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THE REFLECTED BROWNIAN MOTION 
ON THE SIEWII%?JKT GASKET 

BATARZYNA P I E  T B US K A-P A E U B A (WARSZAWA) 

Abstract. The paper identifies the Dirichlet form of the "path- ' 

wise-defined" reflected Brownian motion on the Sierpiriski gasket with 
the Dirichlet form on the Sierpiliski gasket introduced by Fukushima 
and Shima in [3]. 

1. INTRODUCTION 

In [lo] we defined a Markov process on the Sierpiriski gasket, which we 
called the re$ected Brownian motion. Our definition was purely trajectorial and 
the work did not investigate any properties of its Dirichlet form. Basically, the 
process was obtained from the free Brownian motion on the infinite gasket by 
the foIlowing procedure: "nothing changes when we are on the first triangle - 
and when we get to a comer, the process gets reflected instead of going 
through." 

The work by Fukushima and Shima [3], initiated by a paper by Kigami 
[5], was devoted to the study of the Laplacian on the Sierpinski gasket, defined 
geometrically and without probabilistic context. 

There is a Dirichlet form coming naturally from the Laplacian introduced 
by Kigami in [5] and it turns out to be (up to a multiplicative constant) the 
Dirichlet form of the process in study. 

The goal of this paper is to identify the two Dirichlet forms: the one 
corresponding to the reflected Brownian motion, the other defined in [5]. This 
work therefore justifies the name "reflected Brownian motion" - it is in fact 
the normally reflected process that comes out. 

In Section 2 we introduce the notation concerning the Sierpinski gasket 
itself. In order to make the paper self-contained, Sections 3 and 4 are devoted 
to sketchy constructions of the reflected Brownian motion and of the Kigami 
Dirichlet form. Section 3 is based on the work from [lo], Section 4 - from [3] 
and [5]. The identification theorem is carried out in Section 5. The theorem is 
obtained by establishing a resolvent identification, which then yields the 



identity of the Dirichlet forms classically. The main tool we are using is 
Dynkin's formula, which allows us to straightforward connect the difference 
operators (the discrete approximation of the Laplacian) with the Brownian 
motion. The heart of the identification theorem lies in Lemma 2, which follows 
from certain symmetries of the process. 

Finally, let me thank Professor Alain-Sol Sznitman, who conjectured this 
theorem and patiently read previous versions of this paper. 

2. PRELIMINARIES 

We start by introducing the notation, which will be a mixture of the one 
from [I] and the other from [3] and [ S ] .  

Let a, = (0, O), a, = (1, O), a, = (f , @/2) be the vertices of the equilateral 
triangle of unit size 3,. Set Wo = {a, ,  a , ,  a,). 

For m E Z + we define inductively 

and we put 

where W, denotes the symmetric image of Wm in symmetry with respect to the 
y-axis. 

Now, we let 

to be the so-called m-th grid, and 

9, is called the (infinite) two-dimensional Sierpinski pregasket. Its closure in the 
planar topology is the two-dimensional Sierpinski gasket, which will be 
denoted by 9. 

To will denote the collection of all "unit triangles" in 8, whose vertices are 
neighboring points from 9,. For x E 23, we define the index of x as the number 
of step at which x appeared, i.e. 

Let 9 = 59nj0 be the "first triangle" on the gasket and we will write F,  
for s,nY0, Fm for 59,nj0, and so on. 
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For rn 2 1, 

If x EF~, in the sequel we will work with the collection of its neighbors 
from the rn-th grid, Vm,,: 

p, will be the normalized counting measure on F,, 

p, do converge weakly to a measure p, which is a multiple of the 
Hausdorff xdf-measure on dJ being the Hausdorff dimension of the 
two-dimensional Sierpinski gasket, 

We use the same notation, p, for the measure on the whole gasket obtained as 
a natural extension of the measure on 9. 

We also introduce a new metric on the gasket, which better suits our 
purposes: for x, y €3,  deflne d (x, y) to be the infimum over the Euclidean length 
of all paths, joining x and y on the gasket. 

