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LARGE DEVIATIONS ON LINEAR SPACES* 

GEORGE L. O'BRIEN m-D JIAMING SUN (NORTH YORK, ON*TAH~O) 

Abslract. We discuss a method, which we call the expansion 
method, for proving large deviation principles and bounds. The meth- 
od is applicable on general topological spaces but our main applica- 
tion is to prove a large deviation resuIt for a sequence of random 
vectors taking values in a real locally convex linear space. As applica- 
tions 01 this result, two general Crarnkr-type theorems are given. One 
comes directly from the main result; the proof of the other invoIves 
truncation and a continuity property or convex conjugation. 

1. Introduction. In this paper, we prove some results about large deviations 
on real Hausdorff Iocally convex topological linear spaces. In the course of 
deriving these theorems, we employ two general methods for obtaining large 
deviation lower bounds. 

Before describing our theorems we give some basic definitions which are 
applicable in the following more general context. Let E be a Hausdorff space 
and let 9, F and X denote the collections of open, closed and compact sets in 
El respectively. Let (p,) be a sequence of probability (Borel) measures on E and 
let (a,) be a sequence in (0, 11 with a, + 0. 

1.1. DEFINITION. (a) We say kn) satisfies a narrow (vague) large devia- 
tion principle (NLDP (VLDP)) with constants (a,) and rate function 
I: E + 10, +a] if I is lower semicontinuous (lsc), 

lirn sup a, log p, {F) < - inf I (x) for a11 F E F, 
n-+m XEF 

(1.2) lim infcx, log p, (G) $ - inf I (x) for all G E 3 
n+ 03 XEG 

(respectively, (1.2) holds as stated and (1.1) holds for all F E X ) .  

* This research was supported by the Natural Sciences and Engineering Research Council of 
Canada 
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(b) We refer (1.1) and (1.2) by themselves as a large deviation q p e r  bound 
(LDUB) and a large deviation lower bound (LDLB), respectively. 

For any probability measure p and a n y  a > 0, we define the set function pa 
by pa (A)  = (P  (A))". 

1.2. DEFINITION. Let p, and a, be as above. We say the sequence (pin) is 
equitight if for all E > 0 there is a K E X such that ,uin(KC) < E for all large n. 
Also, we say the rate function I :  E + [0, + a] is tight if { x  E E :  1 ( x )  d y }  is 
compact for all y ~ ( 0 ,  +a). 

- ~ ~ u i t i ~ h t n e s s  is usually called exponential tightness, although it is general- 
ly expressed in logarithmic form. Our formulation emphasizes the similarity 
with the concept of tightness for probability measures, Equitightness is often an 
unattractive hypothesis, but it is not unduly restrictive in the sense that if E is 
Polish and (pn) satisfies an NLDP with tight rate function I, then (p?) must be 
equitight (cf. Lynch and Sethuraman [I61 or O'Brien [17]). 

Now suppose we have a collection r of continuous [- cc, + m)-valued 
functions on E and suppose that for every ( ~ r  the pressure 

exists in ( -  m, + a]. Then we call 'P: r + (- oo , + m] the pressure function. 
There are some situations in which the existence of the pressure function and 
the equitightness of (pp) together entail the existence of an NLDP with con- 
stants (a,) and rate function I given by 

Examples of this phenomenon can be found in Bahadur and Zabell 111 and 
Bryc 141. 

An important theorem of large deviation theory is the contraction principle 
(Varadhan 1211) which can be stated loosely as "the continuous image of an 
NLDP is again an NLDP." More precisely, if E, (p,) and (a,) are as above, if 
(1.1) and (1.2) hold for some tight rate function I and if A: E -+ E ,  is a con- 
tinuous map to some other Hausdorff space E,, then the sequence (p, o of 
induced measures satisfies an NLDP with constants (a,) and rate function I, 
given by 

(1.5) I,(y) = i n f { I ( x ) :  X E E  and 1 ( x )  = y ] ,  ~ E E , .  

