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ON THE FRACTIIONAL ANISOTROPIC WIENER FIELD* 
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Abstract. In this paper we study the local properties of 
the fractional anisotropic Wiener field {~("( t ) :  i E Rd}, where 
a = (a,, . . . , a,), 0 < a, < 2. It is proved that, with probability 1, the 
realizations of the field Bra) over any cube Q c Rd belong to the 
anisotropic Holder class with parameter a/2 in t h e  Orlicz norm 
corresponding to the Young function = exp(t2)-1. Other sup- 
porting spaces are treated as well. Moreover, the box dimension of the 
graph of the realization of B("' has been calculated; it is proved that, 
with probability 1, the box dimension of the graph of the realization of 
B'"' over any cube Q c Rd is equal to d+l-rcj2, where 
K = min (dll, . . . , ad). 

1. Introduction. By the fractional anisotropic Wiener field with the 
multidimensional parameter a, where a = (a,, . . . , or,), 0 < oli < 2, we mean 
a Gaussian field (B[") (t): t E Rd) , with continuous realizations, EB(u) (1) = 0, and 
the covariance kernel 

EBta) (t)  3'") (s) = K ,  (t  , s), where K, = K,, @I . . . €3 K,,, 

and for 0 < a < 2, K, is the covariance kernel of one-dimensional fractional 
Brownian motion with parameter a, i.e. 

The aim of this paper is to study the local properties of B'"). It is proved 
that, with probability 1, the restrictions of realizations of B(")(-)  to any cube 
Q c Rd fulfill multiply Holder conditions with parameter a/2 in the Orlicz 
norm corresponding to the Young function A, = exp(t2)- 1. The detailed 
calculations are presented for the cube Id. The same arguments applied to the 
dilated and shifted field (Ql"l B'") (e- t - c): t E Id} (Q > 0, c E Rd) give the result 
for the arbitrary cube Q c Rd. 

* This work was supported by KBN Grant 2 P301 019 06. 
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The one-dimensional problem was recently discussed in the papers [I] (for 
a = 1) and [ S ]  {for all 0 < cr < 2). The analogous problem for the isotropic 
fractional L6vyYs field on Rd was considered in 131, and the case of the 
fractional L6vyYs field on the d-dimensional sphere was studied in [4]. 

The method used to obtain the results for the field B(")(.)  (Theorem 2.1) 
reminds the method from the papers mentioned above: at first, we obtain the 
characterization of the function spaces in terms of the coefficients of the 
expansion of a function in some basis (here we consider the basis consisting of 
tensor products of Schauder functions), and then we prove that the coeff~cients 
of-the expansion of B(") satisfy these conditions with probability 1. 

In the last part of the paper (Section 5, Theorem 5.1) the box dimension of 
the graph of the realization of B(*) is calculated. The upper estimate follows 
from the regularity of B("1, but to get the lower estimate we have to study the 
coefficients of the expansion of Btal in the so-called multiafine (or diamond) 
basis. This method comes from [2], and was used in [3] and 1441 to calculate 
the box dimension of the graph of the realization of the isotropic fractional 
L6vy's field on Rd and on the sphere. 

2. Function spaces and fractional Wiener Eeld. Let us start with some 
notation: I = [O,  11 and for  EN = (1, 2, ...) put 9 = (1, ..., d}; given 
a vector a = (a,, . . . , a,) E Rd and A c 9 put Q (A) = (a", , . . . , ad), where Gi = ui 
if i~ A, and fii  = 0 if i$ A; in addition, put la1 = lull + . . . +la,/.  Moreover, for 
two vectors a = (a,, . . . , a,,) €Rd and b = (b,, . . . , b,) E Rd we write 

a d b i f f a i < b i f o r a l l i ~ 9  and a < b i f f a i < b i f o r a l l i ~ 9 ;  

in addition, we use 

d 1 
C =  n a p  and -=(;,...,$). 

i =  1 a 

We will also need the notation 

By L,(Id), 1 < p < co, we denote the space of functions integrable on Id 
with exponent p, and C ( I 9  is the space of continuous functions on Id. By 
L, (Id) we denote the Orlicz space on Id , corresponding to the Young function 
A!, with the norm 

Ilf ll, = sup{j f ( x ) g ( x ) d x :  j A * ( g ( x ) ) d x  < 11, 
I d  I d  

where A* is the complementary Young function to A. For the general theory 
of Orlicz spaces we refer, e.g., to [ I l l .  
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We are interested in some special family of Young functions. Namely, let 
for y > 0 

