$
 or $p_1 = p/(p+p_2(1-p))$.

- (d) $\tau_p(E)^{\xi(p)} = E, p \in (0, 1).$
- (e) $(\pi_{\alpha})_E = \eta(p)$, $\alpha > 0$, $p \in (0, 1)$, $p = 1/(1+\alpha)$ or $\alpha = q/p$.
- **2.3.** COROLLARY. Let G be a locally compact group, $v \in \mathcal{M}^1(G)$. Then (a) $v^{\xi(p)} = v * v^{\eta(p)} = v^{\eta(p)} * v$;

(b) $v^{\eta(p)} = \lambda_E = \int_0^\infty \lambda_t e^{-t} dt$, where

$$\lambda_t = \exp\left(t\frac{q}{p}(v - \varepsilon_e)\right),\,$$

i.e. generalized geometric distributions $v^{\eta(p)}$ are representable as exponential mixtures of compound Poisson distributions, and conversely:

- (c) let $\lambda_t = \exp(t\alpha(v \varepsilon_e))$, $t \ge 0$, $\alpha > 0$; then $\lambda_E = v^{n(p)}$, where $p = 1/(1 + \alpha)$.
- **2.4.** LEMMA. (a) $\tau_p(\xi(p)) \to E$ as $p \to 0$.
- (b) $\tau_p(\eta(p)) \to E$ as $p \to 0$.
- (c) Therefore, for any sequence $p_n \downarrow 0$, $k_n \in \mathbb{Z}_+$, $k_n \uparrow \infty$, with $k_n p_n \to 1$ as $n \to \infty$, and $\xi_n := \xi(p_n)$ (respectively, $\xi_n := \eta(p_n)$), condition (1) from Theorem 1.1 is fulfilled.
- **2.5.** LEMMA. Let G be a locally compact group, $(\mu_t, t \ge 0)$ and $(\lambda_t, t \ge 0)$ be c.c.s. in $\mathcal{M}^1(G)$. Assume $\mu_E = \lambda_E$. Then $\mu_t = \lambda_t$, $t \ge 0$.

Proof. For $\sigma \in \mathcal{M}^1(G)$ let $T_{\sigma} : f \mapsto \sigma * f$ be the convolution operator on the Banach space $C_0(G)$. Then $(T_{\mu_t}, t \ge 0)$ and $(T_{\lambda_t}, t \ge 0)$ are C_0 -contraction semigroups, the resolvents of which coincide:

$$T_{\mu_E} = \int\limits_0^\infty T_{\mu_t} e^{-t} dt = \int\limits_0^\infty T_{\lambda_t} e^{-t} dt = T_{\lambda_E}.$$

Let M and L be the generators of (T_{μ_t}) and (T_{λ_t}) . Then equality of resolvents $(M-I)^{-1}=(L-I)^{-1}$ implies M=L, and therefore $T_{\mu_t}=T_{\lambda_t},\ t\geqslant 0$.

2.6. PROPOSITION. Let G be a simply connected nilpotent Lie group. Let $v_n, \ \kappa \in \mathcal{M}^1(G), \ p_n \downarrow 0$. Then (i) $v_n^{\xi(p_n)} \to \kappa$ iff (ii) $v_n^{\eta(p_n)} \to \kappa$, and in this case $v_n \to \varepsilon_e$ (infinitesimality).

Proof. Choose $k_n \uparrow \infty$ such that $k_n p_n \to 1$. Then according to Lemma 2.4 (c) and Theorem 1.1 each of the conditions (i) and (ii) implies that $(v_n^{k_n})$ is relatively compact. Hence infinitesimality follows from Proposition 1 of [17]. Now Corollary 2.3 (a) shows the equivalence of (i) and (ii).

We give by analogy with the case of real-valued random variables (cf. [14]) the following

2.7. DEFINITION. $\kappa \in \mathcal{M}^1(G)$ is called geometrically infinitely divisible if for any $p \in (0, 1)$ there exists $\kappa_p \in \mathcal{M}^1(G)$ such that $(\kappa_p)^{\xi(p)} = \kappa$. (See [14] for $G = \mathbb{R}^1$.)

The "compound geometric" distributions $v^{\eta(p)}$ play the role of compound Poisson distributions within the class of infinitely divisible distributions.

2.8. PROPOSITION. Let $v \in \mathcal{M}^1(G)$, $p \in (0, 1)$. Then $\kappa := v^{\eta(p)}$ is geometrically infinitely divisible.

