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Abstract. In this aper we firstly study f, the inverse Laplace P transform of F(s) = n,=, ( s - 0 3 .  The distribution f is then used to 
define a family of linear distribution processes. This family generalizes 
the so-called fractional ARMA processes X, = f- f (t  -s) d W ,  which 
were introduced by Viano et al. [I41 in the case of square integrable$ 
Using previous results [I] we describe the regularity properties of the 
distribution process associated with F. Finally, we give a definition of 
the mixing coefficients suitable for distribution processes, and we ob- 
tain conditions on the parameters with I; needed for fractional ARMA 
distribution processes to be mixing. 

1. INTRODUCTION 

The concept of stochastic distribution processes was introduced by It6 191 
and by Gelfand and Vilenkin [6], and these processes have been widely studied 
since this time. See for instance Fernique [5]. In [6] Gelfand and Vilenkin 
point out the interest of stochastic distribution processes in domain such as 
physics where distributions are successfdy used as an alternative to ordinary 
functions. This idea is developed in Meidan [ll] where the connection between 
ordinary and distribution processes is investigated. 

In this paper we present a parametric family of such generalized processes. 
This family is a particular case of the more general so-called linear distribution 
processes introduced in [I], and is directly derived from the family of frac- 
tional continuous time ARMA ordinary processes recently studied by Viano 
et al. [14]. 

Recall that till now long memory second order continuous processes are 
mostly of the form 
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where W is the standard Brownian motion and f is such that the behaviour of 
the spectral density of X is like 11-1,1-2d for some AD. This is the case for 
increments of the fractional Brownian motion (Mandelbrot and Van Ness [10]) 
and for the fractional ARMA processes introduced and studied by Viano et 
al. [14]. In the later case the filter f is chosen amongst the inverse Laplace 
transforms of the parametrized family of F having the form 

K 

(2) F ( s )  = n ( s - u ~ ) ~ ~ .  
k = l  

The investigation carried out in [14] remains within the framework of second 
order ordinary stationary processes, and hence supposes that F is the Laplace 
transform of a square-integrable fmction on W'. This imposes then certain 
conditions, in particular, on the sum of the exponents dk.  

The aim of this paper is to investigate what happens when this assumption 
is dropped. We show that in this case the process can be defined as a dis- 
tribution process. 

In Section 2 we study the distributionf; defined as the Laplace transform 
of a function F with properties of holomorphy and polynomial growth at 
infinity. Transfer functions of the fractional ARMA type (2) satisfy these as- 
sumptions. 

In Section 3 we study the regularity of the paths and the covariance of 
fractional ARMA distribution processes. 

Finally, we propose a definition of mixing for distribution processes that 
generalizes the usual definition for ordinary processes. We then show that if the 
transfer function F is holomorphic in a domain which strictly contains the 
right-half plane and F is bounded above and below by a polynomial at infinity, 
then the mixing coefficient sequence of the associated distribution process is 
geometrically decaying. When f has a singularity on the imaginary axis, we 
show that there is no mixing property. These results are compared to those of 
Ibragimov and Rozanov [8], Rozanov [I21 and Viano et al. [14] for ordinary 
time continuous processes. 

The family of fractional distribution ARMA processes presents all the 
advantages of a parametrized family: it can be used in fields as diverse as 
finance, rugosity of surfaces and phenomena connected to viscoelasticity. As 
a family of distribution processes it is a good tool to describe diffusion phe- 
nomena across complex surfaces. 

2. DESCRIPTION OF THE FILTER 

We deal with linear distribution processes on R with the distribution filter 
f defined by 



Fractional ARMA distribution processes 313 

These processes have been widely studied in [I] and, in particular, we know 
that the expression (3) is well defined if and only iff  belongs to the Sobolev 
space H -  " (W) = U, Hs (R), where Hs (R), s ER, is defined by 

where <<)" = (1 +1[1)"12 and 4'(R) is the space of tempered distributions. 
In this paper we focus on the case where f is the Laplace transform of 

a transfer function F. We will make the following hypotheses on F: 

(HI) F. is holomorphic in the domain . . 

3 = C\{z; Re(z) d a and IIm (z)l G K IRe(z)l). 

(H2) 3N > 0, 3C, IF (z)l < C { I z ~ ) ~  in 9. 

The Laplace transform is defined by 

Vt>O, 5 f ' ( f ) ( s ) = F ( ~ ) = ( f ( t ) , e - ~ ' }  for s ~ C , R e ( s ) > a .  

When F satisfies the hypotheses (HI) and (H2), the inverse Laplace transf0rm.f; 
written f = 3-' (F) in g l ( R + ) ,  is well defined (see [13]). We will pay a par- 
ticular attention to the case where 

K 

F (s) = n (s with a, E C, dk E C, k E N. 

