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Abstract. In this paper we firstly study f, the inverse Laplace -
transform of F(s) = [ [, _, (s—ay)*. The distribution f is then used to
define a family of linear distribution processes. This family generalizes
the so-called fractional ARMA processes X, = f_w Sf(t—s)dW, which
were introduced by Viano et al. [14] in the case of square integrabie f.
Using previous results [1] we describe the regularity properties of the
distribution process associated with F. Finally, we give a definition of
the mixing coefficients suitable for distribution processes, and we ob-
tain conditions on the parameters with F needed for fractional ARMA
distribution processes to be mixing. '

1. INTRODUCTION

The concept of stochastic distribution processes was introduced by It6 [9]
and by Gelfand and Vilenkin [6], and these processes have been widely studied
since this time. See for instance Fernique [5]. In [6] Gelfand and Vilenkin
point out the interest of stochastic distribution processes in domain such as
physics where distributions are successfully used as an alternative to ordinary
functions. This idea is developed in Meidan [11] where the connection between
ordinary and distribution processes is investigated.

In this paper we present a parametric family of such generalized processes.
This family is a particular case of the more general so-called linear distribution
processes introduced in [1], and is directly derived from the family of frac-
tional continuous time ARMA ordinary processes recently studied by Viano
et al. [14].

Recall that till now long memory second order continuous processes are
mostly of the form

(1) X, = i ft—s)dW,,
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where W is the standard Brownian motion and f is such that the behaviour of
the spectral density of X is like |A—Ao|~2¢ for some Ao. This is the case for
increments of the fractional Brownian motion (Mandelbrot and Van Ness [10])
and for the fractional ARMA processes introduced and studied by Viano et
al. [14]. In the later case the filter f is chosen amongst the inverse Laplace
transforms of the parametrized family of F having the form

K
@ F(9)= [] (s—a)™.
k=1

The investigation carried out in [14] remains within the framework of second
order ordinary stationary processes, and hence supposes that F is the Laplace
transform of a square-integrable function on R*. This imposes then certain
conditions, in particular, on the sum of the exponents d;.

The aim of this paper is to investigate what happens when this assumption
is dropped. We show that in this case the process can be defined as a dis-
tribution process.

In Section 2 we study the distribution f, defined as the Laplace transform
of a function F with properties of holomorphy and polynomial growth at
infinity. Transfer functions of the fractional ARMA type (2) satisfy these as-
sumptions.

In Section 3 we study the regularity of the paths and the covariance of
fractional ARMA distribution processes.

Finally, we propose a definition of mixing for distribution processes that
generalizes the usual definition for ordinary processes. We then show that if the
transfer function F is holomorphic in a domain which strictly contains the
right-half plane and F is bounded above and below by a polynomial at infinity,
then the mixing coefficient sequence of the associated distribution process is
geometrically decaying. When f has a singularity on the imaginary axis, we
~ show that there is no mixing property. These results are compared to those of
Ibragimov and Rozanov [8], Rozanov [12] and Viano et al. [14] for ordinary
time continuous processes.

The family of fractional distribution ARMA processes presents all the
advantages of a parametrized family: it can be used in fields as diverse as
finance, rugosity of surfaces and phenomena connected to viscoelasticity. As
a family of distribution processes it is a good tool to describe diffusion phe-
nomena across complex surfaces.

2. DESCRIPTION OF THE FILTER

We deal with linear distribution processes on R with the distribution filter
f defined by

€) Voe¥bs (R), (X, 9> = [f+@(s)dW,.
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These processes have been widely studied in [1] and, in particular, we know
that the expression (3) is well defined if and only if f belongs to the Sobolev
space H™®(R) = | Jser H*(R), where H*(R), seR, is defined by

H(R) = {fe s (R); <&’ f(De? (R},

where (&)° = (1+][)¥? and #'(R) is the space of tempered distributions.
In this paper we focus on the case where f is the Laplace transform of
a transfer function F. We will make the following hypotheses on F:

(Hl) F.is holomorphic in the domain
2 = C\{z; Re(z) < a and [Im(z)] < K|Re(2)}}.

(H2) AN > 0,3C, [F@@)l < C{z)Y in 2.
The Laplace transform is defined by

Vi>0, Z(f)(s)=F(s) ={f(t),e™™) for seC, Re(s) > a.

When F satisfies the hypotheses (H1) and (H2), the inverse Laplace transform f,
written f= %~ 1(F) in 2'(R.), is well defined (see [13]). We will pay a par-
ticular attention to the case where

K
F(s)=[] (s—ap*™ with aq,eC, dyeC, keN.
k=1
Distribution processes obtained in this way for admissible f generalize the
fractional ARMA processes as introduced by Viano et al. [14].
We firstly describe the behaviour of the distribution f. The distribution
process (3) being well defined only if fe H™ ° (R), we study the conditions for
F under which this property is attained.

‘ProrosiTiON 1. If F satisfies the assumptions (H1) and (H2), then
feH ®(R) if a<0 or a=0 and F(i&)e L} (R). In this case f belongs to the
Besov B; Y12 (R).

Proof. If F(i¢) is locally integrable, f(£) = F (i¢) and there exists ge Z
such that (&>? F (i¢)e I?(R). Hence fe H*(R) and fe H™ ° (R), and if a < 0, then
F(i¢) is locally integrable.