It is then extended by a limit procedure to a metric on 9 and 

The Brownian motion on the free infinite Sierpiliski gasket was first 
defined by Kusuoka in [7] and Goldstein [4]. However, we stick to 
construction by Barlow and Perkins [l], as their work gives very precise 
estimates on the transition function, distribution of hitting times, and 
SO on. 

There are two additional numbers related to this process (and to the 
gasket itself): the dimension of the walk, 

log 5 
d, = - = 2.32193.. . , 

log2 

and the spectral dimension (asymptotic frequency of eigenvaIues of the 
Laplacian), 

2 log3 a,=-- - 1.36521.. . 
log 5 

This process is a strongly Markov, Feller process having 9 as its 
state-space. It will be denoted by ((PJxEg, (Z,),ao), its transition density by 



p ( t ,  x, y), the semigroup {acting on I? (B, dp)) by (P,) ,30,  and the resolvent by 
(R,),,,. The properties of this process that we shall appeal to will be listed as 
needed. 

3. CONSTRUCTION OF THE REFLECTED BROWNIAN MOTION 

In this section, we will sketch the construction of the reflected Brownian 
motion on 9. For the precise definitions, proofs of the properties listed below, 
and related questions we refer the reader to [lo]. . . 

First, one needs to introduce some labeling on Q,. 

3.1. Preparatory labeling d the gasket. We will introduce a labeling of the 
grid $9, of size 1. Our labeling will distinguish between the vertices of the 
0-triangles, although the process is locally symmetric with respect to rotation 
by the angle 120". This procedure will allow us to construct the "reflected 
Brownian motion" on the Sierpinski gasket. 

First observe that $, c Ze,  + Z e ,  as for every point x E go, x = ne, + me,, 

n, m E Z (el = (1, 0), e, = (4, &/2)), and this representation is clearly well 
defined. 

We put the labels as follows (see Fig. 1). Consider the commutative 
3-group A, which consists of even permutations of 3 elements { a ,  b, c) .  Then 
A, = (id, (a, b, c), (a,  c ,  b)) ,  and we put p ,  = (a ,  h ,  c) and p, = (a, c ,  b). 

Fig. 1 

Clearly, p: = id and pz = id. The mapping 

is we11 defined. We associate with each point x = ne, +me, the value of 
( p a p T ) ( a ) .  Consequently, every triangle of size 1 from To, with vertices from 
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go, has its vertices labeled a, b, c, in the way corresponding to the location of 
this triangle in the gasket. 

For an arbitrary x ~9\3,, x belongs to exactly one triangle A, ( X ) E ~ ,  

(see Fig. 2), and x can be written as 

where a (x), b (x), c (x) are the corresponding vertices of A, (x) (with introduced 
labeling), x,, x,, x, E (0, 1). 

a b 

Fig. 2 

We define a projection map no from the Sierpinski gasket onto its 
intersection with the first triangle Po by setting 

If XE~?, ,  then x itself has a label and we can map it to a corresponding 
vertex of the "first" (shaded on Fig. 1) triangle. 

3.2. Construction of the reflected Brownian motion. We do use the mapping 
n defined in the previous subsection. Observe that this mapping behaves as 
a usual projection with one exception: it distinguishes between the vertices of 
the projected triangle. For this reason, n: will be called the folding projection. 

The resected Brownian motion on 9 will be defined as a family of 
measures on (C (R + , S), &? (C (R, , 9))), given by 

and the process itself by X, = n(Zt).  Its transition density q is given by 

(3) 
~ Y . e X - l C V ~ ~ ( t ,  X I  Y') for X E %  y$Fo,  

q(t, x7 Y) = 
l,y,P(t, x, y') for X E %  ~ € 9 0 .  