{ = P I - 1 for 1 G Y < m. 
E,(u)-E,(O) for 0 < y < 1, 

where E, ( - u) = E,  (u) is the extension of the convex part of exp {uY) on (uy, CO) 

by its tangent line at u, > 0, and u., is the point at which the function exp {uY) 
changes the concavity to the convexity. For these Young functions there is an 
equivalent norm on LnMy (Id) : 

llf ll llf ll5, = sup+. 
pa1 P 

For the equivalence of the norms 1 1  - l l m ,  and 11 - 115, see [8] or [I]. 
For f :  id + R, i E 9 and h~ R, the progressive difference in direction ei 

{where ei = . . . , 6,,i) E Rd denotes the i-th coordinate vector in Rd) is 
defined by the standard formula 

For h = (h, ,  . . . , h,)€Rd and A = (i,, . . . , i,} (1 9 we set 

For f E L ~ ( I ~ ) ,  1 < p < CO, or f E C(Id )  if p = CO, the moduli of smoothness in the 
L,- and LAY-norms in the directions A are defined as follows: 

w , ~ ( f ,  t )  = sup IlAh,Af lip for t f R d 7  0 < t < I, 
O<hCt 

~ ~ , . ~ ( f , t l =  SUP I l A h , ~ f l l ~ ,  for t€Rd,  O < t < l .  
O<h<r 

It follows from the equivalence of the norms 1 1 .  \ I A y  and 1 1 .  It$, that 

Now let 0 < f l  < 1, j? = (bl, .. . , pa), and A E  R. Define 

We are going to consider some anisotropic generalized Holder classes in 
the L,- and LA,-norms, described in terms of o,,, (f, i),  O y N y , ~  (f, t) and wfi,A (.). 
More precisely, let for a function $: LO, Ijd -, R, A c 9, and t E [0, 1ld, 

~ ( t ;  A) = rFI ( 8  (A) + 1 (B\A)). 
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The anisotropic Holder classes in the L,- and LAY-norms are now defined as 
follows: 

Lipp (B, A) = {f E L, (Id): v (0 # A 9) W,,A It, f )  = 0 ( m g , ~  (t; A)) } ,  

lip, (B, 4 = {f €Lipp (8,  4: v(@ + A t 9) W , A  (t, f) = o(w,,~ (t;  A) ) ] ,  

L~PA,.(!I 2) = {f €L&?(Id): v(0 # A C 9) WA,,A(~, f )  = O(mp,rl(t; A))), 

lip&, (By 1) = {f E L~P,~. ,  (B,  4: (0 f A c 9) WA,.,A ( t ,  f )  = (up,l (t; A))}, 

where 0 (i. (A)) and o (t (A)) refer to rnin (ti : i E A) -+ 0, 
. . 

l i ~ j ( 8 , 1 )  = {f ~Lip,,(fl, A): Ilf l l P  = 0@1'3 as P +  m, 

V ( 0  # A c 9) w,,,(t,f) = o ( p l l " ~ ~ , ~ ( f ; , A ) )  as min(ti: ~ E A ,  l/p)+O). 

The following theorem presents the results on the supporting function 
spaces for the fractional anisotropic Wiener field B1"). 

THEOREM 2.1. Let a = ( a  ,,..., a,), O < a i t 2  for i = l ,  ... . , d ,  and 
1 < p < co, l/p < ad2 for i = 1, ..., d; then 

Pr (B("'lp E Lip, (a/2, 0)) = 1, Pr {B'a'lra 4 lipp (a/2, 0)) = 1, 

Pr (B("'lIa E LipAAII (42, 0)) = 1, Pr {B(a)lIJ # lipda (a/2, 0)) = 1, 

Pr (B(")IId~ Lip, (a/2, 1/2)] = 1, Pr {B("'l,d $lip, (a/2, 112)) = 1, 

Pr {B(")lIJ E lip; (a/2, 112)) = 1 . 
The idea of proof of Theorem 2.1 is the following: there are some 

characterizations of the anisotropic Hijlder classes in the L f  and LA,,-norms by 
the coefficients of the expansion of a function in the basis consisting of tensor 
products of Schauder functions (these results are presented in Section 3). Then 
we prove that the coeficients of B(") in this basis fulfill, with probability 1, the 
conditions required in these characterizations (Section 4). Putting these results 
together gives the proof of Theorem 2.1. 

