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Abstract. We investigate conditions on the law equivalence of 
ltd-valued stochastically continuous processes with independent in- 
crements and with no Gaussian component. This problem is studied from 
the standpoint of perturbations. Given two processes X = (X(t)} and 
x = (2 [t)]  independent mutually, we put X' = {X' (t) = ~(t)+z(l)}. 
Then X' is called an admissible perturbation of X if X and X' induce the 
equivalent probability measures on the space of sample functions. The 
class of admissible perturbations of X is described in terms of the 
time-jump measures M and M associated with X and $, respectively. 
The fine structure of this class is obtained for processes related to 
special infinitely divisible distributions such as stable distributions, 
distributions of class L and their mixtures. A simplified proof is given 
to the theorem of Skorokhod on the law equivalence of Rd-valued 
processes with independent increments. 

1. Introduction. The purpose of this paper is to investigate conditions on 
the law equivalence of multidimensional processes with nonhomogeneous 
independent increments. A typical example is provided by LCvy processes and 
processes of class L in the sense of Sato [12]. We note that probability 
distributions of such processes at each time are multivariate infinitely divisible 
distributions. We shall also focus on processes related to special idnitely 
divisible distributions such as stable distributions, distributions of class L and 
their mixtures. 

Let us give some definitions and notations. Let X = { X ( t ) ;  t 2 0) be an 
Rd-valued stochastically continuous process with independent increments, 
which is defined on a basic probability space (a, 9, P). We assume that X has 
no Gaussian component and X  (0) = 0 a.s. The characteristic function of X ( t )  
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can be written in the Lkvy's canonical form 

(z€Rd, t ~ a l ) ,  
where 

Ri = R~\{O) ,  T =  [ O ,  a), D = ( X E W ~ ;  1x1 < 1). 

  ere a(t) is an Rd-valued continuous function on T with a(0) = 0 and M is 
a Borel measure on S = T x Rg such that 

(1.2) M ( ( t ) x R d , ) = o ( t ~ T )  and J J  ( 1 ~ 1 ~ 1 ~ ) M ( d s d x ) < m ( t ~ T ) .  
lo,$] x R b  

The probability law of X is determined by the parameters a and M. We 
shall express this fact by the notation X = d  [a, MI. It should be noted that, for 
given a and M, we can provide a method to construct a version of X defined on 
some infinite product probability space (see Section 5). Without loss of 
generality we may assume that X induces the probability measure P, on the 
space D (T)  of Rd-valued right-continuous functions on T with left-hand limits 
everywhere. The Borel cr-algebra on S is denoted by &(S). For each U E L% (S) ,  
we denote by J ( U ,  X) the random variable defined as the number of points 
t E T satisfying the condition (t, X (t) - X (t - )) E U. Then the process 
( J  (U, X); UEA? (S) )  turns out to be a Poisson random measure on S with 
intensity M. We call M the time-jump measure of X. The measure M is 
alternatively determined by the spectral Ltvy measures v, (t E T )  on @, which 
are given by v, (B) = M ([0, t] x B) for each B E A? (Rd,). 

Given two c-finite measures ,u and v on a measurable space ( E ,  81, the 
notation p < v means that ,u is absolutely continuous with respect to v. The 
notations ,u - v and p 1 v stand for equivalence (i.e., mutual absolute con- 
tinuity) and singularity, respectively, The Hellinger-Kakutani distance is 
given by 

2 l j Z  dist@,v)=[j{&-@}I . 
E 

Now let Y = (Y ( t ) ;  t >, 0) be another Rd-valued process with independent 
increments and characterized by Y = d  [b,  N ] .  Then we have the fundamental 

THEOREM 1. Px - P ,  if" and only if" the following conditions (i)-(iii) hold 
simultaneously : 

(i) M - N, 
(ii) dist (M, N )  < co , 

(iii) a (t) - b (t) = I l,,t,x, x ( M  - N )  (ds dx) (t E T). 

Furthermore, if M - N, then either P,  - P,  or P ,  I P,. 
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Theorem 1 is essentially due to Skorokhod [13]. We can give a simplified 
proof by using certain versions of X and Y based on Poisson random measures, 
which are defined on some infinite product probability spaces. The proof is 
then reduced to Kakutani's theorem on the equivalence of infinite product 
probability measures. This procedure is similar to the technique employed in 
our previous paper [4], and so we shall only describe the outline of the proof of 
Theorem 1 in the final Section 5. Since we are interested in cases where Y 
is a perturbation of X, it is worthwhile to reformulate this theorem in a slightly 
different way. Let 2 = {Sit); t 2 0 )  be an Rd-valued process with independent 
increments and characterized by 8 = d [ B ,  Q]. Assume that X and 2 are 
independent. Let X' = (X'(t); t 2 0) be another process defined by X'(t) 
= X(t)+$(t) (t 2 0). Then X is an Rd-valued process with independent 
increments and characterized by X' = [a + 6 ,  M + MI. Since XI is considered 
as a perturbation of X, it is convenient to call (X, 2, X') a perturbation triplet. 
In particular, we call X' an admissible perturbation of X if P,  - P,,. The 
following theorem is immediately deduced from Theorem 1. 

