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Abstract. We establish conditions for the existence and inver- 
tibility of fractionally differenced ARIMA time series whose in- 
novations are in the domain of attraction of an a-stable law with E < 2 
and consequently have infinite variance. More importantly, we study 
the effect of truncation on the minimum dispersion linear predictor of 
X,,, based on the infinite past X,, X ,-,, ... We verify that the 
truncated predictor R,,, based on the jnite past X,, ..., X, is 
asymptotically eflicient, and derive asymptotic bounds on the rate of 
convergence to 1 of the efficiency of T,,,. The bounds are shown to 
decay like power functions with the rate of decay depending on the 
index of stability a and the difference parameter d. 

1. Introduction. This paper studies prediction of a fractional ARIMA 
(FARIMA) time series (X,) defined by the equations 

with the innovations Z ,  having infinite variance. More specifically, we assume 
that the Z,'s are i.i.d. and belong to the domain of attraction of an a-stable law 
with 0 < a  c 2, i.e. satisfy 

where L is slowly varying at infinity, and 

where c ,  and c, are non-negative constants satisfying c , + c 2  > 0. 
We also impose an additional restriction on the distribution of the Z,, viz. 

EZ, = 0 if a > 1 ,  
11.4) EZ, = 0 or Z, is symmetric if a  = 1. 

Notice that condition (1.4) implies that 0 < c,/c2 c m if 1 < a  < 2. 
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An introduction to the theory of stable laws and their domains of 
attraction is given, e.g., in Laha and Rohatgi 1201. In (1.11, B is the backward 
shift operator defined by BX, = X,-,, and A is the difference operator defined 
by AX, = X,-X,- ,. The difference parameter d is allowed to take fractional 
values. 

We show in Section 2 that under standard assumptions on the polyno- 
mials a, and 0, there is a unique moving average 

satisfying equations (1.1) whenever d < 1 - l / a ,  and that the solution is 
invertible if a > 1 and Id1 < 1 - l/a. In Section 3, we study asymptotic efficiency 
of a predictor of X,,, based on the past values X,, . . ., X,. 

The FARIMA time series with finite variance innovations 2, were 
introduced by Granger and Joyeux [11] and Hosking [I21 to provide 
convenient finite parameter models for modeling long range dependence, 
a phenomenon drawing increasing attention in the last two decades (see, e.g., 
Beran [2]). On the other hand, there has lately been growing interest in 
modeling real-world phenomena by time series whose constituent random 
variables exhibit high variability. Consequently, many facets of the theory of 
infinite variance stochastic processes have been investigated in recent years. To 
name a few related contributions, let us mention here Cline and Brockwell [a], 
Davis and Resnick [9], Bhansali [3], Kokoszka and Taqqu [17]-[19], 
Mikosch et al. [22], and Kliippelberg and Mikosch [14]-[16] (I). Even though 
all the above papers study moving averages with infinite variance innovations, 
they impose comparatively strong summability conditions on the coefficients, 
requiring at least absolute surnmability. Such assumptions are appropriate for 
the study of ARMA models but, as is well known, the coefficients in the moving 
average representation of FARIMA time series are, in general, not absolutely 
summable and decay slowly like a power function. In this paper, we study 
infinite variance FARIMA time series, i.e. models exhibiting both long range 
dependence and high variability. The theory of FARIMA time series with 
symmetric stable innovations has been developed in Kokoszka and Taqqu [17]. 
The dependence structure of moving averages of the form (1.5) with symmetric 
stable innovations 2, and not necessarily absolutely summable coefficients c j  
has also been investigated in Kokoszka and Taqqu [19]. Whereas stable distribu- 
tions are important archetypes, in applications it is often desirable to consider 
innovations from the domain of attraction of a stable law. Recall that if the 
Z,'s are i.i.d, and satisfy (1.2) and (1.3), then for some norming constants a, 

(I) Futher references can be found in Samorodnitsky and Taqqu [23], Janicki and Weron 
[13], and in Section 13.3 of Brockwell and Davis [4]. 
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N 

lim a,' Z,>X, 
N-m n = ~  

where X is a stable random variable and "d" denotes convergence in 
distribution (see, e.g., Laha and Rohatgi [20]). 