The proposition follows immediately from Lemma 2.2 (c). Indeed, let $p_2 \in (0, 1)$, $p_1 = p/(p + p_2(1-p))$, and put $\kappa_{p_2} := \nu^{\eta(p_1)}$. Then $(\kappa_{p_2})^{\xi(p_2)} = \kappa$.

More generally, we have

2.9. PROPOSITION. Let $(\lambda_t)_{t\geq 0}$ be a c.c.s. in $\mathcal{M}^1(G)$. Then the exponential mixture $\kappa:=\lambda_E$ is geometrically infinitely divisible.

Indeed, applying Lemma 2.2 (d) we have $(\tau_p(E))^{\xi(p)} = E$. Hence for

$$\kappa_p := \lambda_{(\tau_p(E))} = \int_0^\infty \lambda_{t/p} e^{-t} dt$$

we obtain

$$\kappa_p^{\xi(p)} = \lambda_E = \kappa.$$

The following theorem will enable us to describe completely the structure of geometrically infinitely divisible laws on simply connected nilpotent Lie groups.

- **2.10.** THEOREM. Let $p_n \downarrow 0$, $k_n \in \mathbb{Z}_+$, $k_n \uparrow \infty$, and $k_n p_n \to 1$. Let v_n , $\kappa \in \mathcal{M}^1(G)$. Then the following assertions are equivalent:
 - (i) $v_n^{\xi(p_n)} \to \kappa$;
 - (ii) $v_n^{\eta(p_n)} \to \kappa$;
 - (iii) $v_n^{[k_n t]} \rightarrow \mu_t$, $t \ge 0$, a c.c.s., and $\kappa = \mu_E$.

Proof. For (i) \Leftrightarrow (ii) see Proposition 2.6; (iii) \Rightarrow (i) follows from Theorem 0.1 and Lemma 2.4 (a). To prove (ii) \Rightarrow (iii) we consider the representation

$$v_n^{\eta(p_n)} = \int_0^\infty \exp(tB_n) e^{-t} dt,$$

where B_n is the Poisson generator $B_n := q_n p_n^{-1} (\nu_n - \varepsilon_e)$ (cf. Corollary 2.3 (b)). Let A_n be the Poisson generator $A_n := k_n (\nu_n - \varepsilon_e)$. By the choice of k_n , obviously, $\exp(tB_n) \to \mu_t$, $t \ge 0$, iff $\exp(tA_n) \to \mu_t$, $t \ge 0$ (where (μ_t) is a c.c.s.). Furthermore, we have $\nu_n^{[k_n t]} \to \mu_t$, $t \ge 0$, iff $\exp(tA_n) \to \mu_t$, $t \ge 0$ (cf., e.g., [17], Remark 2; [12], Section IX, § 2; see also [18]).

Now we apply Theorem 1.1 to $(v_n^{\eta(p_n)})_{n\geq 1}$. Note that $\tau_{1/k_n}(\eta(p_n))\to E$ implies (1). Hence $(v_n^{k_n})_{n\geq 1}$ is relatively compact. Let (n') be any subsequence of N. There exist a subsequence $(n')\subset (n')$ and a c.c.s. $(\mu_t, t\geq 0)$ such that

$$v_n^{[k_n t]} \xrightarrow[(n'')]{} \mu_t, \quad t \geqslant 0,$$

and $\kappa = \mu_E$. Therefore, by the considerations above, we obtain the convergence of the resolvents of convolution semigroups

$$v_n^{\eta(p_n)} = \int_0^\infty \exp(tB_n) e^{-t} dt \xrightarrow[(n'')]{} \int_0^\infty \mu_t e^{-t} dt = \kappa.$$

Moreover, according to Lemma 2.5, (μ_t) is uniquely determined. Hence we have

$$\int_{0}^{\infty} \exp(tB_n) e^{-t} dt \xrightarrow[n\to\infty]{} \int_{0}^{\infty} \mu_t e^{-t} dt.$$

But the convergence of resolvents is equivalent to the convergence of convolution semigroups (see [12], [1], [8]). Hence we obtain

$$\exp(tB_n) \to \mu_t, \quad t \geqslant 0.$$

The theorem is proved.

- 2.11. Remark. The assertions (i)—(iii) of Theorem 2.10 are further equivalent to
- (iv) $v_n^{\xi_n} \to \kappa$, where $\xi_n \in \mathcal{M}^1(\mathbf{R}_+)$ fulfil the "geometric law of large numbers" $\tau_{p_n}(\xi_n) \to E$ (equivalently, $\tau_{1/k_n}(\xi_n) \to E$).