THEOREM 2. Let {X, 2, X r )  be a perturbation triplet with X =#[a, MI and 
2 = d  [d ,  I&J. Then P ,  - P,, ifand only if the following conditions (i)-(iii) hold 
simultaneously: 

(i) n;P + M, 
(ii) dist(M, M + M )  < m, 

(iii) 6 (t) = 1 Lo,t, x M (ds dx) (t E T).  
Furthermore, if M 3 M, then either P, - Px, or P, I Px.. 

In general, the problem of law equivalence is reduced to the study of 
admissible perturbations. Suppose we are given two processes X and Y with 
X = d  [a, MI and Y = d  [ b ,  NJ. Let Z and W be processes with Z = d  [c, L] 
and W = d [ ~ ,  L], where L is a time-jump measure on S satisfying L <  M and 
L< N .  Let { Z ,  2, 2') and {W, W'} be perturbation triplets with 

e r e i , = M - L a n d i , = N - L .  2 = d  [a-c, L,] and @=d[b -~ ,  1, wh 
Then we have P, = P,, Px = Pzf and P, = P,.. Therefore, if P, - Pzz and 
P, - P,., then P, - P,. In other words, the problem of law equivalence of 
X and Y reduces to the study of admissible perturbations of Z and W When 
we choose L =  M A N ,  we have the following: 

(i) M - N  if and only if both i, < L and i, 4 L; 
(ii) dist (M, N )  < CQ if and only if both dist (L, M) < m and dist (L, N) 

< m. 
Therefore, putting 

c( t )=a(t)-  jj xL,(dsdx) ( ~ E T ) ,  
[O.fI x D 

we see by Theorems 1 and 2 that 
(iii) Px - P, if and only if both P, - P,, and P, - Pw?. 

Thus we are naturally led to the following 
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DEFINITION. Let M and M be time-jump measures defined on S. We say 
that ~ is M-admissible if 

(1.3) M and d i s t ( ~ , ~ + @ < m .  

We denote by d d ( M )  the col~ection of all M-admissible time-jump measures 
on S. 

In Section 2 we investigate general properties of d d  (M). For this purpose 
we shall introduce two kinds of binomial operations among a-finite measures 
on a measurable space. It should be noted that the class d d ( M )  forms 
a'convex cone. We also consider a subclass of d d ( M ) ,  which is determined 
only by the restriction of M to the subset T x D of S. Section 3 is devoted to the 
descriptions of typical Ltvy measures related to the polar decomposition of Rd,, 
which are constructed by radial and spherical components. We investigate also 
the non-Cartesian product case. In Section 4 the relation ~ ~ d d ( A . 4 )  is 
described precisely in terms of the radial and spherical components of the 
associated Livy measures. This enables us to describe the fine structure of the 
class of admissible perturbations of X. Finally, in Section 5 we give the outline 
of the proof of Theorem 1. 

2. The class d d ( M )  of M-admissible time-jump measures on S. First we 
introduce a function space defined on a a-finite measure space (E, 6 ,  v). Let 
r$ be a measurable function defined on (E, 6) and put 

We denote by L* (E, v) the set of all measurable functions 4 on (E, 8) with 
114 11 < co. Then L* (E, v) forms a vector space with metric d (4,  $) = 11 4 - $11. 
For each p~ [I, m], LP(E, v) denotes the LP-space with norm ((#I(,. The first 
three lemmas are simple, and so their proof is omitted. 

LEMMA 1. (1) Assume that 4, $EL* ( E ,  v), g E Lm (E, V) and a 3 0. Then 

(2) The spaces L1 ( E ,  v) and L2 ( E ,  v) are continuously imbedded in L* ( E ,  v). 

Let p,  v,  pj and vj be a-finite measures on ( E ,  8). Let U E b be given 
arbitrarily. We write pl - p, on U if the restrictions to U of pi and p2 
are equivalent. The notation pl w p2 on U means that p, - p, on U,  
dp , /dp ,  E La (U, p2f and dp2/dpl E La (U, p,) hold simultaneously. Then 
p,  z pz on U determines an equivalence relation in the set of all a-finite 
measures on (E, 8). We write p, < p2 if p1 (U) < p2 (U) for each U E 8. When 
p(E) > 0, we write simply p > 0. 
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DEFINITION. When p 4 V ,  We set 

b / v ]  = [I {l  A (dpjdv)} dp] ' I 2  
and I ( d v )  = ( 1  v (dddv)] dp- 

E E 

LEMMA 2. (1) [p/vlZ < I (p/v) d p (E)  + 1, (dpldv) dp G 21 b/v ) .  
(2) 0 < I (p/v) < co implies 0 0 p ( E )  < 00. 

(3)  0 < p(E)  < co implies 0 < [p/v] < a. 
Noting that [p/v] = [ I E  {(dp/dv) n (dp/dv)'j dv] "', we see by Lemma 1 the 

following 

LEMMA. 3; (1) f f ' p l  4 v -and p2 < v, then Cp1 +~-lz/vl [&/vl+ [ ~ z / v l .  
(2) 1$ pl 4 p, and p2 4 v with dpl/dp2 E Lm (El v), then 

In particular, i f  p, d p, and p2 4 v, then Cpl/v] < [p2/vI. 
(3) I f  p  + v, and v, -g v, with dv,/dv, ( E ,  vZ), then 

In particular, i f  p  4 v1 and vl < vz,  then Cp/v,l < b/~11 
In what follows, M, M, M j  and & denote time-jump measures defined on 

S = T x Rd,. We note that $M is also a time-jump measure on S for any 
4 E Lm (S, M) with # 2 0. We put S (6) = ( ( t ,  x )  E S ;  1x1 < 6) (6 > 0). Then we 
have 

PROPOSITION 1 .  ( 1 )  Assume that M < M .  Then M ~ d d  ( M )  if and only i f  
[M/W < m. 