What makes this correct is the fact that (see Theorem 4 from [lo]) for all 
x, y E 93 such that n ( x )  = x ( y )  the equality n (P,) = x (P,,) holds true. Moreover, 
for such x and y and all z E g, 

The transition density q, as defined by (3), is symmetric with respect to 
x and y and continuous in all its variables. 

The semigroup of selfadjoint operators on P (Z dfi) connected with the 
reflected Brownian motion on 9 will be denoted by (P:),,,, its resolvent by 
(Rt)aro, and the Dirichlet form of this process by 

1 
@ ( f , f )  = lim- j j (f 1x1-f ( ~ ) ) ~ q ( t >  X7 Y ) ~ P I ~ ) ~ P ( Y ) .  

r-to 2 t , ,  

Its domain D (bR) consists of those functions from L? (% dp)  for which the Iimit 
above is finite (the expression under the limit increases with the decrease of t). 

4. THE BIGAMI LAPLACIAN A N D  THE DIRICHLET FORM 

For f E J!? (E d p )  we introduce the difference operators H,,, as follows: for 
~ € 9 ;  

Put A m f  ( x )  = S m H m , , ( f ) .  Then the Laplace operator, acting on functions from 
CO(F) (continuous with zero value on 8 9 1 ,  is defined as follows: 

If there exists a function g ~  C ( 9 )  such that lim,,, A, f (x)  = g ( x )  
uniformly in x E PO,, then we set A f = g. 

The domain D ( A )  of the Laplacian consists of those functions from 
I.? (R d p )  for which the above uniform convergence holds. 

Observe that the value of the Laplacian of a continuous function at 
a given point ~ € 9 :  can be assigned if the limit above merely exists: in this 
case we just put 

A f (x) = lim A ,  f ( x ) .  
m- tm 

At the boundary points ~ € 8 9  we define the one-sided difference 
operators by 
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The difference operators at the boundary give raise to the so-called normal 
derivative at the boundary points: for x E aP 

provided that the limit exists. 
Now we are ready to introduce the Dirichlet form. Let 

&'mrn)(f,f) for f E L2 is known to be increasing when rn increases (see 
Proposition 4.1 of [3]) so that we can define 

and the domain of the Dirichlet forrn D ( b )  consists of those functions from 
I? (F, dp)  for which the limit (6) is finite. As the last thing, we note after Kigami 
that, for f, g E L? (g dp) 

Iff ED(A) and the normal derivatives off at the boundary exist, then for 
any S E D ( ~  

5. THE DlRICHLET FORM OF THE REFLECTED PROCESS 

The main result of this paper is the following 

THEOREM 1. We have 

P r o o f. We will show that, for every f E C, (9) (continuous functions with 
compact support inside F), Rff belongs to D ( 8 )  and 

(7) (Rff ,  v)  = (f, v),2,,,,, 
for an arbitrary function V E D  (&), This will be enough in view of 1.3.10 of [2]. 

The proof is split into several lemmas. 
First we show that without difficulty we can calculate the pointwise value 

(see (5)) of A ( R t  f )  ( x )  for x E 9;. 
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LEMMA 1 .  Let f E C, (F) and let a > 0 be fixed. Let x E F:. Then, for 
m 2 i ( x ) ,  

where E {m) = supxEF, (m)l is a sequence of positive numbers tending to zero. I n  
particular, it follows that, pointwise 

Before passing to the proof of this lemma, let us notice that we can 
naturally set the value of A ( R f f ) ( x )  at the points which are not from 90,. As 
the right-hand side of (9) is continuous, we put 

with (x,) being a sequence of points from SO,, approaching x. 

P r o o f  of t he  lemma. We shall make use df Dynkin's formula. For 
a given rn > 0, let T, denote the hitting time of the m-th grid, 4,. For all 
x E 90, the formula reads 

where E: are the expectations corresponding to the Iaw (Q,),, of the reflected 
Brownian motion on 9. 