Versions of this result with weaker continuity assumptions are given by Deu- 
schel and Stroock [lo] and O'Brien [17]. 

In Section 2, we develop an expansion method, which is in a sense an inverse 
of the contraction principle. Suppose we are given (p,) and (a,) as above and 
a collection A of continuous functions A: E + E,, and suppose that we deter- 
mine that, for each A E A, (p,o R-')  satisfies an NLDP with constants (a,) and 
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rate function I,. If A is a rich enough class, we can deduce that (p,) also satisfies 
an NLDP with constants (a,) and with rate function determined by the 1,'s. 
Note that it is important to allow the Hausdorff space E ,  to vary with A. 

The purpose of this method is much the same as that of the projection 
method used by Dawson and Gartner [6] and Dembo and Zeitouni [9]. As 
a consequence some of the details of our proofs are related to some of theirs. 
The expansion method is worth presenting, however, since it is more general 
and more direct both in concept and in application. 

Our application (in Section 3) of the expansion method is for the par- 
ticular case when E is taken to be a real Hausdorff locally convex topological 
linear space Vand is taken to be the topological dual V* of V. Gartner [I51 
and Ellis [I41 showed that if V = R~ and if the pressure Y ( t )  exists in 
( -  m, + ao J for all t E V*, is finite in a neighbourhood of 0 and is "essentially 
smooth" (see our Section 31, then (p,) satisfies an NLDP with constants (a,) and 
rate function given by (1.4). The finiteness requirement on Y automatically 
implies that (p?) is equitight in the case V = Rd. In this paper we present 
a sirniIar theorem for general V as described above. Bryc [4] showed that for 
any metrizable K if (p:) is equitight and Y is finite everywhere and sufficiently 
smooth, then the same conclusion holds. Various related theorems of the same 
type are given by Dembo and Zeitouni 191. Their Corollary 4.5.27 (which is 
based on a result of Baldi [ 2 j )  and Corollary 4.6.14 require the pressure to be 
everywhere finite, while their Corollary 4.6.1 1 drops this requirement but at the 
cost of the extra assumption that V is the algebraic dual of another space, Also, 
we do not assume the pressure function to be lsc. Thus our result (Theorem 3.2) 
is different from theirs in several respects. 

In Section 4, we apply our Theorem 3.2 and its proof to the case where p, 
is the distribution of the rz'th sample mean from an independent and identically 
distributed (i.i.d.) sequence of Vvalued random vectors. We get an NLDP if the 
equitightness condition holds. In the case where equitightness is not assumed, 
we develop a simple continuity property of convex conjugation and use it and 
a truncation argument to obtain a VLDP similar to Bahadur and Zabell's [I] 
extension of CramCr's theorem [5]. Thus, the Bahadur and Zabell theorem in 
its full generality can be deduced from the extended Gartner-Ellis theorem. 
The continuity property is not directly related to Mosco convergence, as stud- 
ied for example in Zabell [22]. In Section 5, we give a new sufficient condition 
for this VLDP to be in fact an NLDP. It is based on the contours of the rate 
function and is weaker than equitightness. It always holds for V = R. 

2. The expansion method. The basic idea of this method was discussed in 
the Introduction. Here we first deal with the upper and lower bounds separate- 
ly and then give an LDP result. This is followed by a discussion of the rate 
function. Let A be a collection of continuous maps 1: E -, E,. Let 

2:= {A- '(GI):  AEA, G, open in EL) .  
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We will call the topology generated by Z the minimai topology. We obtain 
large deviation bounds for the original topology on E and for this possibly 
smaller topology. Define p,%, : = p, o A-I for n E N and R E  A. 

