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ON THE FRACTIONAL ANISOTROPIC WIENER FIELD*

BY

ANNA KAMONT (SoroT)

Abstract. In this paper we study the local properties of
the fractional anisotropic Wiener field {B®(f): teR?}, where
&= (0t,..., %) 0 <a, <2 Itis proved that, with probability 1, the
realizations of the field B over any cube Q — R? belong to the
anisotropic Hoélder class with parameter /2 in the Orlicz norm
corresponding to the Young function .#, = exp(t*)—1. Other sup-
porting spaces are treated as well. Moreover, the box dimension of the
graph of the realization of B® has been calculated; it is proved that,
with probability 1, the box dimension of the graph of the realization of
B® over any cube QcR? is equal to d+1—x/2, where
K =min(ay, ..., &)

1. Introduction. By the fractional anisotropic Wiener field with the
multidimensional parameter «, where a = (¢, ..., @), 0 < o; <2, we mean
a Gaussian field {B™(#): te R?}, with continuous realizations, EB® (f) = 0, and
the covariance kernel

EB® () B®(s) = K,(t,s), where K, =K,,®...®RK,,,

and for 0 < a < 2, K, is the covariance kernel of one-dimensional fractional
Brownian motion with parameter a, i.e.

K, (t, 5) = S (t]* +1sI*— |t — ).

The aim of this paper is to study the local properties of B®. It is proved
that, with probability 1, the restrictions of realizations of B®(-) to any cube
Q < R fulfill multiply Hoélder conditions with parameter a/2 in the Orlicz
norm corresponding to the Young function .#, = exp(t?)—1. The detailed
calculations are presented for the cube I°. The same arguments applied to the
dilated and shifted field {g!*! B® (¢~ 2t—c): teI’} (¢ > 0, ce RY) give the result
for the arbitrary cube Q = R%

* This work was supported by KBN Grant 2 P301 019 06.
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The one-dimensional problem was recently discussed in the papers [1] (for
a = 1) and [5] (for all 0 < o < 2). The analogous problem for the isotropic
fractional Lévy’s field on R? was considered in [3], and the case of the
fractional Lévy’s field on the d-dimensional sphere was studied in [4].

The method used to obtain the results for the field B™(-) (Theorem 2.1)
reminds the method from the papers mentioned above: at first, we obtain the
characterization of the function spaces in terms of the coefficients of the
expansion of a function in some basis (here we consider the basis consisting of
tensor products of Schauder functions), and then we prove that the coefficients
of the expansion of B® satisfy these conditions with probability 1.

In the last part of the paper (Section 5, Theorem 5.1) the box dimension of
the graph of the realization of B® is calculated. The upper estimate follows
from the regularity of B, but to get the lower estimate we have to study the
coefficients of the expansion of B® in the so-called multiaffine (or diamond)
basis. This method comes from [2], and was used in [3] and [4] to calculate
the box dimension of the graph of the realization of the isotropic fractional
Lévy’s field on R? and on the sphere.

2. Function spaces and fractional Wiener field. Let us start with some
notation: I =[0,1] and for deN={1,2,...} put 2 ={1,...,d}; given

a vector @ = (a,, ..., a)e R and 4 = 9 put a(4) = (@, ..., 4,), where d; = g;
if ie A, and 4, = 0 if i¢ 4; in addition, put |a| = |a,|+ ... +|a,. Moreover, for
two vectors a = (a,, ..., a)eR? and b= (b,, ..., b))eR? we write

a<biff q,<b; for all ie2 and a<b iff a;<b, for all ieP;

in addition, we use

We will also need the notation
0=(,...,00eR!, 1=(,...,1)eR%.

By L,(I%, 1 < p < oo, we denote the space of functions integrable on I°
with exponent p, and C(I% is the space of continuous functions on I By
L, (I°) we denote the Orlicz space on I, corresponding to the Young function
4, with the norm

1w = Sup{fdf(x)g(x)dx: jd,//t*(g(x))dx <},

where .#* is the complementary Young function to .#. For the general theory
of Orlicz spaces we refer, e.g., to [11].
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We are interested in some special family of Young functions. Namely, let
for y>0

() = exp{lu’}—1 for 1 <y < oo,
" |E,w—E,0) for0<y<l,

where E, (—u) = E, (u) is the extension of the convex part of exp {u’} on (u,, ©)
by its tangent line at u, > 0, and u, is the point at which the function exp {u’}
changes the concavity to the convexity. For these Young functions there is an
equivalent norm on L, (I%):
S i
() 1%, = sup->czk.

pz1

For the equivalence of the norms |||, and |-||%, see [8] or [1].