In Section 2 we show that equations (1.1) have a unique solution of the 
form (1.5) whenever d < 1 - l/a, which is invertible if cl > 1 and Id1 < 1 - l/a. As 
is well known (see, e.g., Section 13.2 of Brockwell and Davis [dl), the 
corresponding conditions under the assumption of finite variance are d < $ and 
Id1 < 4. The proofs in the finite variance case utilize the spectral representation 
of stationary stochastic processes and Hilbert space methods. Our proofs rely 
on Theorem 2.1 which establishes sufficient conditions for two time-invariant 
linear filters whose coefficients may not be absolutely summable to commute. 
Theorem 2.1 extends Theorem 2.2 of Kokoszka and Taqqu [17] which is 
proved under the assumption of symmetric a-stable innovations. Theorem 2.1 
plays a crucial role in our set-up, as neither the Box-Jenkins theory, which 
requires the absolute surnmability of the coefficients of linear filters, nor the 
cIassical Lz-theory is applicable. 

Section 3 is devoted to the main subject of the paper, the study of the 
asymptotic eficiency of the linear predictor 

of Xn+k based on the finite past X,, ..., X o .  
A natural and convenient criterion for the choice of the best linear 

predictor for the moving averages (1.5) is to minimize the dispersion 
disp (yn+h - Xn + h)  (see Cline and Brockwell [8] and references therein). The 
dispersion is defined as follows: 

DEFINITION 1.1. For any moving average (1.5) with the 2,'s satisfying (1.2) 
and (1.3) define 

CO 

If the innovations 2, are a-stable with the scale parameter a, then 
a(disp (X,))lia is the scale parameter of X,, i.e. 

(E exp {itX,)I = exp {- a" disp(X3 Itla). 

In the case of finite variance innovations we have, of course, 

(1.8) Var (X,) = disp (X,) Var (2,). 
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In Section 3 we verify that LIk- X. +, = xJm=, u j ~ n +  ,_i for some 
coefficients uj and that 

As demonstrated in Cline and Brockwell [XI, the right most expression in (1.9) 
can be effectively minimized only for very special choices of the coefficients c j ,  
e.g., those appearing in the moving average representation of AR(p) and 
ARMA(1,' 1) processes. In the genera1 case, the only feasible procedure to 
foilow seems to be to find the minimum dispersion linear predictor 

based on the ininite past X,, X,-,, . .., and then use the truncated predictor 
(1.6). As will be shown in Section 3 (see also [XI) the coefficients aj of the 
predictor (1.10) are easy to determine. 

The above procedure gives rise to the following question: Suppose Xn+k is 
a linear predictor based on the finite past X,, . . . , X,. (We do not know 
whether there is a unique predictor 8,+, minimizing the right most expression 
in (1.9) and what the minimum is.) Assuming that 

we define the efficiency En of -7?n+k with respect to yn,k by 

Since, by (1.9), 
k - 1  

disp(2n+k-xn+k) 2 I ~ j l ' ,  
j = O  

we know, in general, only the upper bound on I-&, namely 

Therefore, it is natural to define the eficiency en of zn+k by 

z;ii IcjIu 
(1.12) . en = 

disp ( 3 n + k - x n f  k ) '  

Consequently, any upper bound on 1 -en will also be an upper bound on 
1 -En. 
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It is verified in Section 3 that for FARIMA time series, en tends to 1, as 
n + a, showing that g,+k is asymptotically efficient with respect to any linear 
predictor based on X,, . . . , X,. More importantly, effective asymptotic upper 
bounds on 1 -en are established. It is demonstrated that 1 -en tends to zero 
like a power function and the rates of convergence are given, which depend on 
the index of stability a and the difference parameter d. The above results are 
then contrasted with corresponding results for ARMA processes, where 1 -en 
tends exponentially to zero. 

We conclude this introduction by remarking that a number of interesting 
approaches to solving the prediction problem for more general infinite variance 
processes have been proposed. An interested reader is referred to Urbanik 
[24]-[26], Carnbanis and Miller [B], Cambanis and Soltani [7], Cambanis et 
al. 151, and Miamee and Pourahmadi [21]. 

2. Existence and invertibiiity. In the remainder of the paper we assume that 
{Z,, n = . . ., - 1, 0, 1, . . .) is a sequence of i.i.d. random variables satisfying 
conditions (1.2W1.4). 