Distribution processes obtained in this way for admissible f generalize the 
fractional ARMA processes as introduced by Viano et al. [14]. 

We firstly describe the behaviour of the distribution & The distribution 
process (3) being well defined only if ~ E H - "  (R), we study the conditions for 
F under which this property is attained. 

PROPOSITION 1. If F satisfies the assumptions (HI) and fH2), then 
f E H- rn (R) if a < 0 or a = 0 and P(i5)  EL^^, (R). In this case f beiongs to the 
Besov B;,E- ' I 2  (R). 

Pro of. If F (it) is locally integrable, f(t) = F (it) and there exists q E Z 
such that (5)g F (it) E L2 (R). Hence f E Hg (R) and f E H- " (R), and if a < 0, then 
P (it) is locally integrable. 

We denote by B(0, r)  the ball with radius r in Rn. Let $ E%," (B (0, 2)), 
0 < $ < 1 and + 1 on B(0, 1). Then we have in Vrn(Rn) 

lim 1,b(2-~5) = 1. 
q+ + m 

9 - PAMS 16.2 
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For k = - 1, 0, . . . we define the operator A, by: for u E 9 ' ( R ) ,  

We write 6 ( 5 )  = x (0 and, for k 2 0, 4, (t) = 2" (2kt). We then have 6, (5)  
= xk(() and A,u = 4 , *u  for k > O ,  A-,u = . ~ - - ' ( a k ) * u .  

The Besov space B",, (R), s E R, 1 < p 6 + m, 1 6 q 6 + a, is defined by 

B",,, (R)  = {U E fl (R); 3(ck) f l q ,  vk 2 - 1, 11 dk~llLP{R] 6 - 
If F satisfies the assumptions (Hl) and (H2), then we have 

I I  A k f  I I L ~ R ~ )  = IF ( A R ~  ) I I L Z ( R ~ )  = l l ~ k  (0 F ( ~ ~ I I L ~ ( R " I .  
Now 

Ixk (5)  F (it)1 < C lelN l r z + , a k + z l  < C2kN 1 [ 2 k , 2 k + 2 ]  

and 

Id, f llL2(Rn) < for all k 2 - 1 ,  

and therefore f E By,:- 'I2 (R). 
We now study the conditions for F under which f is analytic. 

PROPOSITION 2. If  F satis3es the assumptions (HI) and ( H 2 )  and i f  a < 0, 
thenf is an analytic function for t > 0. More precisely, there exists K' 3 1 such 
that f can be- extended holomorphically to {IIm (t)l < ( l / K 1 )  Re (t)). 

Proof.  Let 6 > O ;  then for ~ E % ; ( [ G ,  +mL) we have 

For t > 6, let 
1 

f, ( t )  = 1 exp [ict] exp [ - &t2] F ( i t )  d5 = 1 exp [zt] exp [€z2] F (z) dz, 
l r 

where.r = iR. Let a' > a and K' > sup ( K ,  1). We write r' = r, u r2 u r,  with 

r2 = ( Z  = 5 + i[; 5 = a', E [K'a', - K'af]) ,  

The function exp [zt] exp [&z2] F (z) is  holomorphic in 9 and 

0 

< lim 1 exp [ttl exp [ E  (t2 - (KP)2)] IF (t + iKP)l d5 = 0. 
B+f co - B 
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Hence we have 

1 
f. (t) = exp [zt]  exp [EZ'] F (z) dz 

r,urzur3 

1 - iK' 
= exp [(t - iKf<)  t ]  exp [ E  (( - i ~ ' < ) ~ ]  F ({ - iKt<) dl  

<<a' 1 

- K'o' 

+ 1 exp [(a' + iO t ]  exp [ E  (a1 + it)'] F (a  + it) d t  
K'4' , 

1 + iK' + exp [(( + iK15) t] exp [ E  (t + iK1S)2] F ( 5  + iK1<) T d( . 
<-=ar 1 

In each of the three integraIs we can let E tend to 0. Hence for t > 0 we have 

1 - iKf  
f ( t )  = j exp [(E - X ' S )  t ]  F ([ - iK'<)- 

SCrr' i d t  

K'a' 

+ exp[(a'+i()t] F(a+iS)d( 
- K'a' 

1 +iK' + 1 e x p [ ( S + i K f ( ) t ] F ( S + i K ' { ) _ d t .  
c<a' 2 

The first integral can be extended to t  E C if, for all 5 ,  4: < a' and Re( t t -  iK'5t) 
< 0, i.e. if 

Im ( t )  > - ( l /K ' )  Re ( t )  . 