(2) Assume that M < M and [ , ( I  A 1x1') M (ds dx) < co. Then M E  d d  ( M )  
if and only if 

1 { l ~ ( d ~ / d ~ ) ) d M < c o  for some 6 ~ 0 .  
S(6) 

Proof.  First we look at the expressions 

d i s t ( M , ~ + i $ ) ~ = S f ( d ~ / d ~ ) d ~  and [ M / M ] ~ = ~ Q ( ~ M / ~ M ) ~ M ,  
S S 

where f ( t )  = (m- 1)' and g ( t )  = t A t2  (t 2 0). Then the assertion (1) 
follows from the inequalities g (t)/C < f  ( t)  < Cg ( t )  on [O, co) for some con- 
stant C > 0. The assertion (2) follows from M(s\s(G)) < ao and 

On account of Proposition 1 we denote by d d *  (M) the collection of all 
M E  d d ( M )  satisfying Ss(l A Ix12) M (ds dx) < m. We note that d d  (M) and 
d d *  ( M )  are convex cones. Furthermore, we see immediately by Proposition 1 
and Lemma 3 the following 

I 
4 - PAMS 16.1 I 
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PROPOSITION 2. ( 1 )  I '  M E d d  ( M )  and 4 EL" (S, M )  with # 2 0, then 
$ M E  d d  (M).  

(2) If M,, M , E & ~  (M), then M ,  + M, ~ d d  (M).  
(3)  If M, E d d  ( M )  land M~ E d d  (M + M,), then M, + M, E d d  (M) .  

PROPO~ITION 3. ( 1 )  If M I  4 M ,  on S with dM,/dM, E Lm (S(6),  M,)  
for some 6 > 0, then d d *  ( M I )  c d d *  (M,) .  

(2)  I f  M I  - M ,  on S  and MI x: M ,  on S ( 6 )  for some 6 > 0, then 
d d *  (M, )  = d d *  (M,). 

-In the light of Proposition 3, it is important to investigate the class d d  (M) 
fir  typical time-jump measures M. Now we consider the special case, where the 
time-jump measures are expressed as product measures on S = T x R:. A Bore1 
measure v on Rd, is called a Lkvy measure if it satisfies the condition 

ASSUMPTION (A.1). Let m and ri i  be nonatomic Radon measures on T. Let 
v and $ be LCvy measures on Zt$. We assume that 

(i) m < rn on T and v" 4 v on R$,  
(ii) M = m x v  and ~ = v i r x ~  on S =  T x g .  

PROWSITION 4. Suppose M and M satisfy (A.1). 
(1) Assume that 0 < I (mlrn) < CQ. Then E d d ( M )  if and only if 

[$/v] < 00. 

(2) Assume that [riz/m] = oo. Then & ~ d d  ( M )  if and only if M = 0. 

Proof.  It follows from (A.1) that M < M. We can easily show the 
inequalities 

We see by Lemma 2 that 0 < I (m/m) < co implies 0 < [mlm] < CQ. Therefore, 
the statement (1) is seen from (2.2). Since [$/v] = 0 implies v^ = 0, the statement 
(2) follows from the first inequality of (2.2). 

EXAMPLE 1 (d = 1). Let A4 and A?! be time-jump measures on S = T x Rh 
given by 

(i) M = m x v  and M = r i a x f  on S =  T x R A ,  
(ii) m(dt) = dt and m(dt) = ( t P 1 ~ 0 , 1 J ( t ) + t 4 1 ~ l , c o ~ ( t ) ) d t  on Twith p > -1 

and ~ E R ,  
(iii) v (dx) = I X ~ - " - ~  dx and v^(dx) = I x ~ - ~ - '  dx on RA with a, f l  E (0, 2). 

Then we have the following: 
(1) l f l (T )<  co 8 q <  -1, 
(2) [m/m] < 00 i f f  q < - 1/2, 
(3) I (film) < CQ iff both q < - 1 and - 1/2 < p, 
(4) [$/v] < GO iff  P/ol < 1/2, 
(5)  M E d d ( M )  i f f  both B/ol < 112 and q < - 1 + P/ol< p. 
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D ~ m n o ~ .  Let v and v^ be LCvy measures on R;. Then D is said to be 
v-admissible if both v^ 4 v and [$/v] < rn are satisfied. 

3. Livy measures obtained by the polar decomposition of R i .  In this section 
we are concerned with typical LCvy measures on Rg, which are related to the 
polar decomposition of Rd,. Let h: R+ x SdU1+Rd, be a bijection defined by 
h(r, l )  = rt, where R+ = (0, KO) and Sd-l = {X € R d ;  1x1 = 1). Let A be a h t e  
Borel measure on Sd-l.  Let q be a radial Ltvy measure on R+. That is, q is 
a Borel measure on R+ satisfying 

.. . . . 