COROLLARY 2.2. Applying the method of proof of Theorem 2.1 to the shifted 
and dilated Jield {QI"I B(")(Q-~ t -c): t €Id) (Q > 0, c E Rd), we can prove that 

Pr (V (Q c R ~ )  B(")lQ E lip; (a/2, 1/2) (Q)) = 1, 

where Q c Rd is a cube in Rd, the function spaces appearing above are the 
function spaces over the cube Q, and they are defined in the same way as the 
function spaces over id. 
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3. The characterization of furaction spaces. Now we present the charac- 
terization of the anisotropic Holder classes in the L,- and LAY-norms in terms 
of the coeficients of the expansion of a function in the basis consisting of tensor 
products of Schauder functions. 

Let ($,, k 2 0) be the family of Schauder functions on I ,  norrned in L,, 
i.e. $,(t) = 1, qj,(t) = t, and for k 2 2, k = 2 j + n  with j > 0 and 1 d n d 2j 

In several dimensions, we cpnsider the family I$,, k 2 0 )  of tensor products of 
Schauder functions, i.e. 4, = . . @qjk, for k = (k,, . . . , k,). 

To describe the anisotropic Holder classes in terms of the coefficients of 
a function in the basis {#,, k 2 01, the following decomposition of the set of 
indices is needed. Let for j~ M = {- 2, - 1, 0, 1, . . .) 

and for a vector j = GI,  . . . , j,) we put 

The formulae for the coefficients of a continuous function f E C (Id) in the basis 
I#,, k 2 0 )  will be needed. Let for f E C (Id), i E 9, x E Id and k 2 0 

f (X -xi ei) for k = 0, 
C i * k ( f ) ( x ) = G ( x + ( l - x i ~ e i ~ - f ( ~ q e J  for k = l ,  

and for k E Nj with j 2 0, k = 2j+ n 

= f (x+(F-xi)eJ- f ( x  + ((n - 1)/2j -xi) e,) 2 + f (X + (n/2j - xi) e,) 

For XI = (k,, .';., k,) we put 

Then for any f E C(1") we have 

Remark. Each time when we write the sum of the d-dimensional set of 
indices Md we mean that this set is ordered in such a way that, for j ,  j ' ~  Md, 
j = (jl, ..., j,), j, = li;, ..., j&), if maxGl, ..., jd) < maxCj;, ..., j&), then j pre- 
cedes j'. 



For f given by (3) we put 

~ j , ,  (f 
~ , p  (f) = 2-'j1"( I C ,  C T ) I ~ ~ " ,  r j , ,  (f)  = sup F .  

k6RJ p> 1  

Now we can formulate the characterization of the Hljlder classes in terms of 
the coefficients {ck (f ): k 2 0 ) .  

LEMMA 3.1. Let 0 < f l  < I ,  R E  R, and let the function wpai be dejifined as 
in (2). Moreover, let 

Let 1 G p d ao be such that l ip < p i  for all i = 1 ,  ..., d. ,Then 

Moreover, for any 0 < y < co 

P r o  of. For the L,-norm and i, = 0 this lemma was proved in [9], and the 
proof for other cases follows the same idea. For the sake of completeness we 
present here the sketch of the proof. 

Let (A,  k 2 0) denote the Franklin system on I, i.e. (f,, k 2 0) is the 
system obtained by the Gram-Schmidt orthonomalization (in L, (I)) of 
Schauder functions {+,, k 2 01, and let { f , :  k 2 0 )  be the family of tensor 
products of Franklin functions. Let for f E C(Id) 

qjqp  (f) = 2 1 j l ( 1 / 2 -  l / P ) (  I ( f , ~ ) ~ ~ ) l ~ ~ .  
k€Nj 

It was proved in [9] that there exists a constant C > 0, independent off and p, 
such that 

v j , p  (f G (f, t j ) ,  

where A j  = (i:  ji 2 01, and for any 0 # A c 9 

Wp,* (f, f p )  G CZ;(~) C V j , #  (f) JJ 2min(~iJi), 
J E M ~  i€A 

The required characterizations for the L,-norm follow now from these 
inequalities. The characterizations for the LA,,-norm follow from the above 
inequalities and the equivalence (1). rs 
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4. The asymptotics of the basic coeficients of It["). Let {Bla) (t):  t ~ 1 ~ )  be 
the fractional anisotropic Wiener field with parameter a = (a,, . . . , a,), and let 
{bp', k 2 0) be a sequence of the coefficients of B[") in the tensor product 
Schauder basis, i.e. 