If there is v < a such that 
m 

(2.1) C lcjlv < 00, 
j = O  

then the series in (1.5) converges a.s, and in LV, and the following inequality 
holds: 

m 

(see Avram and Taqqu [I]). Notice that condition (1.2) impIies E IZnIv < m 
whenever v < a and E]ZnIP = co if p > a. 

Theorem 2.1 below is used to establish conditions for the existence and 
invertibility of the solution of FARIMA equations (1.1). It is also used in Sec- 
tion 3. The proof relies on inequality (2.2) and the inequality of W. H. Young 

which holds for sequences $: = ($0, . . .) E I1 and c: = {c,, c,, . . .) E I" (see, 
e.g., Chapter 13 of Edwards [lo]). Even though the proof of inequality (2.3) is 
not trivial, it can be readily verified that, for 0 < v $ 1, 

whenever both t,h and c are in I". 

THEOREM 2.1. Suppose {coy c,, . . .) and {$,, $,, . ..) are sequences of real 
numbers such that for some v E [l ,  a) if 1 < u $ 2, and for some v E (0, a) if 
O < a < l  

CC 
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w k r e  

Then, for every n, 

Iim C $kXn-k = A,, 
m-m k = o  

... 

(2.12) lim c j G - j =  A,,. 
m - + m  j = 0  

The convergence in (2.12) is in L'-norm, and in (2.11) both in L'-norm and 
absolutely a.s. 

P r o  of. First of all notice that it follows as an immediate consequence of 
(2.3) and (2.4) that the random variables A, in (2.9) are well defined. 

Suppose first that P ( 2 )  = pk zk is a polynomial. We shall verify that 

consider the set 
m 

Qo = (w : Vn, 1 cj  2,- (o) converges). 
j = D  

Note that P (QO) = 1 and, for any fixed w, E Q0, 

m m m m s-k 

s m n j  m m n i  
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To see that the series in (2.11) converges absolutely, notice that for a > 1 

and for a 6 1 (implying v < 1) 

Note that EIXoIvA..l .< CQ, by (2.2). 
To verify the E-convergence in (2.11) write, using (2.13) and (2.21, 

where $('I is the truncated sequence (0, . . . , 0, +,, $,+ ,, . . .). Clearly, 
11$("+ 1 ) 1 1 ,  + 0 if a > 1 and I ($(" ' l1I IV + 0 if a 6 1, so the LY-convergence follows 
from (2.3) if a > 1 and from (2.4) if a < 1. 

The proof of (2.12) is similar. rn 

Suppose it,, . . ., n = . . ., -1, 0, 1 , .  . .) is a random sequence, and 
(h,, h , ,  ...I a sequence of real numbers such that the random series 
zj?=o hj 5. - converges as. Then we define 

where B stands, as usual, for the backward shift operator. Using this notation 
we have 

COROLLARY 2.1. Under the assumptions of Theorem 2.1 

(2.14) Y (B)  C (B) Zn = A (3) Zn = C (B)  'P (B)  Zn a.s. 

(Notice that A is defined by A (2)  = Y (z) C (z).) 

Theorem 2.2 below gives conditions for equations (1.1) to have a solution 
of the form (1.5). The random variables A - d  (B)  Zn appearing in (1.1) are defined 
as follows: 
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Note that the coefficients of Z , - j  in (2.15) are the corresponding coefficients of 
zj in the series expansion of (1 -z)-*, whenever d is not: an integer. UnIess stated 
otherwise, we consider in this paper only non-integer values of d. Note that, 
for d = . . . , -2, - 1,0,  A l d ( B )  Z,, is a finite moving average. Since 
r (i + d)/r (j + 1) - l C2), the random series (2.1 5) converges a.s., provided 
(d -1 )a  < -1. 

THEOREM 2.2. Suppose the polynomials @,(z) and @,(z) have no routs in 
common and @,(z) has no roots in the closed unit disk {z: lzl < 1 ) .  De$ne 

then the sequence 
rn 

is the unique solution of equations ( 1 . 1 )  of the form (1.5) .  