(3.11 . . "1 (1 A ~ ~ ) ~ ( d r )  < co. 
R + 

Then we define a LCvy measure v on given by v = (q x 210 h - l .  For 
convenience, we write v = { q  x A). We note that 

(3-2) v (B)  = 1 (at) 1, (rl) q (dr) for each 3 E W (Rd,). 
g d -  1 R+ 

We are interested in the case that q is absolutely continuous with respect to 
Lebesgue measure on R, . 

TYPE (I). Let v be a Ltvy measure on ~ d ,  expressed in the form 

(3.3) v = ( q  x 1) with q (dr) = k (r )  r -I  dr and a finite Borel measure I 
on Sd-l, 

where k(r) is a nonnegative nonincreasing and right-continuous function on R+ 
such that 

(3.4) 0 < 1 ( r ~ r - l ) k ( r ) d r  < a. 
R +  

In this case we write 

v = [ < 4 x A >  I k(r)]. 

TYPE (I,). Let v be a Ltvy measure on Rd, expressed as (3.3) with 1 > 0 and 

(3.5) k(r)  =. 5 r-"w(dol) with 0 < j (a(2-a)]- l  w(da)  < a, 
('392) (032) 

where w is a Borel measure on (0, 2). In this case we write 

The function k(r)  given by (3.5) satisfies condition (3.4). The set of stable 
distributions on Rd with index UE(O, 2) coincides with the set of infinitely 
divisible distributions on Rd with no Gaussian component and with Lkvy 
measures v expressed as (3.3), where A > 0 and k (r) = r-" for some ol E (0, 2) (see 
Sato [Ill). Therefore, the class of Uvy measures of Type (I0) consists of 
mixtures of LCvy measures of stable distributions with index u ~ ( 0 ,  2). 
This class plays an important role from the standpoint of perturbations (see 
Section 4). 
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A further wide class of functions k (r) can be defined as follows. Let k(r) be 
a function on R ,  given by 

(3.6) k ( r ) = ( r p )  with @(t)= j ( l - e ~ p ( - t ~ u ) ) u - ~ A ( d u )  ( t2O),  
R+ 

where A is a Bore1 measure on R+ satisfying the condition 

Then- k(r) is a strictly decreasing positive continuous function on R ,  and 
satisfies condition (3.4). The function k(r) in (3.5) may be expressed alternatively 
in the form (3.6). In particular, we have the expression h, (r) = @, (r- for 
ha (r) = rp", where 

When k ( r )  is given by (3.61, the relation A w A, on R +  implies the inequalities 
ha(r)/C < k(r )  6 Ch,(r) on R+ for some constant C > 0. For the sake of 
simplicity, we denote this by the notation k (r) x h,(r) on R+ . 

PROPOSITION 5. Assume that 
(i) v =  (qxK) and v^=<ijxfi) on Rd,, 
(ii) d < q on R+ and g R on Sd-' with 0 < I(~/A) < CO. 

Then [f/v] < co if and only if j(,,,, 11 A (ddldq)} dlj < co for some d > 0. 

Proof.  Analogously to the case of Proposition 4, we have 

We see by Lemma 2 that 0 < I(i/A) < co implies 0 < [i /A] < a. Therefore 
[f/v] < ao if and only if [4/q] < co. Thus we obtain the conclusion by 
d ( P ,  4) < m d  

EXAMPLE 2 (d = 2). Let v and v^ be Levy measures on R i  given by 
(i) v=(qxA)  and v"=<qxli)  on R i ,  

(ii) q(dr) = r-"-ldr and cj(dr) = r-P-ldr on R+ with GI, PE(O, 2), 
(iii) I(d0) = dB and I(d0) = BPdO on [0, 2 4  with p > - 1, 

where (r, 0) E R ,  x [0, 2n) are the polar coordinates of (x, y) E Rg: x = r cos%, 
y = r sin%. Then we have the following: 

(1) I @/A) < co iff p > - 1/2, 
(2) Cd/ql < iff Biz < 112, 
(3) [lilv] < co ifT both B/ol < 112 and p > - 1 + B/E. 
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We now look at the LCvy measures on Rd, constructed from non-Cartesian 
product measures on R+ x S d - l .  Let i be a finite Borel measure on Sd- l .  Let 
{gc; <€SdL1)  be a family of radial Ltvy measures on R+ such that q,(E) is 
a Borel measurable function in 5 for fixed E E &B (R,)  and 

(3.8) 1 A(d{) ( 1  A r2) qg(dr) < c~ with q9 > 0 for each { E S ~ - ' .  
s d -  1 a+ 

Then we define a Lkvy measure v on @ given by 

(3.9) v (B) = J R(dc) 1 I , ( r [ )  q,(dr) for each BeB(Rd,). 
% ~ d -  l 

. . 
R +  

For convenience, we write v = ( { q J  x A). Without loss of generality, condition 
{3.8) may be replaced by 

(3.8)* O < J (1 A r2) qS (dr) = C < cc with C being independent of 5 .  
R + 

Indeed, putting 

we have an alternative expression 

v (3) = j J I ,  ( r r )  & (dr) for each B E  (Ri). 
sd- 1 R + 

Furthermore, we see that 1 is finite and that condition (3.8)* holds for the 
family { g { ;  t E SdM1). 

TYPE (11). Let v be a Livy measure on Rd, expressed in the form 

(3.10) v = <(qr}  x R )  with qr (dr) = kr(r)r-' dr and a finite Borel measure 1 
on Sd-l. 