The second integral is an entire function of t. The third integral can be ex- 
tended to t EC if, for all (, ( < a' and Re(&-iK1rt)  < 0, i.e. if 

Im ( t )  < ( l / K t )  Re ( t )  . 
Hence the proposition is proved. 

We now study the case where 
K 

F(s)  = with a , eC ,  d , €C ,  k f N .  

The singular points of I; are the points a, such that dk$N. We use the 
following notation: 

E* denotes the set of indices of the singular points of F; 
E** denotes the set of indices of the singular points that have the largest 

real part; 
a = SUP~EE* {Re (a&) ; 
d = inf,,,*. (Re (d,)} ; 
D = xt=l d,; for the sake of simplicity we assume that D is real. 
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Then F is well defined for Re (s) > a and satisfies the assumptions (HI) 
and (H2). 

Let d be the Dirac mass in t = 0 and 6(~3 its j-th derivative in the dis- 
tribution sense. Later on, vp(t7 will denote the principal value of t" i.e. 

vp (t" = ( - I r  a"'(tHn) if l e g ,  - R e ( l ) + n  > - 1 ,  n c N .  
.. . 
n;=, c-1-n 

Pno~oano~ 3. Let F (s)  = n:=, (S - akjdk, D = xr5 d,, and f be the inverse 
Laplace tran$orm of F. Then 

D m t - ( D - j + l )  

f (t) = d'D'(t) + yjfi'"-"(t)+ z Y j  u- D) for D E N ,  
j =  1 j = D + l  

1 03 V P ( t - ( D - j + l )  
f ( t )  = - ~ p ( t - ( ~ + l ) ) +  x y j  for DER\N. 

r(-D) j =  1 r ( - D + j )  

Proof. We have 

f 

We can write 

and the series converges in the domain (Is1 > maxk,e lakl). Let J = [Dl  if D 2 0 
and J = 0 otherwise. Then 

The series z,?=J + , ( y j / s '  D, converges absolutely for Is1 > r ,  such that 

Hence (see [2]) 

and we obtain the assertion of the proposition. 
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We now study the behaviour of f ( t )  at infinity. 

PROPOSIT~ON 4. For N 3 0, there exist compIex numbers e l k )  and a constant 
C such that far t > 1 

where J ,  = [N  - Re (dd] - 1. i n  particular, f (t) - Aeut t-(d'l' in the neighbour- 
hood of infinity. .. . - - . 

~ e m a r  k. This proposition shows that in order that f E L2 (El,  + a, [) the 
following conditions are to be satisfied: a < 0 or (a = 0 and d > -+I. 

The proof of Proposition 4 is very tedious and is presented in Appendix A. 
The following corollary is derived directly from Proposition 1. 

COROLLARY 5. f E H - ~ O ( R )  if and only if a < 0 or if ( a  = 0 and d > -*). 
P r o  of. If a > 0 or if (a  = 0 and d < -41, then according to Proposition 4, 

f is not locally integrable, and hence does not belong to HLm (R). 

PROPOSI~ON 6. If F (s) = nr= (s - akIdk, then f = 9-' (F) safi$es a K-th 
order diflerential equation whose coeflcients are a8ne with respect to t .  

P r o  o f. If F (s) = nf= (s  - then Fr (s)/F (s) = B (s)/C (s), where B (s)  
and C (s) are polynomials of s: 

K K 

C (s) = n ( s -  a,), B(s) = C d ,  n ( s -  aj)  = IlsK-l + 2 b j d .  
k = l  k = l  j # k  j < K - 2  

Hence we have 

2' - (C (s)  1;' (s)) = 9 - ( B  (s)  F (s)) and c (83 ( - tf) = B (at)  f ( t )  . 

Now 

and 

Therefore 

where the coefficients y j  ( t )  are afine with respect to t, proving the proposition. 
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3. FRACTIONAL DISTRIBUTION PROCESSES 

DEFINITION 1. Let 'F be a function on C that satisfies the assumptions (HI) 
and (H2) such that the inverse Laplace transform f of F belongs to H - m  (R}. 
The distribution process with transfer function F is the process with filter f 
defined by 

If F is of the form F (s) = n:=, (s- qJdk, where a, E C, 4 E C? k E N, then the 
process is called a fractional distribution process. 

3.1. Regularity a d  covariance. The regularity of the distribution process 
X can be obtained directly from the parameters of the transfer function F .  

PROPOSITION 7. Let X be a jiactional distribution process with transjer 
function 

Then X belongs to c - ~ - ' I ~ ( R ,  ~~(0)))). 