Proof.  It is shown in Kokoszka and Taqqu [17] that the coefficients cj in 
(2.16) satisfy 

Consequently, since (d - 1 )  u < - 1, there is v < a which can be chosen 
arbitrarily close to a such that (2.1) holds. To verify that (2.18) is a solution of 
equations (1.1), set 

and, using (2.14), write 

Suppose X:  = z,*=o c; 2.- is another solution. Then 

(2.20) @p (B) Xh = aP (B) Xn . 
Applying @il (B) to both sides of (2.20) (the coefficients of @;' ( z )  tend 

exponentially to zero), we get XL = X,. 

Remark. Since v in the proof of Theorem 2.2 can be chosen arbitrarily 
close to a, it follows that the partial sums zy==, c j  2.- converge to Cd(B)  Z,, in 
E for each p ~ ( 0 ,  a) (and as.). 

(') aj  - bj means that aj/bj tends to 1. 
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Our next theorem establishes suficient conditions for the invertibility of 
the solution (2.18) of equations (1.1). 

THEOREM 2.3. Suppose the polynomials @,(z) and O,(z) have no roots in 
common and neither has roots in the closed unit disk ( 2 :  1 . ~ 1  6 1 ) .  Define 

@ (z) 1 - z )  
(2.21) Hd (z) = Cd (z) = = x hjz', 121 < 1. 

@q(zl j=o 

(2.22) . . .  ct>l and ~ d ~ < l - l / a ,  

then 
m 

(succinctly, Ci' ( B ) X ,  = Z,), where X ,  is given by  (2.18). The convergence in 
(2.23) is in E for p E (0,  a), and if d~ (0, 1 - l/a), also absoIutely a.s. 

Proof.  Observe that, for d ~ ( l / o l -  1 , O )  and v ~ ( ( 1  +d)- l ,  or), lcjl < a~ 
and lhjlv c a, and for d ~ ( 0 ,  1 - 1/a) and v ~ ( ( 1  -d)-', a), 2 IcjlV < co and 
C]hj l  < a. NOW it remains to apply Corollary 2.1 and Theorem 2.1. s 

3. Prediction. In this section we assume that 1 < a c 2, Id1 < 1 - l/a, and 
the polynomials @, and 0, satisfy the assumptions of Theorem 2.3. Recall that 
(Z,)  is a sequence of i.i.d, random variables satisfying (1.2H1.4). Our results 
remain valid (with cl = 2) if (2,) is a finite variance white noise sequence. 

We start by determining the minimum dispersion linear predictor of 
X, +, based on the infinite past X,, X,- , , . . . 

THEOREM 3.1. There is a unique sequence {a,, a,,  .. .} such that 

where the minimum is taken over all sequences (u,, u,, . . .) satisfying x lujl < co 
if d > 0 and lu,lv, for some 1 < v < a, if d < 0. The sequence {ao, a,, . . .) is 
given by 

k -  1 

(3.2) aj = - C c,hj+k-r, 
t = O  

where the cj's and hj's are defined by (2.16) and (2.211, respectively. Moreover, 

Proof.  The sumrnability conditions on {uj}  ensure that the series xT=o uj  X, - , is well defined. 
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Setting 

(3.4) 

we have 

. . 

By Corollary 2.1, 

with the uj's defined by 

It follows that the minimum is attained if v j  = 0, j = 0, 1 ,  . . ., i.e. 
U (z) = C; ' (2) Cgk) (z), yielding 

Remarks. 1. Theorem 3.1 can be rephrased as follows: 
The minimum dispersion linear predictor of Xn+, based on the infinite past 

X,, X,-l, . . . is given by 

(3.6) X:+, = C; ' (B) Cik) (B) X, = Cjk' (B) Zn . 
We see that the minimum dispersion predictor X,*,, coincides with the 
minimum variance linear predictor for finite variance FARIMA processes (cf. 
relation (13.2.42) of Brockwell and Davis 141). 

