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Abstract. We study continuous additive functionals of zero 
quadratic variation of strong Markov continuous local martingales by 
means of stochastic calculus. We show that they admit a represen- 
tation as a stochastic integral with respect to local time in the sense d 
Bouleau and Yor. 

I. Introduction. In the theory of Markov processes additive functionals are 
an important tool and have been studied intensively. For a detailed treatise we 
refer to the books by Blumenthal and Getoor [2] and Sharpe [20]. 

A particular challenge consists in finding powerful representations of ad- 
ditive functionals, thus facilitating related stochastic calculus. An important 
result is the one-to-one correspondence of nonnegative finite continuous 
additive functionals and certain measures. In the case of d-dimensional Brow- 
nian motion it can be found in the book by Dynkin (see [6], Theorem 8.5). It 
was obtained by Volkonski in 1221 and [23] in the one-dimensional case and 
also by McKean and Tanaka [13]. Meyer [I41 extended the characterization 
of nonnegative additive functionals to Hunt processes. 

Revuz [I51 developed an explicit description of the unique measure m re- 
presenting a nonnegative finite continuous additive functional of a Markov 
process X (see also [16], Chapter X). If X admits a local time LX(t, y) up to 
time t at every point y, then a nonnegative finite continuous additive functional 
A of X can be represented as an integral over local time with respect to the 
Revw measure rn: 

In the case of Brownian motion a representation of this type was originally 
proved by Tanaka 1211; we also refer to Wang [24]. 

In the framework of stochastic analysis, Engelbert and Schmidt studied 
nonnegative additive functionals of strong Markov continuous local martin- 
gales using the method of time change (see [8] and [9]). They gave a natural 
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proof of the representation theorem ([8], Theorem 3.1, and [9], Theorem 2) 
which is strongly based on the ItB-Tanaka formula. 

Of course, every nonnegative additive functional is increasing. Since a con- 
tinuous additive functional of fixllte variation can be written as the difference of 
two nonnegative additive functionals (see [16], X.2.221, the representation theo- 
rem is easily extended to such functionals if we allow m to be a signed measure. 

But, for example in the theory of Dirichlet forms (see [12]), a more general 
class of additive functionals appears to play an important role, namely, the class 
of continuous additive functionals of zero quadratic variation. In particular, we 
fqd  such functionab in the Fukushima decomposition (see 1121, Theorem 5.5.1). 

In this paper we will realize that local time also allows to establish a re- 
presentation theorem for such functionals. Let X be a one-dimensional strong 
Markov continuous local martingale and E its set of absorbing points. We will 
show that a continuous additive functional of zero quadratic variation A of 
X up to the first entry time D,  (X) : = inf {t 2 0: Xt E E )  can be represented as 
a stochastic integral in the sense of Bouleau and Yor: 

A, = J 9. (x) d ,  LX (t ,  x )  on {t < DE (X)) a-s. 

In the special case where A has finite variation, (1) and (2) are seen to coincide 
by integration by parts ([25], 5.1). 

Let us recall that Bouleau and Yor [3] defined the stochastic integral of 
the above type as the unique continuous extension of the mapping which, on 
step functions, is given by 

n I 

f = C fi P(ai,ai+ 1 1 ~  1 fi(LX (t, ai+ l)-LXtt, ai)) =: jf(a)daLX ( t ,  a). 
i =  1 i =  1 

Thus, they succeeded in establishing a change of variables formula. In 1251 the 
author developed a generalization of the Bouleau-Yor formula and showed that 
transformations according to the generalized Bouleau-Yor formula map con- 
tinuous semimartingales to continuous local Dirichlet processes, i.e., processes 
admitting a decomposition into the sum of a continuous local martingale and 
a continuous adapted process of zero quadratic variation ([25], Corollary 5.8). 