P r o  of. This result follows immediately from Proposition 1 and the results 
in [I] (i.e. the distribution process X with filter f belongs to CS(Rn, L2 (62)) 
if and only iff E B",,, (Rn). In particular we obtain the following results of [14]: 

If - 3/2 < D < - 1/2, then X has Holderian paths. 
If D < -3/2, then X has continuous and differentiable paths. 

THEOREM 8.  The covariance of the_fi.actional distribution process with trans- 
K d , has the following form: fer function F (s) = n:= (s - aJdk, D = Xk:,=, 

If 2D is not an integer, then 

+ i C  c j  r ( z D - j + l )  cos ( 2 D - j ) x ( t ; ( 2 D + l - j ) - t _ ( 2 D t l -  
jodd X 2 

"1 
j a  1 

r ( 2 D - j + l )  . ( 2 D - j ) ~  
- C cj  sin x 2 Itl-(2D+1-~3+h(t). jeven 

52 2 

If 2 0  is an even positive integer, then 
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i j  

+ ( - ' I D  jeven c c ~ 2 ( - 2 D + j - 1 ) !  I t [ L 2 D + 1 - j ) +  hf t ) .  
j > 2 D + 1  

If 2 0  is an odd positive integer, then 

(2 D) ! 2D+1- o = ( i )  vp(t-(2~+1)) 

If 2 0  is an euen negative integer, then 

i.i 
+ ( - ' I D  C j 2 ( - 2 D + j - l ) !  I ~ [ - ( ~ ~ - I -  j ) +  h ( t ) .  

j euen 

If  2 0  is an odd negative integer, then 

where h ( t )  is an analyticfunction and the coeficients c j  are given by the develop- 
ment of IF(i3L)I2 at infznity. 

The proof of the theorem is given in Appendix B because the calculation of 
the covariance is very long. 

Re rn a r  k. When f is real and if D < -*, then we obtain the result given 
in [14], i.e. 

The behaviour of the covariance in the neighbourhood of infinity is deter- 
mined by the parameter a. Viano et a1. [I41 showed that if a < 0, then 

c ~ ( t ) = o ( e ( ~ + ' ) ~ )  with E > O  and a + ~ < 0 ,  

and if a = 0, then 
a ( t )  - C i.@jft-2dj-l. 

1 
j c  
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This proves in particular that cr is not surnmable (hence X is with long range) if 
and only if la = 0 and d > -*. 

3.2. Mixing properties. In order to define mixing coefficients and properties 
for distribution processes that extend the usual definitions for temporal proces- 
ses [4] we will replace the remoteness in time by remoteness on the support of 
the test functions. Let X be a stationary distribution process, and let 

HY, and At';" be the vectorial subspaces spanned respectively by 

a?, and %T+" be the algebras respectively spanned by the two previous 
families of variables; 

A!!, and A!: be the spaces of L2 (0) variables, respectively measurable 
for the two previous algebras. 

D E ~ O N  2. The linear mixing, g-mixing and strong mixing coeficients for 
the distribution process X are defined by 

r ,  = sup {lcorr (Y, Z)I ; YE &"?, , Z E PT+ "1, 
QT = sup {Icorr(Y, Z ) ( ;   YEA?^; ZE&$ m), 

Remark. When X is a temporal process, these coeficients coincide with 
the usual linear mixing, Q-mixing, strong mixing and &-mixing coefficients. 
Other mixing coefficients can be defined in the same way. 

These processes can be considered as a family of random variables indexed 
by the set V z ( R )  of test functions. It then follows from [12] that when the 
process is Gaussian, the links between the several conditions for mixing are the 
same as for temporal processes: 

- Coeffcients r~ and p, are identical. 
- The estimation o l ~  d Q, < 2 x m T  holds, and it follows that for Gaussian 

distribution processes X, linear mixing, p-mixing and a-mixing are equivalent. 
- Likewise we can prove directly, using the same argument as in the 

temporal case [4], that #-mixing is equivalent to rn-dependence, i.e. 

lim 4, = 0 
T-c  + m 

if and only if there exists m > 0. such that %!!, and 9: " are independent. 

Assume now that X has a spectral density of the form [F (iA)12, where 
F satisfies the assumptions (HI) and (H2). Our aim is to give a sufficient 
condition for the process X to be Q-mixing and a sufFicient condition for X not 
to be Q-mixing. A necessary and suflicient condition for ARMA distribution 
processes to be mixing then holds. 
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THEOREM 9. If the spectral density of the distribution process X is IF (i;l)J2, 
and $ F satisfies the assumptions (HI) and (H2), if a < 0 and if moreover there 
exist C, A such that, for (z( > A, C ( z [ ~  < (F(z)l, then the Q-mixing coeficient of 
the distribution process X tends to 0 when T tends to infinity. Ire this case we have 

QT = O(ebT) for all b E]U, O [ .  