2.1. PROPQSI~QN. Suppose that, for each R E  A, E, is a regular space and 
(p,,,) satisjies the LDUB with constants (a,) and a rate function J , .  If K c E is 
compact under the minimal or original topology, then 

(2-1) lim sup E, log pn (K) 6 - inf J (x), 
n+ m XEK 

. . 

where J is the Isc function given by 

J ( x )  = sup J ,  ( A  (x)) . 
k A  

I f  (p:") is equitight, then (2.1) extends to all K E B 

P r o  of. Since each J, is lsc, so is J. Let p < inkEK J (x). Then for any x E K 
there exists a LEA such that J1(A(x)) > j, and so, by the lower semicontinuity 
and regularity, there exists an open set B, c E, such that A (x) E B, and 

(2-3) lim sup a, log p,,, (4) < - inf J ,  Cy) < - 8, 
n- t  m Y ~ B A  

where B, is the closure of B,. So, by the compactness, there exist x, E K,  1, E A 
and open B,, c E,,, k = 1, . . . , m, such that K c u,"=, I ,  (B,,) and (2.3) 
holds for each k with A and B, replaced by ,Ik and B,,. Therefore 

m 

lim sup a, log pn ( K )  < V lim sup an log p,,,, (B,,) 
n+m k = l  n+m 

which yields (2.1). The extension to the closed sets is standard. rn 

2.2. PROPOSITION. Suppose that everyfinite intersection of sets in Af' (defined 
above) is a union of sets in 2 (i.e., 2 is a base for the minimal topology, not just 
a subbase). Also assume that, for each ,IE A, (p,,,) satisfies an LDLB with con- 
stants (a,) and rate function J,. 

(a) If G c E is open under the minimal topology, then 

(2.4) lim i d  a, log p, (G) 2 - inf J ( x ) ,  
n+ a, XEG 

where S is defined in (2.2). 
(b) Suppose in addition that (p:) is equitight and that for all distinct x, y E E 

there exist disjoint H E  A? and G E 93 such that x E H and y E G. Then (2.4) holds 
for all G E ~ ,  and J is tight. 
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P r o  of. (a) Let G c E be open under the minimal topology and let x E G. , 
By the assumption about X ,  there exist A E  A and open G ,  c E, such that 
x € j l - l ( G I E )  c G, SO 

lirn inf a,  log pn (G) 2 lirn inf a, log p , ,  (G,) 
n+ m n-' m 

> - inf J , ( y )  2 - J,(jl(x)) 3 - J ( x ) .  
YEGA 

(b) Let G E 97 and x E G with J (x) < + m. Let K E X be such that 

(2.5) . . lim sup ,u: (Kc)  ) e - J(x ) -  . 
n+ m 

For y E K\G, choose disjoint H ,  E X and Gy E $9 with x E H,  and y E G,. Since 
finitely many such G,'s cover K\G, the intersection H of the corresponding H,'s 
is disjoint from K\G, so that X E  H c G u KC. Therefore, by (a) we have 

lim inf a, log p, (H) 2 - J ( x )  . 
n- m 

Combining this with (2.5) we see that also 

lim inf a, log p, (G) 2 - J (x ) .  
n+ w 

The tightness of J is a consequence of the equitightness hypothesis about (p:) 
and (2.4). H 

Combining the above two propositions, we obtain: 

2.3. THEOREM. Assume that, for each rZ E A, E,  is a regular space and that the 
set X  satisfies thefinite intersection condition described in Proposition 2.2. If, for 
each 1 E A, (pIE,,) satisfies an NLDP with Constants (a,) and rate function J,, then 

(a) (pn) satis$es the VLDP under the minimal topology with constants (a,) 
and rate function J given by (2.2), and 

(b) iJ in addition, the hypotheses of Proposition 2.2 (b) hold, then (pn)  satis- 
fies the NLDP under the original topology with constants (a,,) and tight rate 
function J.  

We now specialize to the linear space situation described in the Introduc- 
tion (so E = V ) .  In this case we can say something about the form of the rate 
function J in Theorem 2.3. Define 

2.4. COROLLARY. Suppose that the conditions of Theorem 2.3 (b) hold. Then 
for any E V* the limit 

Y (5) : = lim lim a, log J exp ( (5  ( x )  A M)/an) pn (dx)  - 
M + w n + m  v 

exists and J* = x. Moreover, if J is convex, then J = - Y*.  