LEMMA 4.1. The sequenca (bp), k 2 0 )  is n Gaussian sequence, with 
Ebt' = 0 and the variance given by the formula 

where for 0 < u < 2 

for k = 0, 

at) = 1 for k = 1, 
(2-"-2-')2-ja for k~ f l j ,  j 2 0. '1 

Moreover, there exists C > 0 such that for ulI j and k ,  l € f i j  

where j - a  = j , u , +  ... +j,a,, and 
d 1 

P r o  of. These estimates foIIow from the formulae for the coefficients of 
a function in the tensor product Schauder basis, the formula for the covariance 
of the field 3'") and the estimates for the progressive difference of order 4 with 
the step 1 of the function 1 -  +nIa, 0 < u < 2 (cf. lemme IV.2 of 151). EI 

Now the ,asymptotic behaviour of the sequence {bfl, k 2 0 )  will be 
studied. Let us note that if k = (k , ,  . . . , k,) with ki = 0 for some i E 9, then 
Pr {bf) = 0) = 1. For k > 0 let us introduce 

Moreover, let us put nj = # 4, pp = E lgtP, where g EN (0, I ) ,  

and let a=(--1,0, 1 ,... ). 
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LEMMA 4.2. FOP each p, 1 < p < co, 

Pr { G  (.i, P )  + pP as Ijl+ a, j g u d }  = 1. 

Pro of. Let e > 0 and j E ad be given. Then 

AS the random vector ( g R ,  gk,) has a normal distribution, we get from lem- 
me 11.2 of [5] (or Theorem 4.6 of [I]; actually, it is equivalent to Gebelein's 
inequality, cf. [6],  p. 66) and from the estimates (4) and (5) the inequality 

Let us observe that 

which implies 

As nj - 2Ij1, Lemma 4.2 follows from the last inequality and Borel-Cantelli 

COROLLARY 4.3. For each 1 < p < co we have 

Pr (sup ( G ( j ,  p))"' 2 pj"] = 1 
j e k d  

and 
1 

Pr ( sup sup - (G ( j ,  P))"~ 2 p,,) = 1, 
ISp<OZ jEkd& 

where . -. 

1 
p,,, = sup -pyp. 

1,,-=* J? 
LEMMA 4.4. We have 

1 
PI(  sup s ~ ~ - ( ~ ( j , ~ ) ) " ~  < a) = 1. 

l S p < c o , ~ M d &  

Proof. Let us observe that 

1 1 
sup sup - (G (j, p))l" < m iff sup sup - (G (j, 2p))1"2p' < m . 

l<p<OZ p N  j€Gd & 
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Let p E N, j E ad, ( E R, C 2 lo (where [, > 0 is chosen so that for all p E N and 
( s [, we have (&c)~'- gz, 3 t (&[lZ7 be given. Then 

< Pr (IG ( j ,  2 p )  - p2,l 2 L / P c ) ~ ~ I .  
Using the Tchebyshev inequality, (6) and (7) we obtain 

As pap = (2p)! / (p!  2P)  and p !  - (2~cn)''~ (rile)", we get 

Let 1 > a; then 

Now the last inequality and the Borel-Cantelli lemma complete the proof of 
Lemma 4.4. EI 

LEMMA 4.5. There exists C > 0 such that 

Moreover, ' 

Pro of. First, let c > f i ;  then 
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This gives 

and the second statement follows from the Borel-Cantelli lemma. 
To prove the first part of the lemma, let us choose 6, 0 < 6 < 4-a, for 

i = 1, ..., d;  moreover, for 0 < s < 1 Iet us put 

for j i  < 0, 
.. iqi (s) = 

( 2 j i  + t i  [ 2 j i ~  t i  = I ,  . . . , [2ji(l-")I} for ji 3 0 ,  

and Nj (s)  = f i j ,  (s) x . . . x fljd (s). Then for all k, k' E flj (S) we have 

Putting 

and using Slepian's lemma (cf. [lo], p. 74) and lemme 11.9 of [5] we get 

Pr {sup lgrl < c Jw) < Pr { sup g, < c Jm) 
k d j  k&s) 

< Pr {g < C ,/-)'(j) (where g E N (0, 1)) 

Let us choose 0 < s < 1 and C > 0 such that 

Then the first part of the lemma is a consequence of the Borel-Cantelli 
lemma. H 

COROLLARY 4.6. There exists a constant C > 0 such that 

Pr C < sup sup I 
Let us put 
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I LEMMA 4.7. We have 

P r (  Iim H ( j , p ) = O ) = l .  
j ~ ~ ~ , m a x ( p .  I ~ l ) + m  

Proof.  From Lemma 4.4 we obtain 

1 
sup sup - (G ( j ,  PI)'" < m 
j s ~ d l s p < l o  & 

with probability 1, so 

. . ,  I (8) P r (  lim sup H ( j , p ) = O ) = l .  . . 