Indeed, (iii) \Rightarrow (iv) follows from Theorem 0.1. Assume (iv) holds. By Theorem 1.1, $(v_n^{k_n})_{n\geq 1}$ is relatively compact. Hence, for any T>0, $\{v_n^{[k_nt]}, 0 \leq t \leq T, n \geq 1\}$ is uniformly tight. The assertion follows since $\tau_{1/k_n}(\eta(p_n) - \xi_n) \to 0$, $n \to \infty$.

Now we are ready to characterize completely the set of geometrically infinitely divisible distributions on simply connected nilpotent Lie groups.

- **2.12.** THEOREM. The following assertions are equivalent for $\kappa \in \mathcal{M}^1(G)$:
 - (i) κ is geometrically infinitely divisible;
- (ii) there exist sequences $p_n \downarrow 0$, $v_n \in \mathcal{M}^1(G)$ such that $v_n^{\xi(p_n)} = \kappa$;
- (iii) there exist sequences $p_n \downarrow 0$, $v_n \in \mathcal{M}^1(G)$ such that $v_n^{\xi(p_n)} \to \kappa$;
- (iv) there exist sequences $p_n \downarrow 0$, $v_n \in \mathcal{M}^1(G)$ such that $v_n^{\eta(p_n)} \to \kappa$;
- (v) there exists a c.c.s $(\mu_t)_{t\geq 0}$ in $\mathcal{M}^1(G)$ such that $\kappa=\mu_E$.

Obviously, (i) \Rightarrow (ii) \Rightarrow (iii). The equivalence (iii) \Leftrightarrow (iv) holds according to Proposition 2.6. (iv) \Rightarrow (v) by Theorem 2.10, and (v) \Rightarrow (i) by Proposition 2.9.

2.13. Corollary. The set $\mathcal{G} := \{ \kappa \in \mathcal{M}^1(G) : \kappa \text{ is geometrically infinitely divisible} \}$ is closed in $\mathcal{M}^1(G)$.

The corollary follows immediately from the equivalence (i) \Leftrightarrow (v) in 2.12 and from the closedness of the set of exponential mixtures of c.c.s.

3. Geometrically stable and semistable measures. In this section we apply the previous considerations in order to obtain a complete description of geometrically (semi-) stable distributions. These concepts were introduced for real-valued random variables in [14].

Note that the underlying groups are in general non-Abelian, therefore throughout our concepts are generalizations of strict (semi-) stability.

3.1. DEFINITION. $\kappa \in \mathcal{M}^1(G)$ is called geometrically ((a, p)-) semistable if for some $a \in \operatorname{Aut}(G)$, $p \in (0, 1)$, the relation

$$a(\kappa^{\xi(p)}) = \kappa$$

holds.

 κ is geometrically stable if for any $p \in (0, 1)$ there exists $a_p \in \operatorname{Aut}(G)$ such that

$$a_n(\kappa^{\xi(p)}) = \kappa$$

holds.

If $T = (b_t, t > 0) \subseteq Aut(G)$ is a continuous one-parameter group, we call κ geometrically T-stable if we can choose $a_p \in T$, $p \in (0, 1)$.

Stability concepts in the usual sense (cf. [17]) are closely related to domains of attraction. Hence we have

3.2. Definition. Let ν , $\kappa \in \mathcal{M}^1(G)$. ν belongs to the geometric domain of partial attraction of the measure κ if there exist $p_n \in (0, 1), p_n \downarrow 0, a_n \in \operatorname{Aut}(G)$ such that

$$a_n(v^{\xi(p_n)}) \to \kappa$$
.

v is in the domain of geometric p-semistable attraction of κ , denoted by $v \in DGSSA(\kappa, p)$, if v is in the geometric domain of partial attraction and $p_{n+1}/p_n \to p \in (0, 1].$

v is in the domain of geometric stable attraction of κ , denoted by $v \in DGSA(\kappa)$, if there exist $a_n \in Aut(G)$, $p \in (0, 1)$, such that

$$a_p(v^{\xi(p)}) \to \kappa, \quad p \to 0.$$

(Obviously, DGSA(κ) $\subset \bigcap_{0 DGSSA(<math>\kappa$, p).) Recall that a c.c.s. (μ_t) is called (a, c)-semistable for $a \in \text{Aut}(G)$, $c \in (0, 1)$, if $a(\mu_t) = \mu_{ct}, t \ge 0$. Let $T = (a_t)_{t>0}$ be a continuous one-parameter group of automorphisms of G. Then (μ_t) is called T-stable if $a_t(\mu_s) = \mu_{ts}$, t > 0, $s \ge 0$.