For f: I >R, ie? and heR, the progressive difference in direction e;
(where e; = (8, ..., 65;)€R? denotes the i-th coordinate vector in RY) is
defined by the standard formula

Ay f(x) = flx+he)—f(x) if x, x+heel’,
M o if xel’, but x+he;¢I”.

For h=(hy,...,h)eR? and A ={i,, ..., i} €D we set
Ah,Af = Ahil,ilo"'OAhiksikf'

For feL,(I9,1<p < o, or fe C(I")if p = o0, the moduli of smoothness in the

L, and L, -norms in the directions A are defined as follows:

wpa(f, )= sup |44 fl, forteR’ 0<t<1,

O<hs<t

W4, 4(f, )= sup |4p4fl4, for teR), 0<t< 1-‘

0<h<t

It follows from the equivalence of the norms ||| 4, and |-|%, that

@p,4(f, 1)
© 4,4 (f, ) ~ sup 2252
pz1 D

Now let 0 < <1, B=(B,,..., By, and AeR. Define

1\* d d 1 A
) wp, (1) =t"(1+ln;) =11 té’"(lfz an) .

i=1 i=1 i

We are going to consider some anisotropic generalized Holder classes in.

the L - and L, -norms, described in terms of @, 4(f, #), ®.4,.4(f, t) and wg, ().
More precisely, let for a function y: [0, 1] >R, 4 = @, and te[0, 1],

Vit A) =y (t(4)+1(2\4).
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The anisotropic Hélder classes in the L,- and L, -norms are now defined as
follows:

Lip,(B, ) = {feLp(I"): V@ #AcD) wpalt, )= 0(wp(t; A)},
lip,(B, 4) = {feLip,(B, 2): V(B # A c D) w, 4(t, f) = 0(ws,.(t; A)},
LiPAy B, %)= {fEL.lty I):V@#Ac2) Wy,  f)= O(wﬂ,l (t A))},
lipy, (B, 2) = {f€Lipy, (B, }): V(@ # Ac D) 0y, f)=o0(wp(t; A)},
where O(t(A4)) and o(t(A4)) refer to min(z;: ic A) -0,
lip} (8, ) = {f € Lip.4, (B, A): I fll, = 0(p"?) as p— oo,
V@ #AcD) wpat,f)= o(pl/’w,,,l(t;‘A)) as min(t;: ieA, 1/p) - 0}.

The following theorem presents the results on the supporting function
spaces for the fractional anisotropic Wiener field B,

THEOREM 2.1. Let o= (oy,...,0%), 0<o; <2 for i=1,...,d, and
I1<p<o, I/p<a/2 for i=1,...,d; then

Pr{B®|.eLip, (@/2, 0)} =1, Pr {B®|;a¢lip, (@/2, 0)} = 1,

Pr {B(“)thLisz(“/ 2, 0)} =1, Pr {B(¢)|Id¢1ipmz (@/2, 0)} =1,

Pr{B®|.eLip, (®/2, 1/2)} =1, Pr{B®|n.¢lip,(®/2,1/2)} =1,
Pr{B™|jaelip} («/2, 1/2)} = 1.

The idea of proof of Theorem 2.1 is the following: there are some
characterizations of the anisotropic Holder classes in the L ,- and L, -norms by
the coefficients of the expansion of a function in the basis consisting of tensor
products of Schauder functions (these results are presented in Section 3). Then
we prove that the coefficients of B® in this basis fulfill, with probability 1, the

- conditions required in these characterizations (Section 4). Putting these results
together gives the proof of Theorem 2.1.