We denote by B(0, r) the ball with radius r in R". Let y €45 (B(0, 2)),
0<y<1and y=1 on B(0,1). Then we have in ¥”(R")

lim Yy(279¢) =1.

gq—+

We write x(8) =¥ 27O~y (§), () =x27%) to give

@ lim ¥ =y O+ Y u.
k=0

g2+

9 — PAMS 162
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For k= —1,0,... we define the operator A, by: for ue.#'(R),

F (4w (&) = 1 (Q)i(l), k=20, F4_w)()=v(i).

We write ¢(&) = x(¢) and, for k=0, ¢, (t) = 2°¢ (2*t). We then have @, ()
=5 (&) and du= ¢, xu for k=20, A_ju=F '(Y)*u
The Besov space B ,(R), seR, 1 < p< + 0,1 < g < +o0, is defined by

B (R) = {ues” (R); Achel, Yk > —1, [ Al o < 6275,
If F satisfies the assumptions (H1) and (H2), then we have
“ | Aif l2mn = 1F (i) z2gny = 126(E) F GO 2
Now
[k (é)F(lfN <C |€|N 1[zk,zk+2] < C2*N 1[2k,2k+2]
and
HAkf"LZ(R“) < K2_k(_N_1/2) fOI‘ all k 2 - 1,

and therefore fe B; Y~ Y2 (R).
We now study the conditions for F under which f is analytic.

PROPOSITION 2. If F satisfies the assumptions (H1) and (H2) and if a < 0,

then f is an analytic function for t > 0. More precisely, there exists K' > 1 such
that f can be extended holomorphically to {|Im ()| < (1/K")Re(t)}.

Proof. Let é > 0; then for @e%§ ([0, + o) we have
{f@), 0> =<F(i6), ¢8> = 11113 (exp [—e&2] F (i), ¢ (&)
= lim (J exp [i&t] exp [ — &1 F (1) d¢, ¢ (1)).
=0 p
For t > 8, let
J.(8) = [exp[ilt]exp [—e£*] F (&) d¢ = %ICXP [zt]exp [ez*] F (z) dz,
r
where I' = iR. Let ' > aand K’ > sup(K, 1). Wewrite [ =I', uI', u I'y with
ri={z==¢(+il; {<a, {=-K'¢},
Iy={z=¢(+i; ¢ =d, {e[K'd, —KdaT},
Iy={z=¢+il; ¢E<d, {=K'E}.

The function exp [zt] exp [¢z*] F(z) is holomorphic in & and

0
ﬂlim % [ exp[(£+iKp)t]exp [¢(&+iKP)y*1F (£ +iKp)d¢
-+ -8

0
< lim { expl&r]exp[e (¢~ (KB IF (€+iKp) d =0.
-+ o -B
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Hence we have

f.(t) = 1 {  explztlexp[ez*]1F (z)dz

riuraurls
= | exp[(—iK'O]expls(E iK' F (iK' = g¢
é<a’
—K'a’
b ] el +iO0 e [+ 07T Fla+i)de
- | 1+1K’

+ | exp[(E+iK'O)tlexp [e(E+iK'E* 1 F (£ +iK'E)

E<a’

dé.

In each of the three integrals we can let ¢ tend to 0. Hence for ¢ > 0 we have

fO) = | exple—iK'OiF(E—ike) =X g
é<a’
K'a
+ | exp[(a'+i&)t] Fla+i&)dé
-K'w
+ | explE+iKE)FE+ik) K gz

E<a’
The first integral can be extended to teC if, for all &, £ < a’ and Re(ét—iK'&t)
<0, ie. if ‘
Im(t) > —(1/K)Re(2).

The second integral is an entire function of t. The third integral can be ex-
tended to teC if, for all £, £ <a and Re(ét—iK'Et) <0, ie. if

7 Im(s) < (1/K")Re(?).
Hence the proposition is proved.

- We now study the case where
K
F(s)= [] (s—ap* with q,eC, d,eC,keN.
k=1

The singular points of F are the points g, such that d,¢ N. We use the
following notation:

E* denotes the set of indices of the singular points of F;

E** denotes the set of indices of the singular points that have the largest
real part;

a = supiep {Re(ap)};

d= lnkaEu {RC (d }

D= ZkK=1dk; for the sake of simplicity we assume that D is real
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Then F is well defined for Re(s) > a and satisfies the assumptions (H1)
and (H2).

Let § be the Dirac mass in t = 0 and 8 its j-th derivative in the dis-
tribution sense. Later on, vp(t*) will denote the principal value of ¢%, ie.

vp(t) =t* if Re(l)> —

(=1

vp(tl)fﬁl—)a%“") if A1¢Z, —Re(A)+n> —1, neN.

" PROPOSITION 3. Let F(s) = H,i (s—a)™ D= Z,i 4y, and f be the inverse
Laplace transform of F. Then

—(D—j+1)

f(t) = 6D (1) + Z 715(D D)+ Z V; TG JD) for DeN,
j=D+1

o= vp(t~P* )+ i vjw for DeR\N.

r(-D) I'(—=D+j)

j=1
Proof. We have

5 if AeN,
P =< 1 .
9 Fog P i AR\,

We can write

F(s) = s f[ ( —%yk _ sD<1+ i g)

~ and the series converges in the domain {|s| > max;.g«|a,|}. Let J = [D]if D > 0

and J = 0 otherwise. Then

The series Z (y;/$~P) converges absolutely for |s| > r, such that

j=J+1

{Re(s) > ro} = {Is| > max|a,l}.
keE*

Hence (see [2])

o (3 )= 3 ot § ot
j=J+1s]_D j=d+1 ‘T (j—D) J+1 JF(J D)

j=

and we obtain the assertion of the proposition.
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We now study the behaviour of f(¢) at infinity.