We say that v belongs to the domain of partial attraction of (μ_t) if

(A) there exist sequences $a_n \in \text{Aut}(G)$, $k_n \in \mathbb{Z}_+$, $k_n \nearrow \infty$, such that $a_n v^{[k_n t]}$ $\rightarrow \mu_t, \ t \geqslant 0.$

v belongs to the domain of semistable attraction of (μ_t) if (A) is satisfied with $k_n/k_{n+1} \to c \in (0, 1].$

v belongs to the domain of stable attraction of (μ_i) if (A) is satisfied with $k_n/k_{n+1} \to 1$. (Cf. [17] and [6].)

3.3. Proposition. Let $v, \kappa \in \mathcal{M}^1(G), (\mu_t)_{t\geq 0}$ be a c.c.s. Furthermore, let $p_n \downarrow 0$, $k_n \in \mathbb{Z}_+, k_n p_n \to 1, a_n \in \operatorname{Aut}(G).$

(a) Assume that v belongs to the domain of partial attraction of (μ_t) , i.e. $a_n(v^{[k_n t]}) \to \mu_t$, $t \ge 0$. Then v belongs to the geometric domain of partial attraction of $\kappa := \mu_{\rm E}$, precisely

$$a_n(v^{\xi(p_n)}) \to \kappa$$
.

(b) Conversely, let v belong to the geometric domain of partial attraction of κ , i.e. $a_n(v^{\xi(p_n)}) \to \kappa$. Then there exists a c.c.s. (μ_t) such that $a_n(v^{[k_n t]}) \to \mu_t$, $t \ge 0$, and $\kappa = \mu_E$.

The proposition is a reformulation of Theorem 2.10 with $v_n := a_n(v)$.

3.4. COROLLARY. Let κ be geometrically (a, p)-semistable (respectively, geometrically stable with respect to $T = (a_i) \subseteq \operatorname{Aut}(G)$). Then there exists an (a, p)-semistable (respectively, a T-stable) c.c.s. with $\kappa = \mu_E$.

Proof. The existence of $(\mu_t = \lim_n a^n (\kappa^{[p^{-n}t]}))_{t \ge 0}$ follows from Proposition 3.3 since by assumption $a(\kappa^{\xi(p)}) = \kappa$. Hence $a^n(\kappa^{\xi(p^n)}) = \kappa$. It is easily seen then that $a(\mu_t) = \mu_{pt}$, $t \ge 0$. The proof for the stable case is analogous.

3.5. COROLLARY. Conversely, let the c.c.s. $(\mu_t)_{t\geq 0}$ be (a, p)-semistable (respectively, T-stable). Then $\mu_E = \kappa$ is geometrically (a, p)-semistable (respectively, T-stable).

Proof. We use Lemma 2.2 (d): $\tau_p(E)^{\xi(p)}=E$. Let $\lambda_t:=a^{-1}(\mu_t)=\mu_{t/p},$ $t\geqslant 0$. Then

$$(\lambda_E)^{\xi(p)} = (\mu_{\tau_p(E)})^{\xi(p)} = \mu_{(\tau_p(E))\xi(p)} = \mu_E = \kappa.$$

The proof for the stable case is analogous.

3.6. COROLLARY. v belongs to the geometric domain of semistable (respectively, stable) attraction of $\kappa \in \mathcal{M}^1(G)$ iff there exists a c.c.s. $(\mu_t)_{t\geq 0}$ with $\kappa = \mu_E$ such that v belongs to the domain of semistable (respectively, stable) attraction of $(\mu_t)_{t\geq 0}$.

Note that, in Corollary 3.6, $(\mu_t)_{t\geq 0}$ need not be semistable (respectively, stable). To prove sharper results we need by analogy with the classical situation the notion of full measures in order to obtain the convergence-of-types-theorem. Recall that a probability measure $\lambda \in \mathcal{M}^1(G)$ is called *full* if it is not concentrated on a proper closed connected normal subgroup of G (cf. [9] and [17]). Obviously, an exponential mixture $\kappa = \mu_E$ is full iff μ_t is full, t > 0. Hence we obtain

3.7. PROPOSITION. Let κ be full. Then ν belongs to the domain of geometric semistable (respectively, stable) attraction of κ iff there exists a semistable (respectively, stable) c.c.s. $(\mu_t)_{t\geq 0}$ with $\kappa=\mu_E$, and ν is in the domain of semistable (respectively, stable) attraction of $(\mu_t)_{t\geq 0}$.