Proof.  Assume first that F(z )  does not vanish on the imaginary axis. 
Let H (z) = F (2) F( -3. Then H {z)  is holomorphic in the set 

(2; a < Re(z) < -a) u {IIm(z)( > K(Re(z)l) 

and IF (i()12 = H (it). Assume that q~ E %': (1 - co , 0]), $ E ([T, + cc [), and 
XEP are such that Supp(~) c]-m, -I+&[, 0 <  6 < 1, with x G 1 on 
] - m, -I[. Using the Fubini result we have 

= lim j ( jexp 1- i t t ]  (t) dtS exp [is(] ${sj ds) enp [- &t2] H (iO d t  
&"O 

= lim JI rp ( t )  & (s) KT (s, t)  dtds 
e-0  

with 

dz 
= J ( ) exp [ - (t - sj z] exp CLZ'] B (z)  7, 

r 1 

where r = iR. We can change the contour: 

dz 
K:(s, t )  = i i ( ~ ) e x p [ -  ~ t - s ~ z ~ c r p ~ E z ~ ~ ~ ( z ~ ~ ,  

r' 1 

where r' = r, u r2 u T 3  with 

r,  = (z = A+iI;; A < b,  (=  - K ' I ) ,  



322 L. Eel  et al. 

where b > a, K' > K and K' > 1. We let E tend to 0 in each of the integrals and 

It then follows that 

cov(x(m), x($)) = f i r ( t l$(s)G(sy t)dtds. 

LEMMA 10. Kg is a continuous operator porn Hm (R) to H-" (R)  for aEE m E R. 
Moreover 

. . 

Assume the lemma has been proved. Since F (it) does not vanish for i: E R, 
there exist constants A,  3 > 0 such that 

A ( t )2N < IF (it)(' < 3 (<)2N. 

On the other hand, 

I l x ( ~ ) I I E z c n r  = It f*  rplIiz(,, = IiF (it) @ (t)IIi2(R1. 

Hence 

A l<5>N @ (Oi2 G IF(iC) @(<)I2 G B l<5>N @({)I2 
and 

A IITIIHNIR) G I I X ( V ) I I L ~ ( ~ )  G 1 1 ~ 1 1 ~ ~ ~ ~ ) -  

From the lemma we have 

l c o v ( ~ ( d ,  X($))( = I<KzT, $)I 6 I IK;~~/H-N(R) I I $ I ~ J ( R )  

G IIG II Ilv l l ~ ~ c ~ )  IlrCl l l a ~ c ~ )  

< c e b ( l  -&IT Ilx (q) l l ~ z m m  IIX ($1 ll ~ z c r n .  

Therefore 

and from Definition 2 we obtain 

(5)  eT=r,=sup(corr(X(q),X($)); ~ E % ? O - ~ , O ~ ) , $ E % ( ] T ~  +a])) 
= q e b ( l - b ) T ) .  

Proof of Lemma 10. Assume we have proved that, for all a, PEN, 
a;afK,(s, t )  operates continuously from L2(R) to L2(R) with 

< c e b ( l  -d)T. II Ga! Ko (s, 0 ll L ~ ( R ) +  L ~ R )  

Let rn E R  for all u in H" (R). There exists M E N  such that u E H- '" (R). Thus 
we have UM = (I -A)-'% E L2 (R), where A denotes the Laplacian operator, 
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and 

Let v E Hm (R); then 

= (x 8 8: KOuM, uM)  
a8fl 

and we have 

which proves the lemma. 
We now show that, for all a, E N, 8: 8; KO (s, t )  operates continuously 

< Ceb(l - ' IT .  We have from L2 (R) to L2 (R)  with 1 1  3; 3: KO (s, t )  IlL2(R)-tL2[R) . 

= C c,K":(s, t), 
k 

where 
dz z a + b - k e - ( t - s l z H ( z ) -  wifh f i  = 

I 
i 

For Z E T ,  u T ,  there exist C and N > 0 such that 

IH (211 d C lzlN 

and 

In the same way we have 
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On the other hand, 

- K'b -K'b 1 
~c J 1 - 

-e  ( t - 3 b d t d z < ~  - j e-"bdudz 
K b  t - s <  -=(I-4) Tk K'b T k u <  - T ( 1 - 6 )  

- K b  

j IR," (s, 01 dl = c J I X k  (F) (b + u)L+fi -k  e-(t-"b +izl 

B K'b t-s<-T(1-8) 

~ e n k e  we have 

dt& 

and it follows that 118; 8; KO ( s ,  t)llLz(nl+L~(R) < Ceb(l - a ) T .  