COROLLARY 2.2. Applying the method of proof of Theorem 2.1 to the shifted
and dilated field {g'* B® (¢ ?t—c): tel’} (¢ >0, ceR?), we can prove that

Pr{V(Q = RY) B®|yeLip,(x/2, 0)(Q), B®|p¢lip,(#/2,0)(Q)} =1,
Pr{V(Q = RY) B®|yeLipy, (@2, 0)(Q), B®lo¢lip.a, (@/2, 0(Q)} =1,
Pr{V(Q = RY) B®|yeLip,, (@/2, 1/2)(Q), B®|p¢lip, (22, 1/2)(Q)} =1,
Pr{V(Q = RY) B®|,elipf(e/2, 1/2)(Q)} = 1,

where Q < R? is a cube in RY the function spaces appearing above are the
function spaces over the cube Q, and they are defined in the same way as the
function spaces over I°,
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3. The characterization of function spaces. Now we present the charac-
terization of the anisotropic Holder classes in the L,- and L, -norms in terms
of the coefficients of the expansion of a function in the basis consisting of tensor
products of Schauder functions.

Let {¢,, k = 0} be the family of Schauder functions on I, normed in L_,
ie. po(t)=1, ¢,(0)=1t, and for k=2, k=2'+n with j >0 and 1 <n <2/

b, (£) = max (0, 1 — |27+ t—2n+1).

In several dimensions, we consider the family {¢,, k > 0} of tensor products of
Schauder functions, ie. ¢, = ¢, ® ... ®¢y, for k = (k,, ..., k).

To describe the anisotropic Holder classes in terms of the coefficients of
a function in the basis {¢,, k > 0}, the following decomposition of the set of
indices is needed. Let for jeM ={-2, —1,0,1,...}

&= {j+2} for j=—-2or j=—1,
{2 4nin=1,...,2%} for j=0, '

and for a vector j = (j;, ..., j,) we put
N, =Ny x...x N,

The formulae for the coefficients of a continuous function f € C (1) in the basis
{¢, k = 0} will be needed. Let for feC(I%, ieD, xel’ and k=0

B f(x_xiei) for k=0,
Cix (f)(x) = {f(x+(1_xi)ei)—_f(x_xiei) for k=1,

and for keN; with j>0, k=2/+n
¢ () (x)
='f<x+<2n__1 xi>ei>_f(x+((n“1)/2j—xi)e,-)+f(x+(n/2j—x,.)ei)

20t 2
For k = (k;, .>., k;) we put
e (f) = €10, 0. 0Cap, (f)-

Then for any fe C(I?) we have
() f=2% 2 alf)t

JjeMd keN;

Remark. Each time when we write the sum of the d-dimensional set of
indices M? we mean that this set is ordered in such a way that, for j, j'e M9,
F=G1 - ja 7 =01y oy Jo), if max(jy, ..., j)) <max(ji, ..., jy), then j pre-
cedes j'.
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For f given by (3) we put

T () = 2792 ( 3 1e (N, Ty, (f) = sup U;;plgf )

keN; pz1

Now we can formulate the characterization of the Holder classes in terms of
the coefficients {c,(f): k = 0}.

LemMa 3.1. Let 0 < B <1, A€R, and let the function wg; be defined as
in (2). Moreover, let
) R tj _ (2_m3xgl,o)’ s 2——max(ja.0)).

Let 1 <p< oo be such that 1/p < B, for all i=1,...,d. Then
feLip, (B, 2) iff 1;,(f) = O0(wpu(ty) as |jl > oo,
felip,(B,2)  iff  ©,(f) = olwp:(t)) as |jl > 0.

Moreover, for any 0 <y < o0 '

feLipy, (B, 4 iff 14,(f)=0 (wﬂ,z (@ j)) as |j| — o,
felipa, B, ) f i (f)=o0(wpaty) as |jl—> o,
felipf (B, 2) iff 7;,(f) =o0(wpa(t)) as max(p, |jl) > co.

