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A NOTE ON CONVERGENCE RATES IN THE STRONG LAW 
FOR STRONG MIXING SEQUENCES 

Abstract. For partial sums {S,) of a stationary ergodic sequence 
{X,} with zero mean we find conditions for 

m 

ny-'Pr {sup (S Jk)  > E ]  < m 
n= 1 k?n  

in terms of the strong mixing weficients {a,,) and moments of certain 
functions of the marginal incremental variable X,. 

1. Introduction. The ergodic theorem for a stationary ergodic sequence 
(Xj: j = 0, f 1, . . .) with EIXjl < co states that the partial sums S ,  = X I  
+ . . . +X, ( k  = 1, 2, . . .) satisfy 

(1.1) Pr { I S d k -  E (X,)1 > E (infinitely many k)) = 0 (any E > 0). 

This statement gives us no information as to the rate at which these averages of 
partial sums converge to their limit. Baum and Katz [I] showed that when the 
random variables (r.v.s) Xj are not merely stationary (hence, identically 
distributed) but moreover independent, the tails of the distributions of S, satisfy 
the finiteness criterion 
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for my > 1 and a > if and only if 

and, when E d 1, 

Further, in this case of independence, (1.2) is equivalent to the apparently 
stronger statement (e.g. Lai [?I) 

For a textbook account see e.g. Chow and Teicher 131 ($95.2, 10.3-4). 
There are various ways of relaxing independence while retaining ergo- 

dicity and stationarity: Berbee [2] and Peligrad [8] show that (1.5) and 
(1.3H1.4) remain equivalent, as in the independent case, when the X j  form 
a $-mixing sequence, i.e. for sets A, B in the 'respective u-fields 

(1.6) A E ~  = o ( ( X j :  j = 0, -1, ...)) and B E B  = D({X,+~: J = 0, 1, ...I), 

Lai [7] has a range of results under a condition that is weaker than mixing in 
the sense of using smaller families of sets than d or a but stronger in requiring 
that more than (1.6) be satisfied for these smaller families. 

Berbee [2] also showed that under the weaker condition of strong mixing, 
meaning that the strong mixing coefficients 

(1.7) a,=supIP(AnB)-P(A)P(B)(+O (n+co), 
A,B 

conditions (1.5) and (1.3) are no longer equivalent. What he was able to 
show - and this paper is about extending his result - is that for bounded 
stationary ergodic sequences with zero mean and whose strong mixing 
coefficients satisfy, for y 2 2, 

the sum in (15) in the case a = 1 is finite, i.e. 

(Berbee actually gives results for bounded r.v.s that are not necessarily 
stationary but for which the supremum over all coefficients at lag n defined 
as in (1.7), satisfy (1.81.) Our result replaces the assumption of boundedness 
by a weaker assumption of a finite moment of appropriate order and 
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a compensatingly stronger condition than (1.81, and looks at a one-sided rate 
result for integer y 2 2 of the form 

The moment concerns only the positive tail, much as a classical result of Kiefer 
and Wolfowitz [6] likewise gives a one-sided moment condition for a one-sided 
bound, albeit in a random walk or queueing theory setting. We note that this 
latter setting prompted Daley and RoIski [5] to study this question which is 
more general- than Berbee addressed. 

In Daley and Rolski 151 and Daley et al. [4] we relate results of the type 
(1.10) to the existence of moments of the waiting time in single-server queues. 
Example 2 of [4] exhibits a particular D/G/ l  queue (with dependent stationary 
service times) such that the (y - 1)-st moment of the waiting time is finite if and 
only if the service times have a finite moment of order y + 1 (cf. Kiefer and 
Wolfowitz's classical condition requires order y instead of y -I- 1). Also, their 
Example 3 gives a sequence {X,) satisfying E (X:)' < a, and En an < c~ but 
which for some E > 0 has 

These examples, together with the equivalence of (1.3) and (1.5) under &mixing, 
show that $-mixing can be too close to independence to differentiate among 
sequences with stronger dependence. 

Section 2 states the Theorem that extends Berbee's result. Two particular 
cases are given as corollaries as they help to illustrate the interplay between 
moment conditions and mixing conditions which, when combined, suffice to 
imply (1.10). Section 3 contains some preliminary results; the proof is in 
Section 4. 

2. One-sided convergence rate results. We write x+ = max(0, x), while 
Lp] denotes the least integer d 8". Recall that a monotonic increasing 
function g ( - )  has its generalized inverse defined by 

g-l(y) = inf{x 2 0: g(x)  3 y ) .  

THEOREM. Let { X j :  j = 0, + I ,  ...) be a zero mean ergodic stationary 
sequence which for some integer y 2 2 and some non-negative monotonic in- 
creasing function g (.) has 

and for some p > 1 
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Then, for any E > 0, the partial sums S, = XI + . . . +X, satisfy (1.10) for such 
integers y 2 2. 