6 - PAMS 16.2 
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Proof.  Since now (p,) satisfies an NLDP with constants (a3 and rate 
function J, the result reduces to Theorem 3.1 of Dinwoodie [12]. m 

2.5. COROLLARY. Suppose that the conditions of Theorem 2.3 (bj hold and 
that for any 9 E V* 

(2.6) lim sup a, log j exp (t (x)/aJ pn (dx) < + cg . 
n+ m v 

Then the pressure Y (5 )  exists for all ( E V* and J* = F. Moreover, if J is 
convex, then J = Y*.  

Proof.  It is easy to prove !P = iY in this case. . .. - 

Without (2.6) we cannot expect that J* = "P or J = Y*. The following 
example shows us that even though the pressure function !P exists, w) is 
equitight and (p,) satisfies an NLDP with convex rate function J, J may not 
equal ly*. 

2.6. EXAMPLE. Let V = R1. Let p, {k) = k p 2  epnk for a11 natural k 3 n and 
let the remaining mass of p, be uniformly distributed on [0, 11. Let a, = l/n. 
Then obviously (p;ln) is equitight and (p,) satisfies an NLDP with convex rate 
function given by 

if OGxGl, 
J (x) = + cn otherwise. 

But Y(t) = 0 for t < 0, Y (tj = t for 0 < t < 1, and Y (t) = + KI otherwise. 
Therefore Y* (x) = J (x) for x < 1, but Y* (x) = x - 1 < J(x) for x > 1. How- 
ever, J = - !P* by Corollary 2.4. 

3. A general large deviation principle for linear spaces. We now apply the 
expansion method to obtain our extension of the Gartner-Ellis theorem to 
infinite-dimensional linear spaces. Throughout this section, let V*, (~1,) and 
(a,) be as in Section 1. 

3.1. DEFINITION. We say a convex function f: V* + (- co, + KI] is essen- 
tially smooth if for all d 2 1 and t l ,  . . . , Ed E V* the convex function 
u (t . . . , td) : = f ~ t =  ti ti) is essentially smooth on Rd (see the definition on 
p. 251 of Rockafellar [19]) and 0 ~ i n t  {t E Rd: u (t) < a). 

When V* = Rd, this definition reduces to the one of Rockafellar [I91 
except the former requires that O ~ i n t  {t € R d :  f (t) < 00). We are now ready to 
state our theorem, 

3.2. THEOREM. Assume that the pressure Y (<) exists in (- co, f a] for all 
5: E V*, that Y is essentially smooth, and that (p:.) is equitight. Then (p,) satisfies 
the NLDP with constants (a,) and rate function I giuen by 

(3.1) I(x):= sup{t(x)-Y(0; CEV*}. 
Note that Y (0) = 0 and !P is convex by Holder's inequality, so the essen- 

tial smoothness assumption is feasible. We apply the following known result (cf. 
Ellis [14] or De Acosta [7]) for our upper bound. 
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3.3. LEMMA. Assume that F(S) exists in ( - co , + a] for all t E V*. Then for 
any K E X  

lim sup cl, log p, (K) < - inf I (x), 
n+ m XEK 

where I(x) is defined in (3.1). Furthermore, i f ( p F )  is equitight, then (1.1) holds. 