Proof. For the L,-norm and A = 0 this lemma was proved in [9], and the
proof for other cases follows the same idea. For the sake of completeness we
present here the sketch of the proof. »

Let {f,, k > 0} denote the Franklin system on I, ie. {f,, k >0} is the
system obtained by the Gram-Schmidt orthonormalization (in L,(I)) of
Schauder functions {¢,, k > 0}, and let {f,: k > 0} be the family of tensor
products of Franklin functions. Let for fe C(I%)

M (f) = 29022745 (1, ey,

keN;

It was proved in [9] that there exists a constant C > 0, independent of f and p,

such that -
. njvp (f) < pr,A_,-(f: tj)9
where A; = {i: j; >0}, and for any G # A c P

Wpa(f, 1) S CHED Y q; (f) [] 2minteid,

JjeMd icA
Mp()SC Y tep(f),  15,() < C Y 208710y, (f).
I+ &zj

The required characterizations for the L,-norm follow now from these
inequalities. The characterizations for the L, -norm follow from the above
inequalities and the equivalence (1). &
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4. The asymptotics of the basic coefficients of B®. Let {B™(t): teI’} be
the fractional anisotropic Wiener field with parameter « = (a,, ..., ), and let
{b®, k > 0} be a sequence of the coefficients of B™ in the tensor product
Schauder basis, i.c.

B9 =Y Y b ¢,.
JeMd kelNy
LeMMA 4.1. The sequence {b{’,k >0} is a Gaussian sequence, with
Eb{(® = 0 and the variance given by the formula
. d

4 - E b2 = ] a9,

=1

where for 0 <o <2

0 for k=0,
a? =<1 for k=1,
27*—2"%2%  for keN,,j> 0.

Moreover, there exists C > 0 such that for all j and k,le N j

1
() |Eb bi| < CoiaRalk=1),
where j-a=j, o+ ... +j,0 and
d 1
RO =1|| —=-
-0 i1=—[1 I 7 ke

Proof. These estimates follow from the formulae for the coefficients of
a function in the tensor product Schauder basis, the formula for the covariance
of the field B™ and the estimates for the progressive difference of order 4 with
the step 1 of the function |- +n|* 0 < a <2 (cf. lemme IV.2 of [5]). =

Now the asymptotic behaviour of the sequence {b{, k> 0} will be
studied. Let us note that if k = (k,, ..., k;) with k; = 0 for some i€ 2, then
Pr{b{® =0} = 1. For k> 0 let us introduce

b
I = —F—=.
NGITSE
Moreover, let us put n; = #]\"fj, 4, = E|gl?, where geN(0, 1),
; 1
G(]9 p) = n_ Z lgklpa
i kel

and let M ={-1,0, 1,...}.
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LemMA 4.2. For each p, 1 < p < o0,
Pr{G(j, p) > u, as |jl > 0, je M} =1.
Proof Let £¢>0 and je M? be given. Then

Pr{lG(j, p)— u,,|>8}\(n_ 7 E(Y (gxP— )’

keN, f1

1 .

- E(g.l?— P—u).

_ o ”ZN (gud? — 1) (gul” — )
As the random vector (gx» gx) has a normal distribution, we get from lem-
me I1.2 of [5] (or Theorem 4.6 of [1]; actually, it is equivalent to Gebelein’s
inequality, cf. [6], p. 66) and from the estimates (4) and (5) the inequality

(6) |E (gsl” — 11,) Uga|” — 1t,)] < C (p2p—p3) Ru (B —1).
Let us observe that
M Y. Ry(k—D~n

k.k'eN;

which implies

2
. Map—ip 1
Pr{G(, p)—pyl > &} < C227F —.
J

As n; ~ 2V, Lemma 4.2 follows from the last inequality and Borel-Cantelli
lemma. =

COROLLARY 4.3. For each 1 < p < o0 we have
. 1
Pr {sup (G (j, p)) P> pry =1

jeMd
and
1 ,
Pr{ sup sup —=(G(j, PN 2 fexp} = 1
1<p<w jeM4 \/;
where _ o

= 1 1/p
Mexp - sup .up .
1<p<w+/P

LEMMA 4.4. We have
Pr{ sup sup —(G(j, )P <w}=1.
1$p<wjeMdﬁ

Proof Let us observe that

. 1 , 1/2p)
sup sup GG, p)"" <o iff supsup—(G(j, 2p) < .
1<p<w jeM"\/,( ) peN J‘Ef“’\/l_’( )
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Let peN,jeM’ (eR, (=, (where {o > 0 is chosen so that for all pe N and
{>{, we have (f 0?2 —uyp = f {)??) be given. Then