PROPOSITION 4. For N > 0, there exist complex numbers ¢ and a constant
C such that for t > 1

0

f® =Y, explay] Z T_(CT—)t @it DL R(t)  with |R()] < Ncil,
keE**

where J, =[N —Re (dk)]—l In particular, () ~ Aet~9* 1) in the nezghbour-
hood of infinity. .

Remark. This proposition shows that in order that fe I ([1, + oo[) the
following conditions are to be satisfied: @ <0 or (=0 and d > —%).

The proof of Proposition 4 is very tedious and is presented in Appendix A.

The following corollary is derived directly from Proposition 1.

COROLLARY 5. fe H"®(R) if and only if a< 0 or if (a=0 and d > —3).

Proof. Ifa > 0 orif (a = 0 and d < —3%), then according to Proposition 4,
f 1is not locally integrable, and hence does not belong to H™ ®(R).

PROPOSITION 6. If F(s) = Hk ,(5—a)™, then f = &~ (F) satisfies a K-th
order differential equation whose coefficients are affine with respect to t.

Proof. If F(s) = [[;_,(s—a)% then F'(s)/F(s) = B(s)/C (s), where B(s)
and C(s) are polynomials of s:
K
Ce=[](—a) B = Z d[[6—a)=Ds"""+ 3 bs.

k=1 k=1 j#k iSK-2

Hence we have

THCOF () =271 (BEF() and  C@)(—tf)=B@)f0).

Now
K
C@) ) =toXf+KFK 1 f—t(Y a)ok-1f+ ¥ a0)dif
B k=1 j<K-2
and
B@)f=Dof~'f+ Y Bi(éif.
jSK-2
Therefore

K
te';’,f+(—1:(kg1 @)+ (K+D)ok~tf+ Y y;(00if=0,

jSK~-2

where the coefficients y;(t) are affine with respect to ¢, proving the proposition.
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3. FRACTIONAL DISTRIBUTION PROCESSES

DEFINITION 1. Let 'F be a function on C that satisfies the assumptions (H1)
and (H2) such that the inverse Laplace transform f of F belongs to H™ * (R).
The distribution process with transfer function F is the process with filter f
defined by

Vo e%g (R, <X, 9> = [[*p(s)dW,.

If F is of the form F(s) = HkK: . (s—ax)™, where a,eC, d,eC, keN, then the
process is called a fractional distribution process.

3.1. Regularity and covariance. The regularity of the distribution process
X can be obtained directly from the parameters of the transfer function F.

PROPOSITION 7. Let X be a fractional distribution process with transfer
function

K K
F()=[] s—a)™ D=} 4.
k=1 k=1

Then X belongs to C~2~12(R, [*(9Q)).

Proof. This result follows immediately from Proposition 1 and the results
in [1] (ie. the distribution process X with filter / belongs to C*(R", [*(R))
if and only if fe B ., (R"). In particular we obtain the following results of [14]:

If —3/2 <D < —1/2, then X has Hdlderian paths.

If D < —3/2, then X has continuous and differentiable paths.

THEOREM 8. The cgvariance of the frac%ional distribution process with trans-
fer function F(s)=[[,_,(6—a)™ D=),_, d, has the following form:
If 2D is not an integer, then

reop+1
— —(T+—)sin (Dm) e~ 22+ D

raop—j+1 2D—j
FiY ¢ @D—j+1) ~(@D—jm
jodd n 2
iz1
rebp—j+1) . 2b—j)w  _ _;
—.Z ¢ ( n] )sm( 2]) [t|~ 21D L h().
By
If 2D is an even positive integer, then

o= (=125 4 (—=1)° Y 50D
1<j<2D

(t;(2D+1—j)—t:(2D+1_j))

+ (=1 X F

—(2D+1-j —(2D+1—j
'(t+( J)_t__(Z 1 J))
jodd :
z2D+

“3(=2D+j—1)
1

J
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i.l

I — —(2D+1~}) h ).
EYET ey +h()

+(=1)” ¥
Jjeven
j>2D+1

If 2D is an odd positive integer, then

o= (i)2D+1 (2:)' vp (t_(2D+1))
iitt )
+(=)” Y ¢ (2D—j)!vp(r~@P*17))
) .. 1<j<2D n
' .- —loglt| _ _
+(=1)P ci It =~ @DHLID  py),
jazzn+1 ! n(—2D+j—1)!

If 2D is an even negative integer, then

o= _lD 0 — —(2D+1—j)___t:(2D+1—j)
(=1) jé,, ’2(—2D+j--1)!(+ )

i/

7J
+(-1)° ¥ |1~ >+ ().

jeven

i
(24—
If 2D is an odd negative integer, then

e log ¢
=(—=1 D i—1
o=(=1) j;,c” n(—2D+j—1)!

where h(t) is an analytic function and the coefficients c; are given by the develop-
ment of |F(iA)? at infinity.

The proof of the theorem is given in Appendix B because the calculation of
the covariance is very long.

t-—(2D+1—j)_|_h(t)’

Remark. When f is real and if D < —3, then we obtain the result given
in [14], ie.
r(2D+1)
I (D)

0 =0,+0,t+t%(t) if D< —3,

0 =0¢— [t 7P+ D4 f2e(r) if —3<D< -3, .

1
~—t?loglt| if D= —3.
o~ —t"logltl i p
The behaviour of the covariance in the neighbourhood of infinity is deter-
mined by the parameter a. Viano et al. [14] showed that if a <0, then
o(t) =0 ) with e>0 and a+e& <0,

and if a =0, then

o(t) ~ Y Ajestt™247L
JjeE**
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This proves in particular that ¢ is not summable (hence X is with long range) if
and only if a=0 and d > —1.