Assume now that F (it) vanishes on the imaginary axis. From the assump- 
tions concerning F ,  F (it) admits a finite number of zeros and we can set 

where P is a polynomial and G(t )  #O for all < ER. We have 

with 

SuppP(D)cpc]-m,0] and SuppP(Dj$c[T,+co[.  

lG(5)I2 does not vanish and there exist m, A ,  and B such that 

A (5)' < IG (5)12 < B (5)'. 
We come back to the case where IF (i5)I2 does not vanish by replacing IF (it)12 
with IG(t)l2, cp with P ( D )  rp, and I) with P ( D ) $ .  It then follows that 

and in this case we still have rT = O(eb(l-a)T) .  

We now show that if F(i5) has singularities on the real axis, then the 
process X is not @-mixing. 
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THEOREM 11. If the spectral density of the distribution process X is [F (i11)I2 
and if F can be written as F (2) = (z  - G (2) with d E C\N, U E  R, and G is 
continuous in the neighbourhood of iia with G(ia) # 0, then the distribution pro- 
cess X is not @-mixing. 

Proof. We can set u = 0. Thus we have 

vt E R ,  IF (i<)l2 = l(i5)*I2 e(5) = C (5 )  G I 0  
and 

C, I(lZdl if < > 0, 
C (8 .= [(i()d12"= exp E d ,  log 151 - d ,  n: sign(t)] = 

where d = d,+id,. 
Assume that rp and $t E%'; (R)  are such that Supp rp c ] - a,, 01, Supp $ 

c [a, + w [, 6 > 0, and rp,(t) = cp (t /T),  $T (t) = $ (st T - I ) ,  We have 

Assume that X is @-mixing; then we have lim,,, r~ = 0 .  Now 

Ij $T (OFT (0 IF(iC)12 drl 6 .T [I I @  (a2 I F  (ia2 d a  "' [I 16 ({)I' IF  (io12 ddr]'". 

Moreover, 

&-(t) = 1 e-it5 q ( t /T)  dt = e-iTSS (P (s) Tds = T @  ( T t )  
and ' 

j I @ T  (t)I2 lF(i5)I2 dl- = 1 T 2  I @  (T5)12 II:(i5)l2 d t  
= 1 T 2  I @  (5112 C ( t / T )  G ({/TI dl- 

= 1T1-2d1 14 ({)I2 c (0 c"( t /~)  d t  
- - [I 1$(t)I2 c ( ~ ) G ( o ) ~ ~ + E ( T ) ]  
- - T ~ - ~ ~ ~ ( C ~ + E ( T ) ) ,  

where l i~n , ,~&(T)  = 0 and C, = 1 1 @ ( t ) 1 2 ~ ( 5 ) G " ( ~ ) d t .  
In the same way we obtain 

with limT,,&(T) = 0 and C* = 1 1$(y6)l2 c ( ~ ) G ( o ) ~ ( ,  and 

r~ C( kh(t)12 IF (it)12 a] [I I$T(S)I '  I F  (i5)12 d q 1 "  = ( J ~ + E ( T ) )  

while 

j O~ (5) 3= (t) IF ( i a 2  d t  = - (1 4 (5)  c cn a (01 at + e n )  
- - ~ 1 - 2 d 1  (CP,JI + E (r[3)  
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with l im~+o  E (T) = 0 and C,,* = I @ ( t)  ({/dl C (0 G"(0) d( . Hence we have 

and since lim,,, r ,  = 0, we obtain 

Consequently, 

and thus 

(6) S @(517(us) cre~at = 0. 

In order to prove that there is no mixing, it suffices to show that if cp and rl/, 
with compact support as above, are such that (6) holds, then C (c) is necessarily 
a polynomial. We now construct a family of cp and II/ such that (6) is satified. 

Let x E %?om ([- 1, I]) be such that jX ( t )dt  = I and 

q ( t ) = x [ n ( t + x / 2 ) ]  with x > 0 ,  

$ ( t ) = ~ [ n ( t - y / 2 ) ]  with y > 2 8 .  

For n large enough, Supp cp c 1 - co , 01 and Supp lJ, c [6 ,  + oo [. We have 

and 

- exp [i2T1 x t ]  , - 
n  n i 

and therefore 

If we assume that (6)  holds, then 

Let W = Y ' ( R )  be such that ~ ( 5 )  = C(4;) and put u = x/2 + y/2. Then u > 6 and 

S eiUS ;i ( t i n )  l ( t / (nJ) )  ~ ( t )  d t  = 0 .  
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Let # E %o" ([6¶ + co D. We then have 

Thus 

and 

Consequently, for all # E 5f7; ([a, + cc 

{W, F1#> = {W, 4 )  = {K 4) = (w, J> = 0 

and it follows that, fdr all 6 > O? Supp W c [-6, 61. Hence Supp W = (01, 
where W  is necessarily of the form 

W =  C C,6t' 
aeN 

and C is expressed as 

Therefore C(t) is a polynomial and it follows that C2 = C1, d l  E N, d2 = 0. 
Thus the proposition is proved. 