We give two corollaries, each entailing the use of a different function g (-), 
to illustrate the possible trade-off between constraints on the positive tails 
Xj+ of the increments and the rate of convergence to zero of the strong mixing 
coefficients. In the first we substitute g (x) = 6 log x for some 6 > 0. In the 
second we put g (x) = xVor some 0 < p < i/y; note that the moment condition 
(2.6) is the same as in Theorem 2(i) of Lai [7 ]  but that our condition (2.7) is 
weaker than his. 

COROLLARY 1. SuBcient conditions for (1.10) to hold are that 

(2.4) E (exp {OX,)) < a, ( som O > 0) 

and 

(2.5) 

COROLLARY 2. Suflcient conditions for (1.10) to hoEd are that, for some p in 
0 < P < +/Y, 

and 

Remark  1. At an intuitive level, there are two "causes" that may result in 
the events IS, > ck)  having probabilities too large for (1.10) to hoId, namely 
(i) an occasional X, that is very large positive, and (ii) a large number of 
consecutive X j  which on average exceed E.  Conditions (2.1) and (2.2) ensure 
that the respective probabilities of (i) and (ii) are sufficiently small. Condition 
(2.3) is a technical one implied by our truncation of the Xj via the function g (-) 
in Section 4. 

Remark  2. The crux of Berbee's proof that (1.8) implies (1.9), which proof 
we generally follow, is a bound on moments of S, obtained from his result, 
quoted at Lemma 3 below, that is largely a counting exercise; a similar 
counting exercise occurs in the proof of Lemma 3.1 in Sen [9].  This bound is 
used in Markov inequalities to bound probabilities on groups of consecutive 
S, .  The assumption in the theorem that y should be an integer is partly 
technical, arising from the combinatorial nature of Berbee's derivation of (3.3) 
below, and partly of convenience (cf. the Remark to Lemma 3). 
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Remark  3. A sufficient condition for (1.10) to hold is that {Xj) be 
a sequence of i.i.d. random variables with mean 0 and E(XJ) < m. Unfor- 
tunately, if y = 2, then g ( x )  = x but then (2.3) is divergent. Thus our sufficient 
conditions for (1.10) to hold are certainly stronger than necessary in the i.i.d. 
case. 

3. Some preliminary results. The proof of the Theorem uses some auxiliary 
results which we collect here for convenience. First, there is a classical 
convergence result based on a condensation technique. 

LEMMA 1- (Cauchy9s condensation test). Let {a , )  be a non-increasing 
non-negative sequence. Then for y > 0 

( 3 . 1 )  C ( L p J ) ' a L a n l < a  for any /3>1 g a n d o n l y g  n Y - l a , < m .  
n 3  1 n 3  1 

Recall that this result, if true for some f i  > 1, is then true for all finite 
f l  > 1. Some results below that are stated under the condition "for some f l  > 1" 
thus hold for all > 1. Application of Lemma 1 gives the following version of 
a standard property of moments of a non-negative r.v. Y. 

LEMMA 2. For any y > 1 ,  E(YY) < m $ and only if for some B > 1 

Next we have the following bound on moments of partial sums S, of 
bounded r.v.s; its nature is largely combinatoric. 

LEMMA 3 (Berbee [2]; cf, the proof of Lemma 3.1 in Sen [9]). Let ( X j )  be 
a stationary sequence of zero mean, unijorormly bounded r.v.s, IXj( < ..,.c say, 
whose strong mixing coefficients a, as in (1.7) satisfy xT=, k P - 2  ak < oo for some 
p 2 2. Then, for any integer pn 2 2, 

where the constant C = CIm, {aj)) depends on m and the mixing co- 
eficients. 

Remark. This lemma can be extended to non-integers m' = m+6 with 
0 6 6 < 1, by replacing C c2". . . by CnZ6 . . Its use in proving an 
amended Theorem would lead to greater complexity in the statement for no 
particularly great gain. 

Another property of partial sums is as below; it is a simple elaboration of 
the relation, for sets of real numbers (xi} and (y,), that 
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LEMMA 4 (decomposition). For a set of r.v.s Sk expressible as Sk = Sk + Si,  

This decomposition lemma is applied in the present context, much as done 
by e.g. Sacks and Wolfson (see Daley and Rolski [5] for similar use and 
references), to yield inequalities such as 

for non-negative functions f (n). 
The proof of the next result is adapted from Berbee [Z]. Berbee has 

bounded random variables and analyzes two-sided convergence. Our random 
variables are not bounded, but they are one-sided, and we are only interested in 
one-sided 2onvergence. 