The starting point of this paper is the result on continuous additive func- 
tional~ of linear Brownian motion B obtained by Tanaka in 1963 (see [21]). 
Such functionals take the form 

where f is continuous and g locally square integrable. 
We introduce definitions and prerequisites in Section 2. In Section 3 we 

derive on the basis of Tanaka's representation that every continuous additive 
functional of zero quadratic variation of Brownian motion B stopped when 
leaving (a, b) can be represented as a Bouleau-Yor term j g  (x) d,L?(t, x). 
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To this end, we essentially use the generalized Bouleau-Yor formula ([25], 2.4) 
and results by Engelbert and Wolf on analytical properties of functions trans- 
forming stopped Brownian motion into local Dirichlet processes (see [lo]). The 
converse statement that every Bouleau-Yor term jg (x) d,  I! (t, X) is a continu- 
ous additive functional is an immediate consequence of Theorem 5.7 in [25]. In 
Section 4 we extend the representation theorem to continuous additive func- 
tional~ of zero quadratic variation of strong Markov continuous local martin- 
gales by the method of time change. 

2. Defadtions and prerequisites. Let g ( W )  denote the a-algebra of Bore1 
sets, and -gU(R) its -universal completion. We consider a family 
(Q, F ,  P,; x E R) of probability spaces such that (P,), is a probability kernel 
from (R, 9" (R)) into (9,  F). For every probability measure p on (R,  &'(I?)) we 
define a probability measure P, on (8, F )  by 

Replacing 9 by its completion with respect to the family (P,) and extending P, 
in the natural way we may assume F to be complete with respect to (P,). 

Furthermore, let F = (.FJtao denote a right-continuous filtration with 
8 E 9 such that Fo (and, consequently, every YZ) is complete with respect to 
(la> (see Blumenthai and Getoor [2], 1.5.3). We write (Q, F, F, B,; x E R) for 
the family of filtered probability spaces. 

We say that an assertion holds a.s. if it holds P,-as. for every X E R .  
If X is a process on (52, 9, P,; XER), let P = (F:),30 denote the fil- 

tration generated by X. We set 90, := VtBO 8;.  We define 9: to be the 
completion of 9: in 9 with respect to (PJ and write Fx = (Sf)t3O as well as 
9::= Vzg0F::. 

For a real process Z let Z ,  : = limsup,,, 2,. 
For a filtration H, we denote the smallest right-continuous filtration con- 

taining W by H + .  

DEEWITION 2.1. A stochastic process X = (Xt),>, is said to admit (perfect) 
shijt operators if there exists a semigroup 8 = (O,), of operators 0,: 52 + 9 
such that 

X,,,=X,o0,, O < t < a o , s 2 0 ,  a.s. 
and 

X,o0, = X, on ((X), < m}, t > 0, a.s. 

DEFINITION 2.2. A continuous adapted process X = (Xt),,, on 
(Q, 8 ,  F, P,; x E R) is said to be a strong Markov continuous local martingale if 
the following conditions are satisfied: 

(i) P, (X, = x) = 1 for every x E R. 
(ii) X is a continuous local Fmartingale with respect to every P,, x E R. 

(iii) X is a strong Markov process, i.e., 
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- X admits shift operators 8 = (BJo Q t s  ,; 
- for every nonnegative FX,-measurable random variable Z we have 

Ex (20 dt 1 Pt) = Ex, (Z) P,-a.~. for every x E I ;  

- for every Fx-stopping time T and every nonnegative Fz-measurable 
random variable Z we have 

Ex(Z0OT IIT<rn) 1 9:) = EXT(Z)l{T< m) Px-a.~. for every XEI. 

We remark that, by 1.18 in [7], X also is a strong Markov continuous 
local-martingale with respect to F+ and-we have F$ = FX. Throughout this 
paper X denotes a strong Markov continuous local martingale. A point X is 
called absorbing if Px(X, = x) = 1 for every t >, 0. The set E of absorbing 
points is closed and we have (see [7], 1.14) 

X,, E E on ( D ,  < a) a.s. 
as well as 

X, = X,,,, for every t 2- 0, as., 

where D, denotes the first entry time of X in E. Furthermore, we assume that 
lI,=8,,,, for every 0 < s <  c ~ .  