Remark. Ibragimov and Rozanov 181, Rozanov [12], Hayashi [7] and 
Dominguez 131 gave conditions on the spectral density for tkmporal processes 
to be mixing. Theorem 9 gives a better mixing rate than that of Lemma 10.6 of 
[I21 but for more restrictive assumptions. Theorem 11 is a consequence of 
Corollary 2 (chap. IV, 5 3) of [8] for continuous time processes. Hayashi deter- 
mined the necessary and sufficient conditions for the spectral density for the 
mixing coeficient to tend to 0, and Dominguez gave the necessary and suf- 
ficient conditions for the mixing coefficient to tend to 0 with a determinate rate. 
However, these conditions, which require the spectral density to belong to 
some functional spaces, are hardly verifiable in our case. 

Theorems 9 and 11 lead easily to the following corollary for fractional 
distribution processes, that generalizes the result of [14]. 

COROLLARY 12. The fractional distribution process with transfer function 
F is q-rnixirag if and only if a < 0. In this case we have 

er  = 0 (ebT) for all b € ] a ,  01. 

In the case where D < -3 this corollary allows us to complete Proposi- 
tion 6 of [14] by the convergence rate of @-mixing when a is negative. 
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APPENDIX A: PROOF OF PROPOSITION 4 

Assume that a = 0 and that there are two singularities (a,),=,,, such that 
Re (a,) = 0 for k = 1, 2. 

Let N > 0. In a neighbourhood of a, we can write 
+w 

F (s) = (s - ak)dk C cfk) (s - akY 
j=o 

with J ,  = [N- Re (dk)]  - 1 and fl, = dk  + Jk  + 1, and hence 0 < N < ~e (m,) 
6 N + l .  Thus we have 

with Fk(s) holomorphic for s in the neighbourhood of a,. 

Fig. 1 

Let x > 0. The inverse Laplace transform f of F is defined by 
x+ im 

f ( t )=  j eaF(s )ds .  
x - im  

We integrate on the new contour GI? (see Fig. 1) such that all singularities of 
F are located on the left-hand side of %?, and we obtain 
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f (t) = 5 e"' F ( s )  da = j eSt F (s) ds + j' e"' F (s) ds + f k ( s )  d s  
E4 Dl Dz V 

Jk + 2 ( j' e"(s- akjdk C cy) (s -  adjds  
k = l  HkuHkuC+ j = O  

This can be written in the form 

We have 

J k  Jk C$) 
S e" (S - uJdk C cjk) (S  - a k ) j  ds = exp [a,t] C t - ( d k + i - C  11 

6 j=o j = o  r(-dk-j) 
We now estimate the remaining terms. 

s Terh ]D,,, 8' F (sj ds.  
For s = x + iy E Dk we have 

For S E D ,  there exists L> 0 such that 

and 

In the same way we obtain 

a2 

j 2' F (s)  d s  = j exp [- 6 t  + i ty ]  F (6 + iy)  idy and 8' F (s) dsl < Ce-". 
v a r V 

10 - PAMS 16.2 



e Terms jDk e" ( s  - ak)" zE ( s  - a,$ ds .  
For s we have 

Hence, as previously seen, 

J 

. . 1 j 8' (s - ah)dk c cp) ( s  - ak)i dsl < C exp [- 31. 
. . Dk j = O  

e Terms I,, 8 ( s  - oklBk Fk (s) ds. 
For s.= x + i y € H k  we have 

and 

Terms Jck e" (s - ah)'' Fk (s)  ds. 
For s  = a, + reie E Ck we have 

2 

e' ( s  - ah)'k Fk (s)  ds = I exp [ t  (ak + reie)] rsk exp [i8K] f i  (s) i d 8  do 
c k  - xjz 

and 

Finally, 

2 Jk '-!k) 
t - [ d k + j + l ) + ~ ( t )  c f ( t )  = exP Caktl  with IR (t)l < 

k =  1 j = o  r ( - d k - j )  

We generalize easily this result to the case where a # 0 and to case where there 
are more than two singularities a, such that Re (a,) = a. Thus the proposition is 
proved. 
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APPENDIX B: PROOF OF THEOREM 8 

Let ,lo > SUPkE=* {laR[).  For ;1> 10 

Let x be even and such that 

1 for 111 >2A0,  
.. . X(~) = { 0 for 111 < %lo, 

6 - I  ((1 - x ) ~ )  is analytic since ((1 - ~ ) g )  has a compact support. Hence 

with h (t) analytic. F - (tIIZD ( 1  +EL ~ ~ 1 - 9  (Y - 1))  is analytic, and thus 
m w 