Indeed, according to Corollary 3.6 we have to show that for full κ the convolution semigroup $(\mu_t)_{t\geq 0}$ in 3.6 is semistable (respectively, stable). But $(\mu_t)_{t\geq 0}$ is full and the domain of (semi-) stable attraction is nonempty. The assertion follows from Corollary 4 in [17].

As an immediate consequence we obtain

3.8. COROLLARY. Let κ be geometrically semistable (respectively, stable). Then the domain of geometric semistable (respectively, stable) attraction is nonempty. Conversely, let κ be full and assume the domain of geometric semistable (respectively, stable) attraction is nonempty. Then κ is geometrically semistable (respectively, stable).

Proof. The first assertion is obvious, since we have $a^n(\kappa^{\xi(p^n)}) = \kappa$, $n \ge 1$, and hence $\kappa \in DGSSA(\kappa, p)$ (respectively, $\kappa \in DGSA(\kappa)$). Conversely, let κ be full and $v \in DGSSA(\kappa, p)$. Then, according to Propositions 3.3 and 3.7 there exists a semistable c.c.s. $(\mu_t)_{t \ge 0}$ with $\kappa = \mu_E$. Hence Corollary 3.5 yields that κ is geometrically semistable (respectively, stable).

In the group case we have to distinguish between domains of attraction of convolution semigroups ("functional attraction" [10]), i.e., $a_n(v^{[k_n t]}) \to \mu_t$, $t \ge 0$, and domains of attraction of a single measure, i.e., $a_n(v^{k_n}) \to \mu$. For full measures we can improve Proposition 3.7 in the following way:

3.9. Proposition. Let μ be a full measure in $\mathcal{M}^1(G)$. Let ν belong to the domain of semistable attraction of μ , i.e. for $a_n \in \operatorname{Aut}(G)$, $k_n \in \mathbb{N}$, $k_n \nearrow \infty$, $k_n/k_{n+1} \to c \in (0, 1]$, we have $a_n(\nu^{k_n}) \to \mu$. Let $p_n \in (0, 1)$, $k_n p_n \to 1$. Then there exist $b_n \in I(\mu) := \{\alpha \in \operatorname{Aut}(G): \alpha(\mu) = \mu\}$ such that $b_n a_n(\nu^{\xi(p_n)}) \to \kappa$ and κ is geometrically semistable, i.e. ν belongs to the domain of geometrically semistable attraction of κ .

Furthermore, if c = 1, then μ is stable and in this case we can choose $b_n = \mathrm{id}$, $n \ge 1$.

Proof. μ is embeddable into a semistable c.c.s. $(\mu_t)_{t\geq 0}$ such that $\mu_1=\mu$ and $b_n\,a_n(v^{[k_nt]})\to \mu_t$, $t\geq 0$ ([10], Theorem 4.2). Therefore, $b_n\,a_n(v^{\xi(p_n)})\to \kappa=\mu_E$ and the assertion follows from Proposition 3.7. If c=1, μ is stable, and then $(\mu_t)_{t\geq 0}$ is uniquely determined by $\mu_1=\mu$ ([17], Proposition 6). Hence we can choose $b_n=id$ in this case ([10], Corollary 4.2).

Semistable (respectively, stable) c.c.s. $(\mu_t)_{t\geq 0}$ on nilpotent simply connected Lie groups correspond in a one-to-one way to operator semistable (respectively, operator stable) c.c.s. $(\mathring{\gamma}_t)_{t\geq 0}$ on the tangent space \mathscr{G} (see [10]). Now we are ready to show that this holds true for geometric (semi-) stability.

Let $\mathscr{G} \approx \mathbb{R}^d$ be the Lie algebra of G. We use the notations introduced in [10] to denote the correspondence between c.c.s. $(\mu_t)_{t\geq 0}$ on G and $(\mathring{\gamma}_t)_{t\geq 0}$ on \mathscr{G} via the generating distributions.