P r o  of of Theorem 3.2. In view of Lemma 3.3, we need only to prove 
the lower bound half of Theorem 3.2. Take E = Vand the set A of Section 2 to 
be the set of all continuous linear maps from V into any Euclidean 
space; thus, for AEA, E, = Rd for some  EN and II has the form 
A (x) = (t, (x), . . . , td (x)) for some el, . . . , td E V*. For each such ;1 (and the 
corresponding a), we define the induced measures p,, as before. The corre- 
sponding pressure 

exists for all t = (t,, . . . , td)€(Itd)* = Rd, where (t, x) is the Euclidean inner 
product. Since now !PA (t) is essentially smooth with 0 E int {t: Y, (t) < m), 
b,,,) satisfies an NLDP by the version of the Gartner-Ellis theorem which 
does not require Y, (t) to be lsc (for example, that of O'Brien and Vervaat [18]). 
In particular, 

(3.3) lim inf a, log p,,, (G,) 2 - inf J, (y) 
n+ m YEGA 

for every 1~ A and G ,  open in R~ (with d determined by A), where 

J n ( y ) =   SUP((^, t)-!P,(t): t€Rd). 
The class 

&':= (A-'(G,): L E A ,  G, open in Rd) 

is obviously closed under finite intersections and the topology generated by 
%' is the weak topology on Vand is, by the Hahn-Banach theorem, Hausdorff. 
We may therefore apply Proposition 2.2 (b) to conclude that 

liminfa,logp,(G) B -infJ(x) for all GEB, 
n+ 03 r r G  

where 
J (x) : = sup J, (A (x)) = SUP SUP ((A (x), t) - Y, (t): t E Rd) 

AEA BEA 

d d 

= supsup(C t , t , ( x ) - ~ ( C  tktk): t€Rd) G I(x). EI 

AEA k =  1 k =  1 
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3.4. COROLLARY. Theorem 3.2 remains valid qthe essential smoothness hypo- 
thesis is replaced by the assumption that the formula (3 .3)  holds for each A E  A. 

The corollary follows from the above proof because the essential smooth- 
nees was used only to prove (3.3). We will apply Corollary 3.4 in the proof of 
Theorem 4.4. 

4. Large deviation principles for sample means. In this section, we take 
V and V* as in Section 3. In order to avoid a complicated discussion of 
measurability (Bahadur and Zabell [ I ] ) ,  we assume further that p, is the dis- 
tribution of the n'th sample mean 

of some i.i.d. Pvalued random sequence (XJ defined on a probability space 
(9, a, P) with common distribution p. If p is a probability measure concen- 
trated on a Polish closed convex subset of V, then such a sequence (p,) can 
always be constructed with p, = p. We also take a,:= n-' throughout the 
section. Then the pressure 

exists in (- co , + a] for all 5 E V*. We apply Theorem 3.2 to prove in Theo- 
rem 4.2 that (p,) satisfies a VLDP provided p satisfies a certain regularity 
condition; and in Theorem 4.4 that (p,) satisfies an NLDP provided only that 
(,u,lin) is equitight. In the proof of Theorem 4.2, we use a truncation procedure. 
We remark that the same procedure was used by De Acosta et al. [8] in the 
case V = Rd, but with a fairly complex substitute for our Lemma 4.1. 

Let us now equip V* with the CT(V*, V) topology. We need not change the 
topology on V into the CT (q V*) topology since lower semicontinuity of a con- 
vex function on V is equivalent for the two topologies (Ekeland and Temam 
[13]). Let f be a function from V (respectively, V*) into [-a, +a]. The 
convex conjugate f * off is defined by 

(respectively, f * (x) = sup ( 5  (x) - f (5) :  5 E V*)  , x E V). In either case let 
conv(f) denote the greatest convex lsc function not exceeding J: Then (cf. 
Ekeland and Temam [13]) 

and f = f ** iff f is itself convex and Isc. Iff is only assumed to be convex, then 
the greatest lsc function g not exceeding f can be shown to be convex also, and 
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hence g = conv(f) = f **, so that, for any open set G c V (V*), 

inf f (x) = inf f **(x). 
XEG XEG 

We next give the advertised continuity property of convex conjugation. 