DEFINITION 2.3. Let U be an Fx-stopping time. An Fx-adapted process 
A taking values in Ru{+ co) is called a continuous additive functional of X on 
[0, U) if 

(i) A. = 0 a.s., 
(ii) A is continuous on LO, U )  a.s., 
(iii) A,+A,oB, = A,,, holds on ( s + t  < U) a.s. for all s, t 2 0.  
If the equality in (iii) holds simultaneously for all s and t, then A is said to 

be perfect. In the case U = IXI we briefly call A a continuous (perfect) additive 
functional. 

We recall the representation theorem for nonnegative continuous additive 
functionals. 

THWREM 2.4 ([a], Theorem 3.1). Let A be a right-continuous nonnegative 
process. If A is a continuous perfect additive functional of X on LO, DJ, then 
there exists a nonnegative measure m such that 

A, = 1 Lx(t-, a)rn(da) on ( t  < D,) a.s. 
R 

This theorem extends to continuous perfect additive functionals of finite 
variation. Then m appears to be a signed measure (see [16], X.2.22). 

We introduce the notion of "zero quadratic variation" in the framework 
of stochastic integration by Russo and Vallois [17]-[19]. This framework has 
proved to be highly appropriate for studying local Dirichlet processes (see [I 11, 
C181, C191, C251, C261). 
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DEFINITION 2.5. (i) A continuous adapted process Q = (Qt)t30 has zero 
energy if 

(ii) A continuous adapted process Q has zero quadratic variation up 
to the stopping time z if there exists a nondecreasing sequence of stopping times 
(T,,jneN with limn-rsr T,, = T as, such that, for each  EN, the stopped process 
QTn has- zero energy. If z = + m, we briefly say that Q has zero quadratic 

-. - variation. - 

(iii) A continuous Dirichlet process is defined to be a continuous adapted 
process admitting a decomposition 

where M is a continuous square integrable martingale with M ,  = 0 and Q is 
a continuous adapted process of zero energy with Q, = 0. 

(ivj A continuous adapted process Y is a continuous local Dirichlet process 
up to the stopping time T if there exists a nondecreasing sequence of stopping 
times (TJnER with limn,, T, = z a.s. such that, for each n s N ,  the stopped 
process YTn is a continuous Dirichlet process. We say that (T,JnEN reduces E: 
If z = + oo, we briefly call Y a continuozss local Dirichlet process. 

Remark 2.5 ([24], 4.4, 4.5). (i) A continuous adapted process Y is a con- 
tinuous local Dirichlet process if and only if it admits a decomposition 

where A4 is a continuous local martingale with M ,  = 0 and Q is a continuous 
adapted process of zero quadratic variation with Q, = 0. 

(ii) A continuous process of finite variation has zero quadratic variation. 
Therefore, the class of continuous local Dirichlet processes extends the class of 
continuous semimartingales. 

Remark 2.7. (i) In the framework of stochastic analysis by Russo and 
Vallois [17]-[19] the generalized bracket of two continuous processes X, Y is 
defined by 

1 

uniformly on compacts in probability. If X and Yare continuous semimartin- 
gales, then Proposition 1.1 of [17] states that the generalized bracket coincides 
with the classical covariation process given by 
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in probability, where Ll: 0 = to < t ,  < . . . < t, = t is a partition of [O, t ] ,  t 2 0 
(see [16], IV.1.20). 

We abbreviate [XI : = [X, XI and {X) : = ( X ,  X). 
(ii) If the continuous process Q has zero quadratic variation, then 

the generalized bracket [Q, Q] exists and we have [Q, Q] = 0 (see 
[ZS], 4.2). 

An important classical result in stochastic analysis states that a continu- 
ous local martingale of finite variation is constant ([4], Theorem V.39). In our 
proofs the following generalization plays a central role: 

THEOREM 2.8. Every continuoets local martingale M of zero quadratic varia- 
tion is constant. 