2. In view of (1.8), relation (3.3) extends the well-known formula for the 
variance of the prediction error. 

3. Theorem 3.1 extends Theorem 2.2 of Cline and Brockwell [8] which 
states an analogous result for ARMA processes. 

4. If the innovations Zn are symmetric a-stable, then 

i.e. X,*+, is actually the regression predictor. The random variable X,+, - X,*+, 
also minimizes the E-distance, 1 < p < a, from X,,, to the closed linear 
subspace spanned by X,, X,-, , . . . (See Cambanis and Miller [6], Corolla- 
ries 5.3 and 5.7.) 
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In practice only a finite number of past observations X,, Xn- . . . , X, are 
given, and since, as remarked in the Introduction, in general, an explicit 
formula for the values un, . . . , u, minimizing disp ( X n  + - z:=, uj  X. - $ is not 
available, one has to use the truncated predictor 

with the aJs given by (3.2). The following proposition gives a convenient 
expression . for- . disP.(x, + --Sn + k). 

PRO~SITION 3.1. For the truncated predictor 8n+k given by (3.7) we haue 

where 

and 

Proof. Write 

We shall now verify that 
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Indeed, by (3.2), 

Hence, by (3.12) and (3.13), equality (3.8) holds with 

Note that 

k - l  k - j - 1  k - j f m  

= - C c.j( C h u ~ k - ~ + m - u +  C h U ~ k - ~ + m - u ) -  

Combining (3.14) and (3.15), we get (3.9). rn 
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Notice that, by (1.12) and (3.8), 

where en is the efficiency of 8, +, defined in Section 1. It follows from (3.16) that 
in order to find an upper bound on I -en,  it suffices to find an upper bound 
on r,. The following lemmas are crucial steps in this direction. 

LEMMA 3.1. FOP S ,  (m) de$raed by (3.10) and any d < 1 - l/a, we have 

where 

k-j-1 

(3.18) K ,  (k, E, d) = 1 eq(l) l a  [l +P I c j l a (  Z lhUl)"], 
l ( d - l ) ~ + l l  @ p ( l ) U 4  j - o  U = O  

Proof.  Since 

we have 

(3.19) .5 (m)la 4 2' [k' 1cjIa 1 u - j + m - u +  C l ~ h + m l ' ]  
m=rt+ l j = O  r n = n + l  k = O  m = n + l  

k - 1  

=: 2' [ka IcjlU R ,  (n) + R ,  (n)]. 
j= 0 

In view of (3.19), to prove (3.17) and (3.18) it suffices to verify that 

and 

In order to find asymptotic upper bounds on R, (n) and R,(n), we use the 
relation 

cn - lim - - 0, (1) 1 d < l - -  
n+a, na-I @p(l )r (d) '  D: 
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(see Kokoszka and Taqqu [17]). We verify below relation (3.20), the proof of 
k - j - 1  

(3.21) being the same. Notice that in the sum '&=O huck-jim-n appearing in 
R,  (n), k- j + m - u 3 m + 1, and, consequently, by (3.22), for any fixed E > 0 and 
sufficiently large n 

yielding (3.20). a 

LEMMA 3.2. For S,(m) deined b y  (3.11) we have . . 

(a) If 0 < d < 1 - l lu, then 

lim sup C,"=, + 1 Is, (m)la 
A+ m 

-ad 6 K21 ( k ,  a, dl ,  

where 

(b) If l /u-1  < d < 0, then 

lim sup c:= ,, + 1 IS2 (m)l" 
n+ m 

n l - [ d + l ) s  < K,, (k, a, 4, 

where 

Proof.  Recall that for any sequence (uo, u, , . . .) we defined 

Noticethat fo rd>  0,  EL? a n d c ~ @ , a n d f o r  d < O ,  h ~ E a n d c ~ I ? . I n e i t h e r  
case 

Using equality (3.27) and changing the summation indices, it can be 
readily verified that 

m k- 1 

(3.28) C IS2(rn)lU < k" z lcjlU 1 1  h(k- j+n+l)  *c l lgm 
m = n + l  j = O  

We shafl use in the sequel the following relation: 

(see Kokoszka and Taqqu [17]). 
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Suppose 0 < d < 1 - l/a. By the inequality of W. El. Young (inequality 
(2.3)) we obtain 

(3.30) ~lh(k-j+n+l) * c l l a  I lh 111 [IcIIDI- (k- j + n + l )  

Relation (3.29) implies, for any fixed E > 0 and sufficiently large n, 

(3.31) ~ \ h ( ~ - j + " + ' )  111 = c lhul c lhul 
u-k-j - tn- i -1  u = n + l  

Hence, by (3.30) and (3.311, 

~~h(k-j+n+l) 
(3.32) lim sup *ella 

n-r m nUd 
Thus (3.23) follows from (3.28) and (3.321, completing the proof of part (a). The 
proof of part (b) is similar. Use (3.20), (3.29) and the inequality 

Now we state our main theorem. 