Observe that, for x E 80,, Px-almost surely T, is the exit time from 
B (x, 1/2") provided m 2 i (x).  As (X,) ,  ,, and (ZJ,,, are equidistributed up to 
time T,, we have 

( 1  1) E: [T,] = Ex [T,] = 1/5" and 1 - a/5" < Ez [exp ( - aT,)] < 1 

For rn 2 i(x),  the formula (10) can be written as 

(12) t Ez Cexp ( -aT,)I Hm,x ( R f f )  
Tm 

= ( 1  - E: [exp { - aT,)]) R f f  (x) - ESI [ 1 e-"f (X,) ds] 
0 

and 

(13) A ,  ( R f f  ) (x )  = 5"Hm,x ( R f f  

5, ( 1  - E: [exp ( - a T,)]) 
= 4( 

E: Cexp ( - a K ) l  
R:f Ix) 
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As we will study the convergence of (13) when m goes to infinity, in view 
of (1 1) it is enough to see that 

lim El: [ j e-"" f (X, )  ds] = f(x) 
rn+ m 0 

and that the distance from the limit depends only on m. The behavior of the 
first summand in (13) is controlled by (11) and therefore depends on m only. 

For the second part we observe that again 
Trn 

- E: [y ed" f (Xs) ds] = E, [ e-"f (2,) ds] . ( 1 5 )  . . 
0 0 

Let X = sup,,,: I f  (x)l and let w f  (6) be the modulus of continuity off: 
We estimate now, for m 2 i (x) ,  

Now, before the moment T, we did not travel farther than at a distance of 
1/2"; thus d ( Z , ,  xf 6 1/2" for s < T,. Hence 

la, (m)l d 5" Ex [Tm] . ~ f ( 1 / 2 ~ )  = Wr (1/2'"). 

The estimate of b, (m) is not hard either. For x E 9, and rn EZ we use the 
inequality (Theorem 2.19 from [I]) 

where c1 and c, are positive constants. 
Consequently, 

The last expression goes to zero exponentially as m goes to infinity with 
the rate of convergence controlled only by rn. Thus the lemma is established. sl 

Next, we show that the normal derivative of R: f vanishes at the vertices. 

LEMMA 2. Suppose that f E C, (S) and let p E 89. Then 

dR'f exists and is equal to zero. (1" dn 



Proof.  This lemma follows from certain symmetries of the process. 
First note that the reflected Brownian motion on the gasket is symmetric 

with respect to the vertices of the triangle (which follows from the symmetries 
of the "free" process and from the way we have defined the projection x). Then, 
if #I denotes the rotation by 120" around the barycenter of F,  for an arbitrary 
f E C, (9) we have 

Therefore, as (16) is to be shown for all f E C,(F), it is enough to check this 
assertion for p = 0. This simplifies significantly the proof, as 0 pIays quite 
a special role on the gasket. 

Next, let 

Define the mapping 

as the composition of the symmetry with respect to the y-axis and the 
symmetry with respect to the symmetry axis of the angle a (see Fig. 3). For an 

I 

Fig. 3 

analogous mapping B- -9, we will also use the letter a. Observe that the 
way we have defined a gives 

(17) n ( ~ y ) = . n y  for all ~ E B .  

Due to the symmetry of the free Brownian motion we have 
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Let us now fix a function f E C , ( ~ )  and a number a > 0. Rewrite the 
expression defining R f f :  

(C (x) = 1 for x $ FO and c (x) = 2 for x E Fo), where the summation in the last 
sum runs over all the O-triangles A ,  which are included in 9, (0-triangle 
denotes a unit size triangle in the gasket with vertices from 9,). The change of 
the order of summation is legitimate as the series is unconditionally conver- 
gent. 

Using (17) we find that (19) is equal to 

This immediately gives 

with h: 9 H R defined by 

h ( y )  = {:("Y) 
Y ''+ 9 

otherwise 

(this is slightly abusive as h$C, but it makes sense formally and the estimates 
below are correct). 

All the time we allow ourselves to be careless about the behavior at the 
vertices, but the assumption that the support of f lies entirely within 9 makes 
it correct. 