Proof. By Remark 2.7 (ii), the generalized bracket [MI vanishes. There- 
fore, by Remark 2.7 (i), so does the classical variation process {M). But ( M )  is 
known to be the increasing process in the Doob-Meyer decomposition of M2, 
i.e., the unique continuous increasing process vanishing at zero such that 
M2- {M) is a local martingale (see 1161, IV.1.8). Thus, (M,-  M,)' is a non- 
negative continuous local martingale, hence a supermartingaIe. Therefore we 
have 

o =g E ( M , - M , ) ~  G E ( M ~ - M ~ ) ~  = 0. 

Thus, M must be constant. EI 

We need the following version of the generalized Bouleau-Yor formuIa 
(see [25], 2.2). For an interval J 5 R let &,(.I) denote the set of all functions 
that are square integrable on every compact subset of 3. 

THEOREM 2.9 ([25], Corollary 2.4). Let M be a continuous local martingale 
a d  LM(t, X) its local time. 

(i) For every Jinite stopping time T the mapping 
n n 

f = C A P{xi,xi+ C J;-(LM (T, xi+ l)-LM(T, xi)) =: J f ( x ) d x p ( t ,  x) 
i =  1 i =  1 

can be extended uniquely to a continuous mapping from Go, (R) to I? (a, P), 
endowed with the topology of convergence in probability. 

(ii) I f  f E I$,, (R) and F ( x )  : = ji f ( y )  dy , x E R, then 

holds for every finite stopping time ?: 
(iii) ([25], 5.7) ?he Botrleatr-Yor term (J f (x)dx LM (t , x ) ) ~ ~  is a continuous 

process of zero quadratic variation. 

Unfortunately, it is not clear whether time changes leave the properties 
"zero quadratic variation" and "local Dirichlet process" invariant in the sense 
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of Definition 2.5. Since time changes constitute the main tool of Section 4, we 
will also deal with the following slightly strengthened definition which can be 
traced back to Bertoin [I]. 

DEFINITION 2.10. (i) A finite sequence of F-stopping times t: 

0 = To < TI < .. . < T, is called a random partition with respect to F. 
(ii) A sequence z, : 0 = Tt < T/ < . . . < T,= of random partitions is said 

to tend to the identity if 

lim SUP, 7;" I{,;< = co as., 
,,+%' 

(iii) A continuous adapted process Q has zero energy (in the strong 
sense) if 

Jim E C (XT;+ - X T;)Z = 0 
n-C03 I : O S ~ S ~ , T ~ + I < ~  

holds for every sequence z,: 0 = < T; < . . . < T", of random partitions 
tending to identity. 

(iv) A continuous adapted process Q has zero quadratic variration up to the 
stopping time T (in tke strong sense) if there exists a nondecreasing sequence of 
stopping times (T,),,,N with limn,, T, = z a.s. such that, for each n, the stopped 
process Q~~ has zero energy in the strong sense. If z = + co, we briefly say that 
Q has zero quadratic variation. 

(v) ([I 1],2.3,2.4) A continuous process Y is said to be a continuous strong 
local Dirichlet process up to the stopping time z if it admits a decomposition 
Y = Yo + M +Q, where A4 is a continuous local martingale up to z with 
M, = 0 and Q a continuous adapted process with Q, = 0 having zero quad- 
ratic variation up to z in the strong sense. If z = + coy we briefly call Y a con- 
tinuous strong local Dirichlet process. 

Remark 2.11. The properties "zero energy", "zero quadratic variation in 
the strong sense" and "strong local Dirichlet process" imply their analogues 
determined in Definition 2.5. 

The last preparatory remark aims at facilitating the proofs. It applies to 
both definitions of "zero quadratic variation" and can be shown exactly in the 
same way as VI.30e in 151. 

Re mark 2.12. A continuous process Q has zero quadratic variation up to 
the stopping time U if and only if there exists a nondecreasing sequence of 
stopping times (TJ,, with limn,, T, = U as. such that each QTn,  EN, has 
zero quadratic variation. 

3. Additive functionals of Brownian motion. In 1963 H. Tanaka established 
a representation theorem for continuous additive functionals of linear Brow- 
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nian motion. Looking at Tanaka's proof we realize the following slightly 
strengthened version without any additional efforts. 