3.2. Mixing properties. In order to define mixing coefficients and properties
for distribution processes that extend the usual definitions for temporal proces-
ses [4] we will replace the remoteness in time by remoteness on the support of
the test functions. Let X be a stationary distribution process, and let

H° ,, and ;™ be the vectorial subspaces spanned respectively by

- {X(9); 0% (1—0,0])} and {X () Y% ([T, +oD};

#° ., and %7 = be the algebras respectively spanned by the two previous
families of variables;

M, and A F = be the spaces of I?(Q) variables, respectively measurable
for the two previous algebras. '

DEFINITION 2. The linear mixing, ¢-mixing and strong mixing coefficients for
the distribution process X are defined by

rr = sup {|corr (Y, Z)|; Ye H#° ,, ZeH ™},

or = sup {[corr (Y, Z)|; Ye.# ,; Ze M7},

ar =sup{|P(AnB)—P(4A)P(B); Ae¥’ ,, BeU}*},

¢7 = sup {|P(B|A)—P(B); P(4)#0, Ac#® ,, BeU}>}.

Remark. When X is a temporal process, these coefficients coincide with
the usual linear mixing, g-mixing, strong mixing and ¢-mixing coefficients.
Other mixing coefficients can be defined in the same way.

These processes can be considered as a family of random variables indexed
by the set ¢ (R) of test functions. It then follows from [12] that when the

- process is Gaussian, the links between the several conditions for mixing are the

same as for temporal processes:
— Coefficients r; and g7 are identical.
— The estimation a7 < g7 < 2nay holds, and it follows that for Gaussian
distribution processes X, linear mixing, g-mixing and x-mixing are equivalent.
— Likewise we can prove directly, using the same argument as in the
temporal case [4], that ¢-mixing is equivalent to m-dependence, i.e.
lim ¢r=0

T—++w
if and only if there exists m > 0 such that %%, and %, ™ are independent.

Assume now that X has a spectral density of the form |F (ii)?, where
F satisfies the assumptions (H1) and (H2). Our aim is to give a sufficient
condition for the process X to be g-mixing and a sufficient condition for X not
to be g-mixing. A necessary and sufficient condition for ARMA distribution
processes to be mixing then holds.
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THEOREM 9. If the spectral density of the distribution process X is |F (i1)|?,
and if F satisfies the assumptions (H1) and (H2), if a < O and if moreover there
exist C, A such that, for |z| > A, C|z|N < |F(2)|, then the g-mixing coefficient of
the distribution process X tends to 0 when T tends to infinity. In this case we have

or =0T  for all be]a, O[.

Proof. Assume first that F(z) does not vanish on the imaginary axis.
Let H(z) = F(z) F(—2%). Then H(z) is holomorphic in the set

{z; a <Re(z) < —a} u {Im(z)] > K|Re(2)}
and |F (i€)|* = H (i¢). Assume that o e%g (]— 0, 0]), v €% ([T, +oo[), and

y€¥™ are such that Supp(y) c]—o0, —140[, 0<d <1, with y=1 on
J—o0, —1[. Using the Fubini result we have

cov(X (9), X @) = [ ¢ (O F (OIF (O dE = [ ¢ (£ (&) H (i) d¢
= lim {6 (&) () exp [ —af] H (i€) d¢

= lim (fexp [—it£] o () f exp [isZ] ¥ (s)ds) exp [ — o271 H (i)

= 11m _U o)y (s)x( )j'exp [—i(t—s) &l exp [—ef?] H (i€) d& dsdt

= tim [ ¥ () KT (s, 1)deds
with

K{ (s, t)—jx( T )eXP[—I(t s) €] exp [—e¢*1 H (i€) d¢

I( )exp[ (-9 2lexp e 1 H )2,

r
where I' = iR. We can change the contour:
KT(s, )= x(t‘TS> exp(— (—9)lexp 2] H) T,
7
where I" =TI, u I, Ul with
I ={z=A4+i{; A<b, { = —K'4},
={z=A+i{; A=b, {e[K'Db, —K'b]},
={z=A+i{; A<b, { = K'4},
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where b > a, K’ > K and K’ > 1. We let ¢ tend to 0 in each of the integrals and
Lim KT (s, t) = K& (s, t) = jx( > —e- s”H(z)—
e—>0

It then follows that

cov (X (@), X W) = [ @@ () KE (s, 1) dtds.
LemMa 10. K7 is a continuous operator from H™ (R) to H™™(R) for all me R.
Moreover . . :

"Kg”HM(R)-.H—m(R) < Ceb1 —dT

Assume the lemma has been proved. Since F (i£) does not vanish for £eR,
there exist constants A, B > 0 such that

ALEN S |F(i8))2 < B(E.
On the other hand,

||X((P)||L2(Q) “f* fP”Lz(n) | F(il)o (5)“L2m)
Hence

AROY Q)P <|F @)@ < BKOY ¢ Q)P

and
A llolarm < 1 X (QllL2@ < Bllolavm-
From the lemma we have
'COV (X (o), X(‘/’))' = KKG 0, Y| < K @llg-namy 1V | mvimy
< IKGN NN arvm 1¥ llavemy
< Ce 7T X (9) 2 1 X )l 2y -

. Therefore

cov (X((P), X('/’)) < Ce1—9T
[ X (@)l 22 ||X(1//)||L2(Q) = ’

and from Definition 2 we obtain
(5) Qr = Tr =Sup {COII(X (¢)5 X('/’)): 2 E(gao (:I — 00, 0])3 lll E(gga (] T7 + w])}
— 01Ty,

cort (X (), X () =

Proof of Lemma 10. Assume we have proved that, for all a, feN,
0708 Ko (s, t) operates continuously from I?(R) to L*(R) with

" a?ag KO (S’ t)"Lz(R)-*LZ(R) < Ceb{l _J)T.