THEOREM 3.2. Suppose (X,} is the invertible moving average solution of the 
FARIMA equations (1.1) defined in Theorems 2.2 ahd 2.3. Let 8n+k be the 
truncated predictor of Xn+k defined by (3.7) and (3.2), and let en be its eficiency 
defined by (1.12). Set 

and 

K1 : = K1 (k, d ,  a), K21 : = KZ1 (k, d, a), K22:= KZ2 (k, d, a) 

(see (3.18), (3.24) and (3.26)). 
(a) If lla-1 < d < 0, then 

(b) If 0 < d < %(l-  lla), then 

l-en 
lim sup < KK,, . 

n+m IZ 

(c) If d = +( l  - lla), then 

1 -en 
lim sup --- < K(Kl +KZl). 

n-m p 
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(d) If $ ( l  - l /a)  < d < 1 - l/a, then 

Proof. Use inequality (3.16) and Lemmas 3.1 and 3.2. Note that 
( d - l ) u + l  < 1-(d+l)a  i f  d < 0, and for d > 0, ( d - l ) a + l  < -ord i f f  
d < 4 (1 - l/a). 

COROLLARY 3.1. The predictor J?n+R defined in Theorem 3.2 is asymptotical- 
ly  dficieng. 
. . 

By (3.101, we have S,(m) 0 for the one-step predictor f n + , .  This 
observation combined with Lemmas 3.1 and 3.2 yields 

THEOREM 3.3. Let en be the eficiency of the one-step predictor for the 
F A R I M A  process defined in Theorem 3.2. 

(a) I f  l /a-1 < d < 0, then 

(b) If' 0 < d < 1-l/a,  then 

The next theorem gives upper bounds on 1 -en for the ARMA (p, q) time 
series defined by the equations 

THEOREM 3.4. Suppose the polynomials @, and 0, in (3.33) have no roots in 
the closed unit disk {z: lzt < 1) and no roots in common. Set 

If Q > max ( l / r ,  l/s), then for any ~ ( 0 ,  21 
1 -en 

lim sup - = 0 ,  
n+m 

where en is defined by (1.12). 

P r o o f. Define coefficients c and hj by 

Notice that 
lim sup Icjl lii = s, lim sup Ihj[lIj = r. 

j+ m j+m 
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Observe that Proposition 3.1 and its proof remain valid for invertible ARMA 
processes, and so by (3.16) and (3.9)-(3.11) it suffices to show that 

m 

lim sup Q -"" Ic,,,la = 0 
n+ m m = n + l  

and 

m k - j + m  

(3.36) - limsup Q-"I - x I x = 0. 
n-r  m rn-n-1-1 u = k - j + n + l  

To verify (3.35), note that for any q E (l/s, Q) and sufficiently large rn, Ic,l < qm, 
and so 

To verify (3,361, recall that the double sum in (3.36) is equal to 11 h(k-.'+"+l' * ~ 1 1 : .  
Since 

it is enough to show that 

lim sup Q-" C Ihmla = 0, 
n + m  m = n + l  

which is proved in the same way as (3.35). PA 

Remark. For the one-step predictor Sn+, , equality (3.34) holds for any 
Q > l /r .  

The power function rates of convergence obtained in Theorems 3.2 and 3.3 
are essentially slower than the exponential rates for ARMA processes. This 
reflects the fact that for FARIMA processes the future value X,,, depends 
more strongly on the past (long range dependence) than is the case for ARMA 
processes. Consequently, a larger number of past observations have impact on 
the value of Xn+, and must be taken into account to obtain a desired accuracy 
of prediction. 

In Kokoszka and Taqqu [18] and [17], a measure of dependence, the 
codgerence, is used to describe quantitatively the dependence structure of 
infinite variance stable ARMA and FARIMA sequences. For ARMA processes 
the codifference decays exponentially to zero, whereas for FARIMA processes 
like a power function. 

6 - PAMS 16.1 
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