THEOREM 3.1 ([21], Theorem 2). Let -a < a < b < G O ,  X a Brownian 
motion and U : = inf {t  2 0: X ,  4 (a, b)). Then every continuous perfect additive 
functional A of X on [0, U) takes the form 

t 

A, = f (XJ-itXo)+ j g (X,) dX,  on { t  < U )  a.s., 
0 

where f e C ((a, b)) and g E Go, ((a, b)) . 
Using Tanaka's theorem, the generalized Bouleau-Yor formula, analytical 

properties of Dirichlet functions for stopped Brownian motion and the fact that 
a Bouleau-Yor term has zero quadratic variation we arrive at the following 
representation theorem for additive functionals of zero quadratic variation of 
Brownian motion: 

THEOREM 3.2. Let -a, < a < b < co, X be a Brownian motion and 
U: = id(t 2 0: X,  4 (a, b)).  An Fx-adapted process A with A, = 0 ass. is 
a perfect continuous additive functionaI of X on [O, U )  having zero quadratic 
variation up to U (in the sense of DeJinition 2.5) if and only if 

At = j g (x) d, LX ( t ,  x) on { t  < U )  as., 

whre  g E Go, ((a, b)) - 
P r o  of. (1) First we suppose that A, = g (x) dx L~ (t  , x) on {t  < U) as. for 

some g ~%,( (a ,  b)). Adopting the usual conventions for the arithmetics with 
oo we d e h e  for each n E N 

g (x)  for x E ((a + l /n) v ( - n), (b - 1/11) A n), 
s, (4 : = 

otherwise, 
X 

G, (x): = 1 g, (y) d y ,  x E R, for some fmed x, E (a, b). 

By hypothesis, g,,  EN, are square integrable and T,,  EN, form a non- 
decreasing sequence of stopping times satisfying lim,,, T, = U a.s. and T, < U 
on {U > 0) a.s. By the Bouleau-Yor formula in Theorem 2.9 (ii), we conse- 
quently obtain 

0 

Since both summands on the right-hand side are perfect continuous additive 
functionals of X on [0, TJ (see [8], 2.20 (iii)) and f g, (x)  dx LXTn (. , X) has zero 
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quadratic variation by Theorem 2.9 (iii), we conclude by Remark 2.12 that A is 
a perfect continuous additive functional of zero quadratic variation of X on [O, U). 

(2) Conversely, suppose that A is a perfect continuous additive functional 
of X on [0, U) having zero quadratic variation up to U. By Theorem 3.1, A can 
be written as 

z 

A, = ~ ( x J  -f(x0) + j g (Xs) dXs  on ( t  < U) a.s. 
0 

with some JE C ((a, b)) and g E L:,, ((a, b)). We define T,, g,, G,, n E N ,  in the 
same way as in (I) and set 

f(x):= 
for x ~ ( a ,  b), 

otherwise, 
as well as 

Then 

is a continuous process. By hypothesis and Remark 2.12, there exists a se- 
quence (Sm)mEN of Fx-stopping times with S ,  f U such that, for each m EN, the 
stopped process ASm has zero quadratic variation with respect to every 
P,, x E R . Then R, : = S, + co , m E N, form a sequence of Fx-stopping 
times with R, r co because of T, < U on (U > 0). By 4.5 (iii) in [25], each 

= ASmA Tn,  EN, has zero quadratic variation and, consequently, by 
Remark 2.12, so does ATn. Thus, 

t n  T, 

(3) f (XTn) -f(Xo) = - j g, (X,) dX,+ A?, t 2 0, a.s., 
0 

is seen to be a continuous local Dirichlet process with respect to every 
P,, x ER, in view of Remark 2.6 (i). Hence f is a Dirichlet function (see [lo], 
2.3) for the Brownian motion XTn stopped when leaving J,. By Theorem 3.4 in 
[lo], for each n, f is absolutely continuous on J ,  admitting a density f' which 
is locally square integrable on J , .  Consequently, we have f '  E Go, ((a, b)). The- 
refore, the generalized Bouleau-Yor formula in Theorem 2.9 (ii) applies to the 
transformation of XTn with f .  This yields 

t n T ,  1 
(4) f Wf.1 -f (xo) = j f (X,) dX, - 5 1 f r  (x) d ,  B'" (t , x), t 3 0, a.s. 