Let meR for all 4 in H™(R). There exists M € N such that ue H™ 2™ (R). Thus
we have uy = (1—4)"Mue?(R), where A denotes the Laplacian operator,
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and
[l gr-2neqmy = 11— A4) " ull L2y < C [l ey
Let ve H"(R); then
IKKTu, o3| = (1 =AM K§(1— A ur, var)
= <Z Cop O 08 Kotpg, UM>
and we have "
|<K§u,- U>>| < Cet1—aT fulg- 2M(R) lolig- M) S < CePt AT ”u“Hm(R) ”U”Hm(m,

which proves the lemma.

We now show that, for all «, feN, 8202 K, (s, t) operates continuously
from I*(R) to L[*(R) with |020f Ko (s, )l L2y r2m < Ce? 97T, We have
1 _
0i 03 Ko (s, ) = | 3, Cuyms (0™ x )( )z““* et ”’H(z)—

rij
= ZCkKII:(S’ t):
k

where
~p 1 E=S\ sip-k —(- dz . k
KiGs, )= [ Zul— )" "*e " =H@)— with g = .
r, T T i

For zeI', u T, there exist C and N > 0 such that
H(2)| < Clz|"

and

1

[IRiG olde<C | | —xk(t;Ts)

- |Z|a+ﬁ—k+Ne(s—t)zdtdz
R - t—s<T(x§—1)T

klzla+ﬁ k+N j e~ dudz
—ooT u< —T(1-4)

J’ |Z|a:+,6 E+N-—-1 T(1 ri)zdz

—

C R
= I |Z|‘ye(T(1 d)te— a)zdz< kebT(l 8) ab.

In the same way we have

4 C
[IKR (s, ) dt < — eT0 7%,
R T
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On the other hand,

—K'b

> 1 t— .
_HKI% (S, t)l dt = C I I —kXk(__s)(b_*_iz)d+ﬂ—ke-—(t*s)(b+zz) dtdZ
R K'b t—-s<—-T(1-8) T T
—K'b 1 ~K% {
<C | § e UPadz<C | | e *dudz
Kb t—s<—T(1—l6)T b 1 u<—Ta—0)

c Kk C
< eTU=9 3, « = oT(=0)b
bT* ,!,, ST

Hence we have

C
Sl:pflf)f 08 Ko (s, t) dt < FeT(l—a)b

and it follows that |07 0% Ko (s, )| L2m)- 2 < CA 7T,
Assume now that F (i£) vanishes on the imaginary axis. From the assump-
tions concerning F, F(i£) admits a finite number of zeros and we can set

[F @) = PG )N,
where P is a polynomial and G (&) #0 for all £eR. We have
5@(@?(5) |F (i&)* d¢ = [ # (P (D) 9) (&) F (P (D)) (D) |G (&)I* d&

with

~ SuppP(D)pc]—0,0] and SuppP(D)¢ < [T, +ool.
|G(&)]* does not vanish and there exist N, A, and B such that

AN <IGOR < BN,

We come back to the case where |F (i£)|> does not vanish by replacing |F (i&)|>

- with |G(&)|%, ¢ with P(D)¢, and ¢ with P(D)y. It then follows that

cov(X (p), X)) = [ F (P(D) 9 () F (PD)Y EYIG (&) d¢

C

<" |# (P(D)9) Gl aw | # (P DY) G O] emy
C ra-ompgs

< 7.,;6 IPAGI L2ry “P'pG“LZ(R)

C ra-
<z’ TP NX @) e 1 X ()l 2oy

and in this case we still have rr = O(e"* 797).

We now show that if F (i) has singularities on the real axis, then the
process X is not g-mixing.

A
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THEOREM 11. If the spectral density of the distribution process X is |F (i2)|
and if F can be written as F(z) = (z—ix)* G(z) with deC\N, oeR, and G is
continuous in the neighbourhood of ix with G (ix) # 0, then the distribution pro-
cess X is not g-mixing.

Proof. We can set o« = 0. Thus we have

VEeR, |F (g = &P G (&) =COEGQ)

and

K n 2d; if
C<€)-=-r(i€)“|2=exptzdllog|é|—dzm.ign(f)]={C1|€| iio0

C, e if £ <0,

where d = d, +id,.
Assume that ¢ and € 4§ (R) are such that Supp ¢ < ]—a0, 0], Suppy
c[6, +o[, 6 >0, and or(t) = @ /T), Yr(t) =y (6tT~'). We have

Supppr=]—,0] and Suppyrc [T, +oof.

Assume that X is g-mixing; then we have limy.,rr =0. Now
1/2

I§ 62(&) ¥ v (&) IF GEN2 d¢| < rr [ |1 (NP |F GENZ AE] " [f I ()2 IF &) dg] ™.