Here k,(r) is measurable in E Sd-l, and nonnegative nonincreasing and 
right-continuous in P E R+ , and also satisfies the condition 

(3.11) 0 < 1 (r A r-l)  kt (r) dr = C e oo with C being independent of 5.  
R+.. 

In this case we write 
v = E<{qr) xJ) I kg(rll- 

T y p ~  @Io) .  Let v be a Livy measure on Rd, expressed as (3.10) with A > 0 and 

(3.12) k5 ( r )=  r-'w<(da) with Ox 1 ( ~ ( 2 - a ) ) - ' w g ( d a ) = C < c o .  
(092) (0,2) 

Here (wr; 5 € S d - l )  is a family of Borel measures on ( 0 , 2 )  such that wg(E) is 
a Bore1 measurable function in for fixed E€@((O ,  2)) and C is a constant 
independent of 5. In this case we write 



54 K. Inoue 

EXAMPLE 3. Let w be a Borel measure on (0, 2) satisfying the condition in 
(3.5) and let f ([ , a) be a nonnegative Borel measurable function on s d - l  x (0, 2) 
such that 

O<Q(T)= j f ( ( , u ) { a ( 2 - a ) ) - l w ( d a ) < c h ,  for each {fSd-' .  
( 0 3 )  

Then putting wr (E) = Q (1)-1[, f (t, a) w (da) for each E E ((0,2)), we have 
a family {wg; ( € S d - l )  of Bore1 measures on (0, 2) satisfying the condition 
in (3.12). 

- w e  note that the set of distributions of class L on R~ coincides with the set 
of infinitely divisible distributions on Rd with Livy measures v of Type (11) (see 
Sato [1 11). The class of Livy measures of Type (11,) plays an important role 
from the standpoint of perturbations (see Section 4). 

PROPOSITION 6. Assume that 
(i) v = ( {qe )  x A} and $ = ({4<) x x} on R;, 

(ii) dc -g qr, on R+ far i-a.e. 4 €Sd-' and 1 = f i  an Sd-' with fi  > 0. 
Then [$/v] < co iJ and only if 

i ( d t )  J { 1 A (d4t/dqr)} d d s  < co for some S > 0. 
sd- 1 ( 0 4  

Similarly to the case of Proposition 5, we have the assertion by the 
expression 

4. The class of admissible perturbations of X. In this section we shall 
describe the fine structure of the class d d ( M )  of M-admissible time-jump 
measures on S. This enabIes us to describe the class of admissible perturbations 
of X. Let us restate Theorem 2  in terms of d d ( M ) .  

T H E o ~ M  2*. Let { X ,  2 ,  X') be a perturbation triplet with X = d  [a, md 
8 = [d ,  M I .  Then P ,  - Pr i f  and only i f  

(4.1) M E ~ ~ ( M )  and d ( t ) =  jl x M ( d s d x ) ( t ~ ~ ) .  
[O,tI x D 

Furthermore, if M -4 My then either P,  - Px. or P, L P,#. 

On account of Propositions 3 and 4, we shall impose on M and M 
assumption (A.1) and also the following 

ASSUMPTION (A.2). (i) v is of Type (I) and D is of Type (I,): 

v = [ ( q x A ) I k ( r ) ]  and $ = [ ( ~ x ~ ) l ~ ( r ) , ~ ( d a ) ] .  

(ii) 0 < I(rti/m) < cr, and f i -4  1 on S d - l  with A > 0 and 0  < i ( i / A )  < co. 



Processes with indenendent increments 55 

A s s m ~ n o ~  ( K .  1 ) .  k (r )  is a positive nonincreasing and right-continuous 
function on R+ satisfying both (3.4) and k ( r )  == h, (r)  on (0, E) for some y E ( 0 ,  2) 
and E > 0, where we put h,(r) = r - Y .  

EXAMPLE 4. If k (r) is expressed as (3.5) with w ( { y ) )  > 0 and w ( (y,  2)) = 0 
for some y ~ ( 0 ,  2), then k ( r )  satisfies (K.1). 

THEOREM 3. Suppose M and M satisfy (A.11, (A.2) and (K .1) .  Then 
&i E d d  ( M )  $ and only if 

Proof.  We see by Proposition 4 that M E  d d  (M) if and only if [f/v] < co. 
Further, we see by Proposition 5 that [f/v] < co if and only if 

14-31 l ~ ( r ) / k ( ) ( r ) r ~ d r c o  for some 6 > 0 .  
(ad) 

It follows from (K.1) that there exists C > 0 satisfying k (r)/C 6 h, (r)  < C k (r)  
on (0, E ) .  Then the inequalities 

hold on (0, E). Therefore (4.3) is equivalent to the following 

(4.4) 1 { l ~ ( L ( r ) / h , ( r ) ) ) k " ( r ) r - ' d r = 1 ( 6 , 6 ) < c o  for some S>0. 
(0,61 

Suppose (4.4) is true. If we assume 6([?, 2)) > 0 ,  we can find 6* ~(0, 6 )  and 
C* > 0 satisfying l ( r )  2 C* h,(r) on (0, 6'). Then we obtain I ( 6 ,  6 )  = oo since 

This contradiction yields G ( [ y ,  2)) = 0. Then we can find a** E (0, S) satisfying 
k(r )  < k, (r)  on ( 0 ,  a**). Therefore we obtain 

since we have 

By seeing that' (4.5) implies (4.4), we obtain the equivalence of (4.4) and (4.5). 
Thus it suffices to prove the equivalence of (4.2) and (4.5). We assume that (4.5) 
is true. Then we see that G ( [ y / 2 ,  2)) = 0 by the inequalities 
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It follows that 

Therefore.we see that (4.2) is true. By using (4.6) again, we immediately see that 
(4.2) implies (4.5). The equivalence of (4.2) and (4.5) is thus proved, which 
completes the proof. 