We now want to see that 5mH,,o(Rah) = Am(R,h)(0) can be bounded 
independently of m. This in turn will give the equalities 

and the lemma will be proved. 



To see that A,(R, h)(O) can be bounded we use again Dynkin's formula. 
As in the proof of the previous lemma we get, using ( I f ) ,  

which completes the proof of this lemma. 

Next, even though we are not able to establish that R t  f E D (A) ( f  E C, (P)) 
(the validity of (12) is the major obstacle - (12) is valid only for rn 2 i(x)), we 
can see that Rff belongs to the domain of the underlying Dirichlet form. 

LEMMA 3. For f  E C,(S), R z f  belongs to  D ( 8 ) .  

Proof.  We must see that b(")(R;f,  R t f )  ci C and that the bound 
C depends only on f and a, not on m (blm) was defined by (6)). This is 
a straightforward check which only uses the Dynkin formula and (11). 

Now we know that the statement of Theorem 1 is correct, i.e., that 
8, (Rt f, v)  makes sense for all f  E C, (F) and v E D  (8). Moreover, one can show 

LEMMA 4. Let f and v be as in the assumptions of (7). Then 

(here A ( R f  f) ( x )  denotes the pointwise value of the Laplacian, as calculated in 
Lemma 1). 

Re mark  1 .  Lemma 4 shows, in particular, that f E D (2) (if denotes 
Friedrich's extension of A). 

P r o  of. Recall that 

Lemma 2 allows us to forget about the second summand, but, for the time 
being, denote it by E ,  (m). 

For the first part, we have 

with prn defined by (1). Now, Am ( R f  f )  ( x )  is extended to be equal to zero outside 
9:. 

Let us now study the limit of (20) as m+ a, which exists by Lemma 3. 
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RecaII that for rn 2 i(x) (see (8)) 

This way, as p,'s are concentrated on appropriate Fm3s and p,,,(PJ = 1, 
equality (20) reads 

and 

But we know the value of A (R: f)(x) at all the points x E F. It changes 
continuously with x. Thus, the weak convergence p,*p and the convergence 
of the E'S to zero give 

The lemma is established. ra 

Conclus ion  of t h e  p roo f  of  Theorem 1. All the work is now done. 
Using Lemmas 1 and 4 we obtain 

which completes the proof. rn 

6. CONCLUDING REMARKS 

1. 0bserv.e that the only tool that we were using was the Dynkin formu- 
la - we did not appeal to the uniqueness of the "free" Brownian motion on the 
infinite gasket, as proved in [I]. In fact, one can go along similar lines to show 
that ($8, D (b),) is the Dirichlet form for the Brownian motion absorbed at the 
vertices ( D  (a), = (f E D  (&): f laF = 0)) and that ($ Cm , D (8)) is the Dirichlet 
form of the free process (the precise definition of 8" is yet to be made - 
Fukushima and Shima gave the construction of the Dirichlet form on the 
half-gasket, one has still to reflect it through zero). For the the last statement, 
the proof that would use the uniqueness theorem of Barlow and Perkins would 
require a careful verification of some symmetry properties for the diffusion 
associated with the underlying Dirichlet form - thus the approach developed 
in this paper seems useful. 
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2. All the work is done for the planar Brownian motion. For higher 
dimension, the construction of the reflected Brownian motion can be carried 
out similarIy. The identification of its Dirichlet form and the one defined by 
Kigami [S] also holds. 

3. We believe that a similar construction of the reflected Brownian motion 
can be carried out on more general nested fractals. However, one should be 
a bit careful: our "folding" makes sense only if we start with an infinite nested 
fractal rather than with a finite one. One can convince oneself that a similar 
"folding" can be performed on some other fractals, e.g. Kumagai's Pentakun 
(see [6]). To construct the appropriate folding on a general nested fractal and 
to identify its Dirichlet form with the one as in Kusuoka's paper [7] will be the 
subject of future research. 
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