~ j ~ + m , j e h ' d l < p < m  

It follows from Corollary 4.6 that, with probability 1, 

which implies 

I The equalities (8) and (9) imply the lemma. rn 

Proof  of Theorem 2.1. Theorem 2.1 is now a consequence of the 
estimate for the variance of bf) from Lemma 4.1, the characterization of 
anisotropic Holder classes from Lemma 3.1, and the estimates from Lem- 
mas 4.2, 4.4, 4.5, 4.7 and Corollaries 4.3 and 4.6. ar 

5. The box dimension of the graph of B(")(.). The box dimension of 
a bounded subset F c Rd+ is defined as follows. Let, for 6 > 0, J, (F) denote 
the minimal number of sets of diameter not exceeding 6 needed to cover F. 
Then the box dimension of F ,  denoted by dim,F is defined as 

dim, F = lim log JG (F) 
6-0 logs-I 

if this limit exists; otherwise, one can consider the upper and lower box 
dimensions of F, defined as the upper and lower limits of (log (~))/Iog 6 -' as 
S -, 0, and denoted by dim, F and d&, F, respectively. (For more details cf. [7].) 

For the function f: U w  R, U c Rd, we denote by T(f) its graph, i.e. 

r ( f )  = ((x, fw): X E U ) .  

The following theorem gives the result on the box dimension of the graph 
of the realization of B1"). 

THEOREM 5.1. Let a =(a,,  ..., a,), 0 < oli < 2, K = min(ol,, ..., olh. Then 

Pr (dim, r (B(")lp) = d +  1 - ~ / 2 )  = 1 .  
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Proof,  Let us note that E IBfa)(t)- B("' (s)12 < C lit- sllK (cf. the formula 
for K,), and it follows from the Kolmogorov criterion that 

V (0 < E < ~ / 2 )  sup 
IB'"] ( t)  - B'"' (511 

r ,s~ ld , t+s  Ilt-sllE 

(cf. also Theorem 2.1). As for f: I" -+ R such that If ( t )  - f (s)] = 0 ( 1 1  t  - s 1 1 ' )  we 
have 

dim,r~f) G d + i - E ,  

we infer that, with' probability 1, 

To obtain the lower estimate, we use the method of calculating the box 
dimension of the graph of a function from [2], with the use of the coefficients of 
a function in the so-called diamond basis (for more properties of this basis cf., 
e.g.7 C121). 

Let us recall the definition of the diamond basis; let 

In addition, let us put 

W, = (k 2 0:  k = (k , ,  ..., k,), max(k,, ..., k,) < 11, 

and for j  > 0 

Wj = { k  2 0: k = (k, ,  ..., k,),  2j-I < max(k,, ..., k,) d 2j} ,  

p (k )=  k  for k~ W,, and for k ~ y ,  j > 0 ,  

where 

for 0 < k < 2 J - l ,  
= 2(k-2'-I)- 1 for 2'-I + 1 < k < 2'. 

The diamond basis is the family of functions {$,, k 2 O ) ,  defined on Id by the 
formula 

@ k ( t ) = ~ ( 2 j ( t - p ( k ) )  for k ~ y . ,  j 2 - 0 .  

For each f E C(Id)  there exists a unique sequence (u,, k 2- 0)  such that 

actually, the coeficients (u,, k 2  0) are some linear combinations of the values 
of J: 
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I 

It was shown in [2] that if for f E C(Id)  given by (1 1) and for 0 < z < 1 we 
have 

then 

Therefore, we need to show that 

where {up), k 2 0 )  is a sequence of the coefficients of B(") in the diamond basis. 
Actually, let i ~ 9  be such that K = ai, and 

Wj* = { k ~  y.: ki > 2j-', k, < 2j-I  for 1 # i, 2 - j p j ( k J  3 4 for 1~9).  

For k~ Wr, j > 0, we have 

3'") ( p  (k) + 2 - j  ei) + B(") ( p  (k) - 2 - j  ai) 
u t )  = 3(" (p (k)) - 

2 

Using this formula we verify that { u t ) ,  k~ y*] is a Gaussian family, with 
E U ~ )  = 0, and, uniformly in j and k, ZE W,* 

Proceeding as in the proof of Lemma 4.2, we get 

which implies that, with probability 1, 

(12) b dim r (B(")Ird) 2 d + 1 - ~ / 2 ,  

and Theorem 5.1 follows from (10) and (12). 

COROLLARY 5.2. Applying the method of proof of Theorem 5.1 to the shifted 
m d  diluted field { e l a l  B'") (e-2 t - c): t E Id) (e > 0, c E Rd), we can prove that 

where Q c Rd denotes an arbitrary cube in Rd. 
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