LEMMA 5 .  Let the incremental r.v.s Xj contributing to the partial sums Sk 
have Xi a..,. - a  for ajnite positive constant a. Given y > 2, if for all E > 0 and 
for some /3 > 1 

then for all E' > 0 

P r o  of. Choose E' > 0. Let P > 1 be given, to be determined shortly, and 
write S, (a) = Sk + ka for the sum with non-negative summands %+a. Observe 
that, whether finite or infinite, the sum in (3.7) is bounded as in 
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SjCa) ] ' n y -  2 
= f Pr{ sup - > a + ~ l  

i=o  # i ~ j < g i + i  1 k = l  n : P k - i d n < p k  

using the non-negativity of the summands. Then, apart from a bounding 
coefficient enabling us to replace Lfi i+ '_(  + 1 by pi'1, the sum in (3.7) is 
bounded above by. - .  

S LBjJ (a) > pi - 
m a k - I  i = l  Y - I  P 

which is of the form (3.6) provided P > 1 is small enough to ensure that 
E' > a (P - 1). The lemma is proved. 

Remark. If we knew that ultimately PI ( S  Jn > E} -+ 0 monotonically, then 
by the Cauchy condensation test we should now have the equivalence of (3.7) 
with n Y - 2  Pr (S, /n > E) < co for stationary ergodic zero mean {Xj) that 
are bounded below a.s., and hence by Lemma 4 (cf. (lo) in Section 4), for any 
such { X j )  (cf. also (1.2) and (1.5)). 

LEMMA 6 (strong mixing coefficients over sub-G-fields), if the strong mixing 
coeflcients (&) are defined over -a-Jields (do) and (go) that are sub-a-Jields of 
the corresponding a-jields (d)  and {a) over which the strong mixing coefJicients 
{e,J are defined, then g; < Q, (n = 1, 2 ,  . . .). 

Proof  (essentially due to M. R. Leadbetter; see Daley and Rolski [ 5 ] ) .  We 
have 

sup jP(AnB)-P(A)P(B)I< sup IP(An3)-P(A)P[B)I. 
A ~ d o ,  BEBO A E . ~ , B E %  

4. Proof of the Theorem. (lo) Use the decomposition X j  = (X j f -a )  
+ (a -Xj:) to express the partial sums Sj in (1.10) in the form 

where a = E (X; )  = E (X j r )  (all j). Note that the summands in these latter two 
sums are one-sided r.v.s with zero means. When (4.1) is used in conjunction 
with Lemma 4 we have, for E 2 0, 
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Thus we have reduced the problem entailed in showing that (1.10) holds to the 
two cases where Sk-)/k < ,,,,a, and S r ) / k  >.,,,-a, with a = E(Xi+) as above. 
The case sup, Si-]/k is simpler. 

fZO) Two simpler  cases. Let us note first that the case Berbee treated, 
that (Xj) is a bounded stationary sequence, is included in the Theorem. To 
see this, Iet g( . )  be a bounded continuous monotonic function for which 
sup, ,,, , g (x) > ess sup ]Xjl .  Then (2.1) and (2.3) are trivialIy satisfied, while 
the boundedness of (2.2) reduces to the boundedness of zr= =, k2iy-11 a?, k -  y, i.e. 
the condition (1.8). 

The truth of the theorem for bounded {Xi} also extends easily to the case 
where Xj < M a.s. for some finite M .  To see this, let E > 0 be given, and 
observe that, because EXj  = 0, we can find finite positive A such that the 
stationary sequence { Yf} {max (Xj, - A)) has E (Yf) < $E. Such a sequence 
is bounded, and its mixing coefficients are dominated by {a,) much as in 
Lemma 6. So, Berbee's result implies that 

i.e. the conclusion (1.10) holds. 
(3") T runca t ion  a n d  the moment  bound. Let Sk denote a partial sum 

of summands 5 Xjf -a. Construct a sequence of truncations of the Yis via 

for some increasing function gt) to be determined, and let 

Since 
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it is enough, by (4.3) applied to Lemma 5 after substituting from (4.4), to show 
that both 

(4.5) 

and 

Because of (2.1) the summation in (4.6) is finite by Lemma 2. 
(4O)  To'show that the summation in (4.5) is finite we write, for some integer 

m>, 2, 

where the last inequality follows from the Markov inequality. From Lemma 3, 
with p as there, we know that for integers m 2 2 

L Pjl 
E[( ( ~ j ~ j ~ - ~ ~ ~ ~ i ~ ) ) ~ ~ ]  < C~(n)2m(~mt 'm-~) '  +"ik 2 m - 2  uk-l)ln=LpjJ, (+) 

where the constant C = C (m, {ai'))) depends on m and the mixing coefficients 
of (Xf ). Finiteness of the sum in (4.7) is thus ensured when, firstly, 

and, secondly, using Lemma 6 as well, 

When p = m = y, so, y is an integer because m is, these relations reduce to (2.3) 
and (2.2), respectively, thereby proving the Theorem. 

Note that this choice of p and m implies that in the corollaries the 
assumption stated in Lernma 3 that Ck=, kp-2  ak < m is automatically satisfied.. 
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