(7) 6 = f-I (IA12D+ cjlklZD , X - j +  ~ ~ l A I ~ ~ - q + h ( t ) .  
j odd j even 

Let i",d I ? b e  distributions defined by 

(A"_, rp) = (A", 4 ) .  
We have IIIs = A",+"_, 1R12DA-j = A2+D-j-;12_D-j if j is odd. We compute now 
9 - l  (llls) and 9 - I  (2; -A"_). 

ea Case s ER\Z. 
From the equalities 
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it follows that 

Therefore 

and 

ea Case SEZ-*. 
If s E - 1 ,  E EN, then the term k = I -  1 is not defined in the sum of the 

expression (8). Now 

q(l- (0) 

( 
p- 1) 

= (- 111- 1 
( E -  I)! (Z+s) (1-l)!(l+s)' .9), 

and hence the distribution 

is holomorphic with respect to s in the neighbourhood of -1, and 

We now develop this expression in the neighbourhood of -I. We set z = s + 1, 
and we have 

( -  1 ) l - l  
r ( z - I + l )  = - 

( E -  I)! z + Y l(z) 

with y,(z) holomorphic in the neighbourhood of 0. 
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For t > 0 

- ' (z-~+~)~~~[~(~-~?!]  r i ~ z - ~ + l ~ -  (-itIL-l 1 ( -  1)l-l 
27L 2TL(i- I)! z 

27c ( l -  I)! 

and for z = 0 we have 

I . 9-1 ( T i 3  = - (it)'-l((ii-logt)-+ (- 1)'-1 y l ( ~ ) ) .  
1 

2~ ( / -  I)! 

In the same way for t < 0 we have 

A similar calculation leads to 

'(~+l'(ellp[-is~]t;~l>-erp  TI') = -i--- 
2n: 

- (-it)'-' 
for t > 0, 

2 ~ ( f -  I)! ( I + s )  

9 - 1  1 = ( ( i + o g t ) + ~ )  2x - 1  2 tor r < O~ 

9-'(S(.") = (2,)-I(-it)j is analytic with respect to t. On the other hand, 
I;' and A:' are square-integrable at infinity. Hence F-'(IRj-') and 
F-l(A;'-A:') are without Dirac mass at the origin, and by noting that for 
E odd 1tll-l is analytic, we write 

if I is even, 
2(Z- I)! 

if E is odd, 
n(1- I)! 

i' + (tyl-tF1)+h(t) if I is odd, 
p-l(A;I-A13 = 

2(1-I)! 

(it)" - log l tl + h (t) if 1 is even, 
7c ( l -  I)! 

where h(t) is an analytic function. 
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e Case S E N .  
For I E N the distributions t ;"+ and t 1'" l)  are not defined. Let s be in 

the neighbourhood of I E N .  Then 

q'k) (0) 

. . 
+ z,, k! (k-s)' 

(t1'+", q,} = j t - ( s t l )  @(t)- @"(0)- dt+  J t-'+l'$j(t)dt 
o I I=. k 7 ! I 

and 

' exp [is ~c/2]lp(~) (0) - exp I: - is 71/23 @(k) (0) 
+ C 

k = o  k !  (k-S) 
For s = E+z the term k  = 1 in the sum can be written as 

( exp [ is- ;] - ( - 1 )  1 exp [ -u- . 7) -- Po r ~ ( ' )  (0) 
- - ( i ) '+l~-+c(z) .  

2 l!(l-s) l !  

In the same way we obtain 

2x 
ir (s + 1) (9-1 (A:), p) = ( e x p [ ~ ~ ] t ( s + i ) - e x p  [-is:]t;(s+l); q,) 



Fractional ARMA distribution ~roeesses 335 

exp [is x/2j @(k) (0) - exp [ - is n/23 qdk) (0) 
+ C 

k=o k!(k-S) 

For s = I+z the term k = 1 in the sum can be written as 

Therefore, by noting p (s) = exp [is x/2] -exp [-is n/2], we have 

Since 

0 if 1 is even, 
P (O = (2 (il l  if 1 is odd, 

letting s tend to 1, if E is even, we have 

(9- (lAll), (P) = (9l~(~)(O), 

and if 1 is odd, setting $ = ((p+@)/2, we obtain 

It follows that 

[(i)' s(') if 1 is even, 

-vp(t-('+I)) if 1 is odd. 
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In the same way we get 

( +  if I is even, 

F-l(A1+ -A:) = 

if I is odd. 

We obtain the desired assertion by putting this result in (7) 

. . . . 
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