3.10. Proposition. Let $\kappa \in \mathcal{M}^1(G)$ be geometrically semistable (respectively, stable). Then $\kappa = \mu_E$, where $(\mu_t)_{t \geq 0}$ is a semistable (respectively, stable) c.c.s. Let $(\mathring{\gamma}_t)$ be the corresponding operator semistable (respectively, stable) c.c.s. on the vector space \mathcal{G} and define $\mathring{\sigma} := \mathring{\gamma}_E$. Then $\mathring{\sigma}$ is geometrically semistable (respectively, stable) on the vector space \mathcal{G} . Conversely, to any geometrically semistable (respectively, stable) $\mathring{\sigma}$ on \mathcal{G} the corresponding geometrically semistable (respectively, stable) κ on G is uniquely determined.

The assertion follows easily from Theorems 0.1 and 2.10 (see also [7]).

Note added in proof. The investigations in geometric divisibility and semistability are continued by the first-named author in: On geometric convolutions of distributions of group-valued random variables, in: Probability Measures on Groups and Related Structures. XI (Proc. Oberwolfach 1994), World Scientific, 1995, pp. 167–181.

REFERENCES

- [1] E. B. Davies, One-parameter Semigroups, Academic Press, London-New York 1980.
- [2] B. Freyer, Die Klasse der Grenzverteilungen von Summen gleichverteilter Zufallsgrößen mit einer zufälligen Anzahl von Summanden, Math. Nachr. 44 (1970), pp. 341–350.
- [3] B. V. Gnedenko, Limit theorems for sums of a random number of positive random variables, Proc. 6th Berkeley Symp. Math. Statist. Probab., Vol. 2 (1970), pp. 537-549.
- [4] and G. Fahim, On a transfer theorem, Dokl. Akad. Nauk SSSR 187, No. 1 (1969), pp. 15-17.
- [5] B. V. Gnedenko and S. Janjic, A characteristic property of one class of limit distribution, Math. Nachr. 113 (1983), pp. 145-149.
- [6] W. Hazod, Stable probability measures on groups and on vector spaces. A survey, in: Probability Measures on Groups. VIII (Proc. Oberwolfach 1985), Lecture Notes in Math. 1210, Springer, Berlin 1986, pp. 304-352.
- [7] On the limit behaviour of products of a random number of group valued i.i.d. random variables, Theory Probab. Appl. 39 (1994), pp. 374–394.
- [8] Stetige Faltungshalbgruppen von Wahrscheinlichkeitsmaßen und erzeugende Distributionen, Lecture Notes in Math. 595, Springer, Berlin 1977.
- [9] and S. Nobel, Convergence of types for simply connected nilpotent Lie groups, in: Probability Measures on Groups. IX, ibidem 1375, Springer, Berlin 1989, pp. 99-106.
- [10] W. Hazod and H-P. Scheffler, The domains of partial attraction of probabilities on groups and on vector spaces, J. Theoret. Probab. 6 (1993), pp. 175-186.
- [11] A. V. Kakosyan, L. B. Klebanov and J. A. Melamed, Characterization of distributions by the method of intensively monotone operators, Lecture Notes in Math. 1088, Springer, Berlin 1984.
- [12] T. Kato, Perturbation Theory of Linear Operators, Springer, Berlin 1966.
- [13] Yu. S. Khokhlov, The domain of normal attraction of a stable probability measure on a nilpotent group, in: Probability Measures on Groups. X (Proc. Oberwolfach 1990), Plenum, New York-London 1991, pp. 239-247.
- [14] L. B. Klebanov, G. M. Maniga and J. A. Melamed, A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a schema for summing a random number of random variables, Theory Probab. Appl. 29 (1984), pp. 791-794.
- [15] V. M. Kruglov and V. Y. Korolev, Limit theorems for random sums (in Russian), Moscow Univ. Press, 1990.
- [16] J. A. Melamed, Limit theorems in the set up of summation of a random number of identically distributed random variables, in: Stability Problems for Stochastic Models (Proc., Sukhumi 1987), Lecture Notes in Math. 1412, Springer, Berlin 1989, pp. 194-228.
- [17] S. Nobel, Limit theorems for probability measures on simply connected nilpotent Lie groups, J. Theoret. Probab. 4 (1991), pp. 261-284.
- [18] E. Siebert, Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. in Math. 39 (1981), pp. 111-154.
- [19] D. Szasz, On classes of limit distributions for sums of a random number of identically distributed independent random variables, Theory Probab. Appl. 27 (1972), pp. 401-415.

Mathematisches Institut der Universität Dortmund D-44221 Dortmund Deutschland Steklov Mathematical Institute Vavilov Str. 42 117966 Moscow GSP-1 Russia

Received on 21.6.1993; definitive version on 28.1.1994