COROLLARY 1, Suppose M and M ssatigy the conditions stated in Theorem 3. 
Then f i ~ d d ( M )  holds if 

(4-71 $([y/2,2))=0 and j (y/2-~)-'G(dor)<m. 
( O , Y / ~ )  

In particular, M E d d  (M) holds if 14 ((y/2-6, 2)) = 0 for some S > 0. 
Proof. By using the inequality (x + y)- ' < x- ' f y-I (x, y > 0), we see by 

(4.6) and (4.7) that 

= 2G ((0, y/2)) j (y/2 - a)- ' (da) < oo . 
( O , Y / ~ )  

Therefore we obtain M E d d  (M) by Theorem 3. The last part follows from the 
inequality 

ASSUMPTION (A.3). (i) v is of Type (I) and $ is of Type (11,): 

' v = [<q x A) I k(rl1 and f l=  C({&) x 1) I Gs(dall- 

(ii) 0 < I(A/m) < oo and R w f on Sd-' with A > 0. 

A~SUMPTION (K.2). There exists E^ > 0 satisfying LC(?-) < k(r )  on (0, 4 for 
f-a.e. E Sd-l. 

THEOREM 4. Suppose M and M satisfy (A.l), (A.3), (K.1) and (K.2). Then 
a E d d  ( M )  if and only if 

(4.8) Ge ([y/2, 2)) = 0 for 1-a.e. < E Sd- 

and j f(dl) j (y - a)-' (Gc * GS(da) < oo. 
Sd- 1 (0.y) 
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P r o  of. We see by Proposition 4 that E d d  (M) if and only if [ i i /v]  < m. 
We also see by Proposition 6 that [$/v] < m i f  and only if 

(4.9) j ( d )  j 1 A ( ( r )  ( r ) )  ( )  r -  d c m for some 6 > 0 .  
S d -  1 (OS8) 

We see by (K.2) that (4.9) is equivalent to the condition 

(4.10) j f i (dt)  j Ec(r)2rY-1dr<oo for some 6 > 0 .  
sd- l (0,4 

Analogously to the. case of Theorem 3, we see that be ([y/2, 2)) = 0 implies the 
identity - . 

(4.1 1) 1 lt (r)"7 - 'dP = J (y-rt)-l(GC*Gt)(du). 
(0-1) (0.7) 

Therefore (4.8) implies (4.10). Now we assume that (4.10) is true. Then we have 

J ( r 2 d  for f-a.e. C€Sd-' .  
(0981 

Further we see that Gt([y/2, 2)) = 0 hoIds for x-a.e. { E S ~ - '  by the same 
discussion as in the proof of Theorem 3. Thus we obtain (4.8) by using (4.11) 
again, which completes the proof. 

Similarly to the proof of Corollary 1, we can deduce from Theorem 4 the 
following 

COROLLARY 2. Suppose M and & satisfy the conditions stated in Theorem 4. 
Then M ~ d d ( M )  holds if 
(4.12) at ([y/2,  2)) = 0 for 1-a.e. 5 E Sd-I 

and j I ( d t )  ( y / 2 - ~ ) - ~ G ~ ~ ( d a ) < m .  
Sd- 1 (0,712) 

In particular, M E  d d ( M )  holds i f  Gt ( (y /2 - 6 ,  2)) = 0 for fi-a.e. 5 E Sd- with 
6 > 0 being independent of 5. 

We now proceed to the case where Lkvy measures are assumed to be of 
Type (11). 

ASSUMPTION (A.4). (i) Both v and v^ are of Type (11): 

v = [({4<) x A) I k,(r)l and = C<{dE1 x 1 )  I le(r)1. 

(ii) 0 c I(riz/m) < m and A x f on Sd-I with A > 0. 

ASSUMPTION (K.3). There exist E > 0,  C > 0 and a pair (# (5),  $(t)} of 
measurable functions on Sd-l  with 0 c 4 (c)  < 2 and 0 < $(5)  c 2 such that 

r-@(O/CQk,(r)QCr-'P(O and r - k 0 / ~ < 6  t (  r ) $ c r - i ( c )  

for each (r , 5) E (0,  E )  x Sd- l. 
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EXAMPLE 5. Let (wg; < E S ~ - ' )  be a family of Borel measures on (0, 2) 
stated in Example 3. Assume that f (c, a) = l(o,,+(s,l (a) and w ((4 (5 ) ) )  3 c for 
each E Sd-I, where 4 (0 is a measurable function on Sd-' with 0 < 4 (5 )  < 2 
and c is a positive constant independent of 5. Then kC(r) = j(0,2) r-"w,(dor) 
satisfies (K.3). 