Moreover,
' ¢r(&) = fe o (t/T)dt = [ ™ ¢(s) Tds = T¢(T¢)
and
1o (&) IF (&) d¢ = [ T? |16 (TEN? |F (&)* dE
= [T*I$ 1> C /TG ET)dL
=[T' 1161 C G E/Tde
= T4 [ |3 (€)P C(&) G (0)d¢ +¢(T)]
= T'~24(C,+¢(T)),
where limr.o&(T) =0 and C, = [|§ (&)> C(&) G(0)d¢.
In the same way we obtain

F W (O |F (i6)2 dE = T~ 24 (Cy+¢(T))
with limy_o&(T) =0 and C, = [/ (¢/8)2 C(&) G(0)d¢, and

rr[f 167 (P IF GE)? 2] [ Wr (O IF GO)2 dE]"* = T2 =24 (/C, Cy+2(T))
while
[ 67O P QIF @O dE = T2 {[ $ (¥ (&) C(&) G(0)dE +eT)}
= T2 (Cy,y+2(T))
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with limz_o&(T) =0 and C,, = [ ¢ (&)Y (£/86)C(¢)G(0)dé. Hence we have
TY~244(C, ,+e(T) < rp T2 (/C, Cy+&(T)),

and since limy_,rp =0, we obtain

lim C,y+&(T)< lim rr(\/C,Cy+e(T)) = 0.
T+

Consequently,

Coy=0 and [¢©OV(EB)COEGOE =0,
and thus
(6) [e© ¢ &) CEde =0.

In order to prove that there is no mixing, it suffices to show that if ¢ and ¥,

with compact support as above, are such that (6) holds, then C () is necessarily

a polynomial. We now construct a family of ¢ and y such that (6) is satisfied.
Let xe%% ([—1, 1]) be such that [x(f)dt =1 and

@) =yxn(+x/2)] with x>0,
V(@) =x[n(t—y/2)] with y>26.
For n large enough, Supp¢ < ]—o0, 0] and Suppy < [J, +oo[. We have

é (&) = §e'-it¢x<n<t+§)> dt = jexp[—i(%—g) g]x(s)ds

_ @;ﬁjexp[—iff}x(s)ds = Mz(é)
n n

n
6 ¢\ _exp[—iy(A-0)&] (&
5 n H\ns)>
and therefore ' |

1007 (5) coac = LU= (4, (e ar

and

n
If we assume that (6) holds, then
J4exp[i (x/2+y(1—8)¢] X(g)f(é)c(f)df _o.

n

Let W= %" (R) be such that W(¢) = C(¢) and put u = x/2+ y/2. Then u > § and

[ e 7(&/n) 7 (E/nd)) W(&) dE = 0.
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Let ¢ %3 ([6, + o). We then have
[ & () | € 7. (£/m) 7 (/(nd)) W(E) dédu = 0.

Thus

J(F 1)) 2 (&/m) 7 (&/(nd) W(E)dE =0

and

Tim [(#719)(©)2(E/m REm3) W (D de = [(F 1$)(©) W(e)d& = 0.
Conseque}ltiy, for all g% ([0, + o)

W, F gy =W, ¢> =W, §) =W, §>=0

and it follows that, for all 6 > 0, Supp W< [—4, §]. Hence Supp W= {0},
where W is necessarily of the form

w=1Y C,é%
aeN
and C is expressed as

CO=WE) =Y F(C.o)O) =Y C. &
asN aeN
Therefore C(&) is a polynomial and it follows that C, = C,, d,eN, d, = 0.
Thus the proposition is proved.

Remark. Ibragimov and Rozanov [8], Rozanov [12], Hayashi [7] and
Dominguez [3] gave conditions on the spectral density for temporal processes
to be mixing. Theorem 9 gives a better mixing rate than that of Lemma 10.6 of
[12] but for more restrictive assumptions. Theorem 11 is a consequence of
Corollary 2 (chap. IV, § 3) of [8] for continuous time processes. Hayashi deter-
mined the necessary and sufficient conditions for the spectral density for the
mixing coefficient to tend to 0, and Dominguez gave the necessary and suf-
ficient conditions for the mixing coefficient to tend to 0 with a determinate rate.
However, these conditions, which require the spectral density to belong to
some functional spaces, are hardly verifiable in our case.

Theorems 9 and 11 lead easily to the following corollary for fractional
distribution processes, that generalizes the result of [14].

COROLLARY 12. The fractional distribution process with transfer function
F is g-mixing if and only if a < 0. In this case we have

or = 0(’T)  for all be]a, O[.

In the case where D < —% this corollary allows us to complete Proposi-
tion 6 of [14] by the convergence rate of g-mixing when a is negative.
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APPENDIX A: PROOF OF PROPOSITION 4

Assume that a = 0 and that there are two singularities (4;),=;,, such that
Re(a,) =0 for k=1, 2.
Let N > 0. In a neighbourhood of a; we can write

F (S) = (S — ak)dk -‘-Zm C}k) (S —_ ak)i
i=0
—(ma)* Y P—ay+—a)™ Y W s—ay
j=0 i=0 '

with J, = [N—Re(d,)]—1 and N, =d,+J,+1, and hence 0 < N < Re(N,)
< N+1. Thus we have
Jie

F(s) = (s—ay™ ¥ ¥ (s—a)+ (s—a)¥ Fi(s)

j=o

with F(s) holomorphic for s in the neighbourhood of a.