1 ; ,
Pr {T(G . 20)"" > c} < Pr{lG(j, 2p)— pal = (/PO — oy}
D
< Pr{lG(j, 2p)— pzpl = 3(/P0}
Using the Tchebyshev inequality, (6) and (7) we obtain

Pr{ jE(G( 2 ))”‘2"’>5}
4 1

(\/_ ()4 ankeN,

As pa, = (2p)/(p!2%) and p! ~ (2nn)'2 (nfe)', we get

1/2p) cl(4 2r
Pr {\/E(G(J 2p)) >C} (ecz) ‘
Let { > ./4/e; then

Y. [E (g4 — p2p) (gl — 12| < mp—/»:%p 1
/p0%

FHC

peN jeralj

Now the last inequality and the Borel-Cantelli lemma complete the proof of
Lemma 44. =

LeMMA 4.5. There exists C > 0 such that

Pr{ lim S—l—lpkL’lg"l C}=1.

lil~w.jeitd /1 +Inn;

Moreover,

Pr{ fm SRkl 2}=1.

|- 0, jeMa /1+1nnj

Proof. First, let ¢ > ./2; then

1
Pr {—T\/i—sup l9.] > c} < Z Pr{lgil > c/1+1Inn;}

+1nn; ke, keh;

2
<n exp(—i—%)



94 A. Kamont

This gives

> Pr{ L sup|g|>c}<oo
jel\?" A/ 1+1n nj kEf\"_f g ’

and the second statement follows from the Borel-Cantelli lemma.
To prove the first part of the lemma, let us choose 4, 0 < < 4—q, for
i=1,...,d; moreover, for 0 <s <1 let us put

() = {j;+1} for j, <0,
T2 [ =1, ..., [2979]) for j, >0,
and N;(s) = Nj,(s)x ... xN;,(s). Then for all k, k'eN;(s) we have

|Egr gi] < g ;= C, (l/nj)sa'
Putting

n,(s) = #N,(s), Z(i)=?'z1(s(17_—l—)
iy

and using Slepian’s lemma (cf. [10], p. 74) and lemme I1.9 of [5] we get

Pr{suplgyl < C/1+Inn;} < Pr{sup g, <C/1+Inn;}

keNj keNj(s)

<Pr{g<C/1+lnn}P (where geN(0, 1)

1+1 2(j)
<(1—£ﬂcxp(—2cz(l+lnnj))) .

N

Let us choose 0 <s< 1 and C > 0 such that

1 z(j)
3 (1 —gﬂexp(—ZC?‘(lHnnj))) < 0.
JjeMd

NG

Then the first part of the lemma is a consequence of the Borel-Cantelli
lemma. =

COROLLARY 4.6. There exists a constant C > 0 such that

Pr{C < sup sup—lgi—— < oo} = 1.

jeMakely /1 +1nn,

Let us put

GG, p)'".

1
H(,p)= ———
G.2) ,/p(1+1nn,)(
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LEMMA 4.7. We have
Pr{ lm  H(j,p=0} =1
JjeMd,max(p,| j|)- o

Proof From Lemma 4.4 we obtain

1
sup sup —=(G(J, p))”p <
JjeMd1<p<w /P

with probability 1, so
®) - Pr{ lim sup H(j,p=0}=1
1= o, jeM? 1S p< 0

It follows from Corollary 4.6 that, with probability 1,

su N
up Prei; g <

s
ettt /1 +1nn;

o0,

which implies
©) Pr{lim sup H(j, p) =0} = 1.
p—ow jeMd
The equalities (8) and (9) imply the lemma. =
Proof of Theorem 2.1. Theorem 2.1 is now a consequence of the
estimate for the variance of b{® from Lemma 4.1, the characterization of

anisotropic Holder classes from Lemma 3.1, and the estimates from Lem-
mas 4.2, 44, 4.5, 47 and Corollaries 4.3 and 4.6. =

5. The box dimension of the graph of B™(:). The box dimension of
a bounded subset F = R?*! is defined as follows. Let, for é > 0, A";(F) denote
the minimal number of sets of diameter not exceeding & needed to cover F.
Then the box dimension of F, denoted by dimy F is defined as

1
dim, F = lim 2&72()
50 lOgo

if this limit exists; otherwise, one can consider the upper and lower box
dimensions of F, defined as the upper and lower limits of (log A (F))/logd " as
é — 0, and denoted by d—in—lb F and dim, F, respectively. (For more details cf. [7].)
For the function f: U— R, U < R% we denote by I'(f) its graph, i.e.
I(f)={(x, f(x)): xeU}.
The following theorem gives the result on the box dimension of the graph
of the realization of B®.