4.1. LEMMA. Let (f,; U E A )  be a set of functions from V (V*) into 
(-LO, +GO]. Let 

g:=inff ,  and h:=supf,. 
- ~ E A  asA 

Theit: 
(a) g* = SUPEEA fdf 
(b) If each f, is convex and Isc, then h* = #**, where 4 : =  infaeA f:. 
(c) h case (b), if 4 is a h  convex, then for all open G c V* ( V )  

inf 4 (x) = inf h* (x). 
XEG xeG 

Proof.  (a) We only consider the case when each f, is defined on V The 
proof in the other case is similar. Since g < f, for all a, g* 2 fz  for all a, so 
g* 2 sup, f ,* . If g* (5 )  > t E R1, then 5 ( x )  - g (x) > t for some x E J! Therefore 

(x)-f, ( x )  > t for that x and some a E A, so that f (c) > t for that cl. This' 
proves (a). 

(b) By (a) and the fact that f ,  = f$* for each a, 

#* = sup f,** = supf, = h. 
~ E A  U E A  

Hence h* = I$**. 
(c) If # is convex, (4.2) follows from (4.1). BS 

4.2. THEOREM. Let (pJ be defined as above. Suppose there exists an in- 
creasing sequence of compact convex sets (K,; IE N) such that p (K,") + 0 as 
1 + co. Then (p,) satisfies the VLDP with rate function I given by 

(4.3) I(x):= !P*(x) = sup{t(x)-!l'(t): ~ E V * ) .  

Proof.  By Lemma 3.3, the inequality (1.1) holds for all compact sets. For 
1~ N, define 

/.ir,n (A) : = P (S, E A; Xi E Kt, i = 1, . . . , n).(p (Kt))-" 

for all Borel sets A c J! Then each p,,, is a probability measure with support 
in K,. Define an lsc convex function 8, by 

8, (5) = log 1 exp [C (x)] p (dx) for all t E V* . 
Kr 
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Then the pressure 

By the compactness of K , ,  P, is everywhere finite and has everywhere finite 
directional derivatives. Thus equitightness and essential smoothness hold for 
(pip) and .F,. By Theorem 3.2, for any open set G c V and for any 1 E N ,  

1 1 
(4.4) lirn inf - log pn ( G )  2 lim inf - log p,,,(G) + logy (K , )  2 - inf (x). 

n+o3 n n+co Fl EG 

By monotone convergence, @, t Y and @: J. # : = infieN as I + m. Since each 
Qi? is convex, so is 4. By (4.4) and Lemma 4.1 (c), we conclude that 

1 
lim inf - log p, (G) 2 - inf 4 (x) = - inf Y* (x). H 

n+m ?l XEG XEG 

4.3. Remark. The hypothesis about compact sets in Theorem 4.2 holds 
for all p whenever V is Polish (i.e. separable and Frechet), in particular when 
V = Rd. Briefly, the reason is that every such p is tight and the closed convex 
hull of a compact set in such V is again compact. This argument is extended by 
Dembo and Zeitouni [9] to a more general situation in order' to include the 
case where V is the space of finite signed measures on a Polish space E' and 
p has support in the set A, of probability measures on E'. The above convex 
hull property for A, can be proved more easily as follows. By Prohorov's 
theorem (cf. Billingsley [3]),  if K c 4, is compact, then K is tight, so its 
convex hull is tight, and hence is relatively compact. Therefore the VLDP holds 
in both cases by our Theorem 4.2. 

4.4. THEOREM. Let (pn)  be defined as above. If (pi1") is equitight, then (p,) 
satisfies the NLDP with the rate function given in (4.3). 