Fig. 1

Let x > 0. The inverse Laplace transform f of F is defined by

x+ioo

f@= [ e*F(s)ds.

x—iw

We integrate on the new contour % (see Fig. 1) such that all singularities of
F are located on the left-hand side of ¥, and we obtain
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f@t)= [ e F(s)ds = [ et F(s)ds+ f e F(s)ds+ jes‘(s)ds
% D, D2 v

2 Jx
+ Z ( I e (s—ay)™ Z P (s—ay)ds
k=1 HyruHjuCx j=0
+ | e*(s—a)Fi(s)ds).
HyruH; uCy

This can be written in the form

.2, .- Ji
f) =Y [e'—a)* ) Ps—a)ds+ | e F(s)ds
k=1%; j=0 DiuDyuV )
2 ot - oyt i~
+ 3 ( j e (s—a )N F (s)ds + | & (s—a)¥ F,(s)ds
k=1 H,uH; Cx
I .
— | efs—a)™ ) W(s—a)ds).
DyruDyi. j=0
We have
T ' Ji )

. C .
fe(s—a)™ Y cP(s—ayds =expat] ) —— = @titD,

% j=0 j=0r(_dk_j)
We now estimate the remaining terms.
e Term [p, p e F(s)ds.
For s = x+iye D, we have

y=ax+b, xe]-—o0,d],

| e'F(s)ds = + _jw exp [xt+it (ax+b)] F (x +i(ax+ b)) (1 +ia) dx.
Dy -

For s€ D, there exists L> 0 such that
IF (s)] < C(1+]s)"

and

+ oo +oo
[[e'F(s)ds| < C | e (1+s)ldx < Cexp[—gt] | e (1+x)"dx
Dy

[ é/2

51
<Cexp|:—§t] for t > 1.

In the same way we obtain

a1

10 — PAMS 16.2

ot

f et F(s)ds = [ exp[—6t+ity] F(6+iy)idy and [[ " F(s)ds| < Ce™?.
vV . vV
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@ Terms [p, e (s—a)™ ZJ" P (s—a) ds.
For seD, we have

Jr
ls—ap)™ Y. P (s—ay ds| < CA+|s*.

i=0

Hence, as previously seen,

J
.. “. esz(s—ak)dk Z CS—k)(S—ak)de| < CCXp|:—6t:|_
Dre j=0 2

e Terms (g, e” (s—a)™ Fy(s)ds.
For s.= x+iye H; we have
yzak/iil/ta XE]—é, O],

. -3
[ e (s—a) Fi(s)ds= £ | e e (x + i/t F, (x +iy) dx
1]

Hy
and
- 8 iN
| § e (s—a)* Fi(s)ds| < Cfe ™ |x+t-| dx
Hy 0 t
C ot C
<tN+1£e_“|uii|Ndu<tN+1.

e Terms [c, e (s— a)¥ F, (s)ds.

For s = a,+re®eC, we have
r=1/t, 0Oel—=n/2, n/2[,

/2
et (s— a )V F\ (s)ds = | exp[t(a,+re)] Neexp [lBN o] Fo (s)ire® dO

Ck /2
and

H' eSt(S—ak)ﬁka(S)dS| C j‘ rRe(Nk)+1 do < C T
Cx

-r/2
Finally,

2 (k) . C
f® =Y explad] Z G @itV R()  with [RQ)| < s s
k=1 ol'(—di—J)
We generalize easily this result to the case where a 0 and to case where there
are more than two singularities a, such that Re (a;) = a. Thus the proposition is
proved.
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APPENDIX B: PROOF OF THEOREM 8
Let Ao > Supgegs {lai|}. For 2> 4,
K [+'s)
g() = F@”? = |[] (A—ay™® = 14221+ ¥ ¢;479).
k=1 i=1

Let ¥ be even and such that

) = 1 for |A] > 24,
X =30 for 1] < o,

F Y =F " (1-09+F "(x9

g

FH1-09)+F (PP (1+ Y e 7)x).
i=1
F~'((1—x)g) is analytic since ((1—x)g) has a compact support. Hence

o=F (AP (1+ i cjz*1)+|iizb(1+ i c A (x—1)+h()

j=1

with h(f) analytic. # 1 (JA*°(1 +Z;°=1 ¢jA™9)(x—1)) is analytic, and thus

@) o=F AP+ ¥ clAPPATI+ Y lAPPT)+h().
Jj odd Jj even
Let 4% and 2% be distributions defined by

+

%, 0y = | Po@ydr if s> —1,
(8) 1 [—si—1 /lk +
Ay, @ = H’(fp(l)— ) @‘k’(o)ﬁ)di+ | PoA)da
0 k=0 : 1

[—s]—-1 (p(k) (0)
= kl(k+1+s)

G, @) = sy, 6

+ if seR™\Z",

We have |A]° = A% + 15, |A?PA~7 = A2P~7—j2P~J {f j is odd. We compute now

F1(AP) and F (A5 —4%).
e Case seR\Z.
From the equalities

F(t5)=T(s+ 1)(exp|:—i(s+ 1)g]il‘s+l’+exp l:i(s+ l)g:lzli‘””),

97@.9_) = F(S+1)(exp|:—i(s+l)gilﬂ.zts+1)+expl}'(s+1);]/1;(54-1))
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it follows that

AF6TD = i%;s)ﬁ(exp[—i(s+l)g] £ —eXp[i(S+1)g] tx—)a
AZGYD) = E%ﬁ(expliz(s+l) ] —CXP{—i(S+1)g]f—>-

Therefore

o F(S+1) LU PRTSAE =(s+1)

T ﬁ(exp I:zs 2:|t+ exp —152 t- ’

s _ dT6+1) SN PR T 1)
FLA) = F(Sn+1) ( >|t| GRS

FUIS —A) = F(Sn+1) (2)(t G+1)_ =6+ 1)

@ Case seZ ™ *

If se —1, leN, then the term k =I—1 is not defined in the sum of the
expression (8). Now

(p(l—l)(o) _ -1 ot~ 1 ]
(l—1)!(l+s)_(_1) <(l—1)!(l+s)’ "’>’

and hence the distribution

and

P 1Lty
A=) +s)

is holomorphic with respect to s in the neighbourhood of —I, and

I(T ) F(;: )(exp[isg:lt;(s+1)—exp[—isg]t:(s+1)>

_(_ )1—1 (_it)l_l )

2e (-1 (+5)
We now develop this expression in the neighbourhood of —I. We set z = s+,
and we have

T =2 — (=171

(=
(-D!z

with 9,(z) holomorphic in the neighbourhood of 0.