THEOREM 5. Suppose M and M satisfy (A.l) ,  (A.4) and (K.3). Then 
E d d  ( M )  $ and only if 

(4.13) J(f)<#(()/2 for , k c .  5tzSd-l 
.. . 

P r o  of. By Propositions 4 and 6, we see that &$ E d d ( M )  if and only if 

(4.14) 5 x ( d { )  j { 1 A (LC (r)/kc (r))) ,fc (r) r - I  d r  < a for some 6 > 0. 
~ d -  1 (04) 

By the assumption we can find s * ~ i O ,  1 )  and C* > 0  such that 

r ~ ( ( ) - ~ ~ ) / ~ *  < E, (r)/k, (r)  < C* r@([) - i (~  for each (r ,  5 )  ~ ( 0 ,  E * )  x Sd- 

Then it is easy to see that (4.14) is equivalent to 

Putting E = { 5 € S d - ' ;  $(t) < # ( < ) I ,  we see that (4.15) is equivalent to the 
condition 

(4.16) I ( sd-~\E)=o and jI(dlJ r"'n-2icn-1dr<a.  
E ( 0 . 1 )  

Further (4.16) is equivalent to the condition 

with F = ( 5  E Sd-l ;  t$ ( 5 )  < 4 (<)/2). The proof is thus co_mpleted. 

In the rest of this section we are concerned with Rd-valued rotationally 
invariant processes with independent increments. Let X = (X (t); t 2 0) be an 
Rd-valued process with independent increments. Assume that the characteristic 
function of X(t) is expressed in the form 

where rn is a nonatomic Radon measure on T and v is a finite Borel 
measure on (0,  2) with v > 0. Let us introduce a continuous function 
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F ( u )  on (0, 2) given b y  

where A, denotes the uniform probability measure on Sd-I and 4'€Sd-l. We 
note that F (a) is independent of 4 E sd-l and F(a) x {a (2-a)}-' on (0, 2). 
Then the probability law of X is also characterized by X = d  [O, MJ, where we set 

. . 
w (dor) = ( F  (a)) - l v (dm) on (0,2). 

The process X is rotationally invariant in the sense that the probability laws of 
X and X, = { T X  (t);  t 2 0) coincide for each orthogonal (d x +matrix T, Now 
let us consider the perturbation triplet I%, $, X'), where 2 is characterized by 

We assume that r f ~  is a nonatomic Radon measure on Tand d is a finite Borel 
measure on (0, 2) with 8 > 0. Then we easily see from Proposition 4 
and Theorem 3 the following 

THEOREM 6. Let {X, 9, X') be the perturbation triplet given by (4.18) and 
(4.21). Assme that v ( { y ) )  > 0 with v ( ( y  , 2)) = 0 for some y E (0, 2) and ri3 < rn 
on T. 

(1) Either P, - P,, or P, I P,, holds. 
(2) Assume that 0 c I (ri3/m) c co. Then P, - Px. if and only if 

(4.22) d([y/2,2))=O and j (y-a)-l(d*d)(da)<oo. 
(0.~) 

(3) [ri3/rn] = oo implies P, 1 P,, . 
5. The outline of the proof of Theorem 1. 
5.1. A construction of processes with independent increments. Let X be an 

Rd-valued process with independent increments and characterized by 
X =d [a, MI. The aim of this subsection is to construct a version of X, which is 
based on a Poisson random measure and defined on some infinite product 
probability space associated with a certain decomposition of M. Suppose that 
a (t) is an Rd-valued continuous function on T= [0,  ao) with a (0) = 0 and M is 
a Borel measure on S = T x Rd, satisfying condition (1.2). Let us consider 
a decomposition S = Unm= =, S, given by 

and B, = {x E Rdg; 1x1 2 E,)  (n 2 1) 
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with R, = 0, where (8 , )  is a decreasing sequence of positive numbers tending 
to 0 and ( j , )  is an increasing sequence of positive numbers tending to m. Then 
putting M ,  (U) = M (U n SJ for each U E $9 (S), we have a sequence 
(M,,; n 3 1) of finite measures on IS, &'IS)). Without loss of generality, we may 
assume that M,(S) > 0 holds for each n 3 1. For each n 2 1 and k 3 1, let 
(Sky (Sk}, P ~ )  be the probability space defined by B,, = M ,  (s)-'' M:, where 
(sk, 93 ( s k ) ,  M:) is the k-fold product of (S, B (S}, M,,). For convenience we also 
define the trivial probability space (So, B(SO), P,,) given by So = (0) and 
&(So) = (0, So]. Further we consider a sequence of probability spaces 
(Q*; F*,'P,*) (n 5.1) defined by 

for A* = Ukm_ AR E P*. Then we define the following infinite product probabi- 
lity space: 

DEFINITION. We call (a, @, F) the canonical probability space associated 
with decomposition M = C:=, M,, on (S, B(S')). 