Proof.  By Corollary 3.4, we need only to verify (3.3). Let R = (c,, . . . , 5,) 
be given, where 5 , ,  . . . , e, E V*. Let I.', : = 1 (X,). Then (Y,) is a sequence of i.i.d. 
Rd-valued random vectors, so, by Theorem 4.2 and Remark 4.3, 

1 1 
lirn inf - log y,,* (G,) = lim inf - log P - Y ,  E G, 2 - inf I, (x)  

n + m  ?l n-+co n (ik:l  ) XEGA 

for any open set G, c R ~ ,  where I, = Y; and 

d 

FA tt) = 1% j exp [<t? ( X I > ]  P (dx) = !?J ( C t, 5,). 
V k =  1 

That is (3.3) holds. ra 
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4.5. R em a r k. Theorem 4.4 immediately implies a generalized Sanov's 
theorem under the weak topology (cf. Dembo and Zeitouni [9]). In fact, instead 
of assuming that the underlying space Z is Polish in Sanov's theorem, we need 
only to assume that 2 is metrizable and the underlying measure is tight since the 
equitightness hypothesis can still be proved by Prohorov's theorem in this case. 

5. A suficient condition for an NEDP for sample means. Suppose through- 
out this section that we are in the same situation as at the beginning of Sec- 
tion 4 and that the condition in Theorem 4.2 holds, so that (p,) satisfies 
a VLDP with rate function given by (4.3). The objective of this section is to give 
a simple sufficient condition for the corresponding NLDP to hold. One suf- 
ficient condition is of course equitightness, which is useful in some important 
cases such as Sanov's theorem. A necessary and sufTicient condition for the 
NLDP to hold is given in O'Brien [17], but it is not very easily verified. In the 
case V = Rd, when d = 1, the NLDP always occurs. Dinwoodie [ I l l ,  building 
on an example of Slaby [20], has shown that this is not so for d = 3. The 
question is not yet settled for d = 2. 

The condition given below is valid for all Polish spaces, but is mainly of 
interest for finite-dimensional spaces. It is based on the contours of I. For all 
L > 0, let r, : = (x E V :  I (x) G L}. Note the following facts. If L, < L,, then 

TL r c rL,; each r, is closed and convex since 1 is lsc and convex; every r, is 
nonempty. Since every T, # 0 and I is convex, it follows that if r, is compact 
for any L > 0, then all r,'s are compact. In this case the NLDP occurs. Our 
condition is a simple extension of this fact. 

5.1. DE~MTION. We will say I has separated contours at infinity if whenever 
0 < L, < L,, there is a compact set K c V and finitely many (possibly zero) 
pairs (t,, r,) ,  . . . , (t,, 13 in V* x R1 such that 

5.2. PROPOSITION. Assume V is a Polish space. Let I have separated contours 
at inJinity. Then (pn) satis$es the NLDP with the rate function I given in (4.3). 

Proof.  By the VLDP we of course have 

1 
lim sup -log p,, (A )  G - inf I (x) 

n+m n XEA 

for compact A. Bahadur and Zabell 111 showed that the same result holds for 
all A expressible as a finite union of convex open sets. Our task is to prove (5.2) 
for all closed sets. So let F be a closed set with inf,,,I(x) > 0. For 
any 0 < L, < L, < inf,,I(x), there are a compact set K and pairs 
(tl, r,), . . . , (c,, r,) E V X  x R' such that (5.1) holds. Let 

m 
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Since F c r$, we have P c (K nF)u  A ,  so that 

1 1 
lim sup -log pn ( F )  < lim sup -log p, ((K n f l  u A) 

n-+m * n - t m  n 
1 1 < lim sup -log p, (K n F) v lim sup -log p, (A) 

n-m n n-+m n 

< (- inf I(x))v(-infi(x))d(-infI(x))v(-L,)= -L,. 
X E K ~ P  XE A XEF 

Since. L, < inf,,I(x) is arbitrary, the proof is completed. 

If E = R1, rL must be a compact interval, a closed semi-infinite interval or 
R1 itself; in each case all T, must have the same form. Thus the hypothesis of 
Proposition 5.2 always holds. Cases where it holds for E = RZ are when T ,  is 
compact for some L > 0, when rL = F x R1 for some closed convex F c R1 for 
some L > 0, and when the boundaries of the r,'s are (branches of) hyperbolas 
with distinct asymptotes. 
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