Iz=l+1)=——+y,(2)
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For t >0

TE=l+) . (i
— [’( ’)]t( k) B v

-1 1
(lt;n (( E—IOgt>(l 1)‘+8(Z) (— 1)’y,(z)(1+a(z))>

and for z =0 we have

PRI (17 1
FUTY)= o (( 10gt)(l 1),+( 1y~ )’1(0))-

In the same way for t <0 we have

LN—1
s =2 (- (wtonn)+ (- o)

2n

A similar calculation leads to

1 (s+1) ‘ | + ‘ . 1t| -
—1 -1 —(s+1) _ G+
(TH = 5 (exp zsz ty —exp| isy t- )

(—it) 1
T 2n(I—DI(I+9)

F U TH= @~ 1<((l 11))l'< +10gt)+y,(0)> for t <0,

1—1 -1
Foa =" <((l -5 (z——log Itl)+w(0))

F1(69) = 2m)~(—ity is analytic with respect to t. On the other hand,
/l+ and AZ! are square-integrable at infinity. Hence # '(lA|™) and
F ~1(A3'—AZ") are without Dirac mass at the origin, and by noting that for
I odd |¢|'~! is analytic, we write

for t >0,

( illtll_l .
2(!—1)'+h(t) if [ is even,
Forr =1
=1 gi-1__ P
T yrth® i s odd,
r . ‘
E f (T —£TY4h(y i 1 s odd,
—1y9-1_ 7-1 2(0-1
FLATI—2TY) = < " ol
W gl)'+h(t) if 1is even,

where h(f) is an analytic function.
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@ Case seN.

For le N the distributions t3¢*Y and tZ¢*V are not defined. Let s be in
the neighbourhood of Ie N. Then

1 k +
(767D, ) = jt (5+1)<(p(t 2 ""(0)%)dt+ f ¢ Vo (t)dt
: 1

L 3 200

. i=okl(k—s)y
; 1 ! t* e
(7640, gy = | t“‘”’(qs(r)— ) qs""(o)p)d” J g0
0 k=0 : 1 :
1 (k) 0
+y @ ©)
T Skl (k—s)

and ‘

el e

2}5 (s+1)exp|:ls—]<¢(t)— Y. #“(0) )
j-t ““’expli—zs—]( ) — Z % (0) )
0

+ o0 A T
4+ [ t76*D <exp I:isz] @ (t)dt—exp [—ish] ¢(t)) dt

!
! exp [is 7/2¢™ (0)—exp [ —is /2] 6 (0)
2z Kl(k—s)

For s =1+2z the term k=1 in the sum can be written as

(expl: :' (- 1)’eXp|i—ls—:|)l'((;){03) —()*in o' ()+e()

In the same way we obtain

2n _ i a1
lF(S-I—l) <g'- 1(/1s_), (0) = <eXp|:IS§:It_(S+1)_expl:_ls5:| t+(s+1); (p>
1 ! tk
= j —(s+1) exp lS_ (t)_ Z (k) (0)__ dt
0 k=0 k!
1 s ! *
—-_[t_(sﬂ)exp':—iS—:'(q)(t Z (k)((»__)dt
0 2 < k!
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+ +§mt "“’(exp[lsz}ﬂ(t)dt—e?ip[—ls ]‘/’(t))

- exp [ism/2] ¢ (0)—exp [—is /21 9™ ()
k; k! (k—s)

For s =1[+z the term k=1 in the sum can be written as

o® 0®(0
(( 1)’exp I:lsg:l—expli—ls{D“(l (03) =(—i)*"n .( ) +5(2).

Therefore, by noting u(s) = exp [isn/2]—exp [ —ism/2], we have

on ! t*
lr(s+1)<97 Y2 +22); @) = {t"“’u(S)(cp(t)—kgow""(O)H)dt

l

k + o
ol t_(s+”#(s)(¢(t)— ) ¢‘k>(0)%>dr+ [ 700+ F@)dr

k=0

T w00 000
fk;o“(S)w-l-“(l) +&(2).

Since

if [ is even,

wlh= {2(1)1 if 1is odd,
letting s tend to I, if I is even, we have

(FHM, 0> = (1) 0P (0),
and if ! is odd, setting ¥ = (¢ + ¢)/2, we obtain

(FHH; 0> =2 I t "“’(W X """’“”%)‘“

()l+ll|

k=

()
okl (k—s)

+2 [ =Dy () de+2 y DY (1) de + 4 z

=2{vp (D) y> =24vp (7 ¢Y); ).
It follows that

(i) o® if 1 is even,

F7Hah = A1)
“yp(t~¢*Y)  if [ is odd.

n
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In the same way we get

il+11|
- “vp(t~ Yy if 1 is even,
FA, L) =
(—i)l 50 if 1 s odd.

We obtain the desired assertion by putting this result in (7)
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