We now proceed to the construction of random measures on S, which are 
defined on (0, g ,  8. Let JV = N ( S )  be the totality of nonnegative (possibly 
infinite) integer-valued measures on ( S ,  93(Sj). Let 9' (S )  be the set of all 
nonnegative measurable functions on (S, B(S)). We put 

f * ( p ) = ( p , f ) = J f d p  for f ~ p + ( S )  and P E N .  
S 

Then we consider a measurable space ( N ,  &3 (N)), where B (X)  denotes the 
a-aIgebra on JV generated by the family {f *; f EF+ (S)) of functions on N. 
Let @: Q* +N be a measurable map given by @(0) = 0 and 

for f~ 9' (S) and w* = (p, (w*), . . . , p,(ws)), Sk (k 2 1). We mean by z,: fi+ a* 
the n-th projection map given by n,, (6) = a,* for 63 = (of, ma, . . .) E b 
= (Q*)". Then defining (@ o n,) (6) = 8 (n, (6)) (6 E 0, n 2 I), we have a se- 
quence of independent N-valued random elements Go n,, (n >, 1) defined on 
(a, g, p). Each @on,, is a Poisson random measure on S with intensity M,, 
and also Y,, = Zy=, (Go nj) is a Poisson random measure on S with intensity 
M(,,,, where we put M(,,) (U) = M (U n RJ for U E 93 (S). Furthermore, if 
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we define 

n =  1 

then we have the following 

LEMMA 4. The N-valued random element Y de$ned on (a, $, p] is 
a Poisson random measure on S with intensity M. i n  other words, the Laplace 
transJurrn of !P is expressed in the form 

for f g F +  (S), where C.1 stands for the expectation with respect to F. 
We next introduce a sequence of Rd-valued processes = {W, ft); t 2 0) 

(n 2 1) defined on (a,$, 8, which are given by 

for t E T and c;l E 0. Then we have = [a, M(,,]. Consequently, the following 
lemma provides the desired version of X. 

LEMMA 5. There exists an Rd-valued process W = (W(t); t 3 0) defined on 
(fi, @, p) and characterized by  W=d [a, such that the following conditions 
are satisJied: 

(i) Almost all sample functions of W belong to the space D(T). 
(ii) For almost all 8 E a, a sequence of sample functions W, ( t  , 6) conuerges 

to W ( t ,  8 )  uniformly on [0, 4 for each 1 > 0 as n tends to a. 

5.2. The "if" part of Theorem 1. Suppose the conditions (i)-(iii) in 
Theorem 1 hold simultaneously. Let N ,  (n 2 1)  be a sequence of finite measures 
on (S, 93 (S)) defined by N ,  (U) = N (U n S,) for U E 93 (S), where S, (n 2 1) are 
given by (5.1). By choosing (E,) and {j ,)  appropriately, we may assume that 
both M, (S) > 0 and N ,  (S) > 0 hold for each n 2 I. According to the procedure 
stated above, we construct the canonical probability space 

associated with decomposition N  = En"=, N ,  on (S, 93(S)). We also consider 
a sequence of Rd-valued processes = {K(t); t 2 0) (n 2 1) defined on 
( a ,  @, a), which are given by 

for t E T and 6 E a. Here we put N(,, (U) = N  (U n R,) for U E 98 (S). Then we 
have J( = [b  , N(,)] .  Further there exists an Rd-valued process V = ( V (t); 
t 2 0) defined on ( a ,  #, a) and characterized by V=d[b, N ]  such that, 
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for almost all & €0, a sequence of sample functions V,(t, &) converges to 
V(t, d) uniformly on [O, 0 for each 1 > 0 as n tends to a. Now we see by the 
condition (i) that M ,  - N,, and P,* - Qt for each n 2 1. Therefore we see by (ii) 
that 

m n j (d~:/dQ,*)'''dQ.* = exp [- (1/2)dist (My N)'] > 0. 
n = l  n* 

Thus we obtain - & by Kakutani's theorem on the equivalence of infinite 
p~oduct probability measures. Therefore we can find an Rd-valued function 
O (t , a) on T x fi such that the condition 

lim sup IW,(t,&)-@(t,o?)l=O for each E > O  
"-+* 06tSI 

holds almost surely with respect to both P and @. Then the process 
@ = {O (t, 8); t 2 0) is characterized by 

(5.9) 63 = [a,  MI with respect to P,  63 = LC, NJ with respect to Q, 

Therefore we see by (iii) that 8 = d  [b ,  N] with respect to 0. This implies that 
Px = [BIQ and P, = [me on D(T), where [F],stands for the image of 
P" induced by the map 0: SZ"+D(T). Thus F - Q implies P,  - P,, which 
completes the proof of the "if' part. 

5.3. The "only if'' part of Theorem 1. Suppose that P, - P, is true. For 
each # E D  (T) and U E B ( S ) ,  we denote by (J#)(U) the number of points t E T 
satisfying the condition (t  , # (t) - # (t -)) E U. Then we have a measurable map 
J: I) (T) + Jlr and a Poisson random measure ( J  (U, X) = (JX) (U); U E (9) 
on S with intensity M. We note that 

(5.10)" S ~ X P  ( - <P, f )) P x I J  (dp)  = exp [- S (1 - exp ( -f (s, XI)) M (ds dx)] 
N S 

holds for any f E 9 + (S), where [PXIJ stands for the image of P, induced 
by the map J. Now we see that P, - P ,  implies [P,], - [P,], on J. 
Then we obtain both (i) and (ii) by the result of Takahashi [14]. The 
condition (iii) is obtained by the same technique that was employed by 
Brockett and Tucker [2]. Therefore we complete the proof of the "only if" 
part. In the above discussion we see any violation of (i)-(iii) implies 
P, I P,. Thus we obtain either P, - P, or P, 1 P, under the hypo- 
thesis M - N. 
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