THEOREM 5.1. Let a = (ay, ..., &), 0 <a; <2, k = min(a,, ..., &y). Then

Pr {dim, I'(B®|;) = d+1—x/2} = 1.
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Proof. Let us note that E|B™ (f)—B™® (s)> < C|[t—s|" (cf. the formula
for K,), and it follows from the Kolmogorov criterion that

(@ () — B@
Pr{V(0<a<1c/2) sup w< oo}=1
t,seldt+s ”t—S”

(cf. also Theorem 2.1). As for f: I > R such that |f()—f (s)] = O (|t —s|®) we
have

dim, I'(f) < d+1—¢,
we infer that, with probability 1,
(10) dim, I' (B®|;s) < d+1—x/2.

To obtain the lower estimate, we use the method of calculating the box
dimension of the graph of a function from [2], with the use of the coefficients of
a function in the so-called diamond basis (for more properties of this basis cf.,

e.g., [12]). ‘
Let us recall the definition of the diamond basis; let

¥ (x) =max (0, 1—|x,])-...-max (0, 1—|x,)).
In addition, let us put
Wo=1{k=20: k=(k,,..., k), max(k,, ..., k) < 1},
and for j> 0
Wy={k>0: k=(ky,..., k), 27" <max(ky, ..., k) <27},
p(k) =k for ke W,, and for ke W,, j >0,

1
p(k) = —z—j(p,-(kl), coos D (k).

where

2k for 0<k<2/7t,

pj (k) = j—1 j—1 j

2(k—2"1)—-1 for 277 +1< k< 2.
The diamond basis is the family of functions {i,, k > 0}, defined on I’ by the
formula

Yo =¥ (2 (t—pk) for keW, j=0.
For each fe C(I% there exists a unique sequence {u,, k> 0} such that
an f=2X ) wis
i=0 keW;

actually, the coefficients {u,, k> 0} are some linear combinations of the values

of f.
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It was shown in [2] that if for f € C (I%) given by (11) and for 0 <& < 1 we

have
. 2F
lim > 3. il > O,
jo keW ;

then

dim, I'(f) > d+1—e.

Therefore, we need to show that

2ji€;'2
Pr{li_m 23 Y P > 0} =1,

Jj— o keW;

where {u{®, k > 0} is a sequence of the coefficients of B® in the diamond basis.
Actually, let i€ 9 be such that x = «;, and

Wi = {keW;: k;>271, k,<2/7" for 1 #i,277p;(k) >} for le 2}.
For ke W¥, j > 0, we have

(@) —Jg. () —2" g,
u}"’)=B(’)(p(k))—B (p(k)+2 El)-;B (p(k) 2 el).

Using this formula we verify that {u{®, ke W*} is a Gaussian family, with
Eu{® = 0, and, uniformly in j and k, le W}*
27

Elu®2 ~ 2-i* Fu®y < C—M— .
|”}c| » [Eui® wi™] < 1+|ki_li|4—x

Proceeding as in the proof of Lemma 4.2, we get

2j|c,'2
Pr{li_m 7 ZJ”&”I > 0} =1,

j*r o keW;

which implies that, with probability 1,
(12) dim, I'(B®|d) > d+1—x/2,

and Theorem 5.1 follows from (10) and (12). m

COROLLARY 5.2. Applying the method of proof of Theorem 5.1 to the shifted
and dilated field {o" B® (0o~ %t—c): teI’} (0 >0, ceR%, we can prove that

Pr{V(Q < RY) dim,I'(B®|) = d+1—x/2} = 1,
where Q — R? denotes an arbitrary cube in R°.
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