0 

Since the Bouleau-Yor term (1 f' (x) d ,  L~~~ (t, x))~ bO has zero quadratic varia- 
tion by Theorem 2.9 (iii), we now realize in view of (3) and (4) that 
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is a continuous local martingale of zero quadratic variation. Hence, by Theo- 
rem 2.8, it must be constant. This entails 

for each  EN. So, we arrive at 

thus-completing the proof. H 

Since f (X,) dX, is known to be a continuous perfect additive functional 
of X (see [8], 2.20 (iii)), the proof of Theorem 3.2 immediately yields the fol- 
lowing characterization of continuous perfect additive functionals d Brownian 
motion that are local Dirichlet processes. 

THEOREM 3.3. Let -m < a  < b d a, X be a Brownian motion and 
U : = i n f i t  2 0 : X, $(a,  b)) .  Furthermore, let A be an Fx-adapted process with 
A, = 0 U.S. Tken A is a perfect continuous additive functional of X on [0, U )  
which is a continuous local Dirichlet process up to U (in the sense of De$ni- 
tion 2.5) if and only if 

f 

A , = ~ f ( X , ) d X s + [ g ( x ) d , L X ( t , x )  on { t < U }  as., 
0 

where f, g L?,c ((a, b)). 

4. Additive fmctionals of strong Markov continuous local martingales. We 
extend the representation theorem of Section 3 to continuous additive func- 
tional~ of zero quadratic variation of strong Markov continuous local martin- 
gales by the method of time change. In this section we therefore deal with the 
notion "zero quadratic variation" in the sense of Definition 2.10. 

Let X be a strong Markov continuous local martingale according to Defi- 
nition 2.2, and E the set of its absorbing points. Let T denote the right inverse 
of (1). Then the time changed process W: = Xo T is a strong Markov con- 
tinuous local martingale with respect to the filtration Fxo T = PW ([S], Theo- 
rem 3.34 (i)). Its set of absorbing points is E and we have 

Thus, W is a Brownian motion stopped at D,(W). The operators &:= OTs,  
0 < s < co , are perfect shift operators for W (see [S], Chapter 3.3). 

THEOREM 4.1. Let A be a continuous perfect additive functional of X on 
[0, D,(X)) which has zero quadratic variation up to DE (X) in the sense of Defini- 
tion 2.10. Then A can be represented in the form 

A, = g (x) d, L' ( t  , x )  on {t  < DE (X)) as .  

for some g E L:,, (R  \E) . 
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Proof. The process A:= AoT is FXoT= Fw-adapted and satisfies 
x0 = 0 a.s. Since {X) strictly increases on [0, D,(X)) (see [a], 1.23) and, con- 
sequently, T is continuous and finite on [0, (X),,(,J = [0, D,(W)), A is con- 
tinuous on [O, D,(W)). Furthermore, we deduce from 2.33 and 2.27 in [8] 
that 

Ts+TtoeG = Ts+t 

holds for all O 6 s, t < t m on {T,,, < DE (X)) = (s + t < DE (W)] a.s. We 
compute - 

=  AT.(^) (4  AT..^(^)- T.W (OT.I~) 

= AT,W (01 + A T t ( e T S ~ r n ) ) ( b s  ( ~ 1 )  = AT.(@ (w)+ 40 @T. (W) 

=As(w)+$088(w) on (s+t<DE(W)) for all s,taO a.s. 

Thus, 2 is a perfect continuous additive functional of W on [0, D,(W)). 
By hypothesis, there exists a sequence of Fx-stopping times IT,),, with 

T,, r D, ( X )  as. such that the stopped processes ATn have zero quadratic varia- 
tion with respect to every P, , x E R.  Now, T,: = <X)Tn, n EN, form a sequence 
of F-stopping times with T, DD, (W) such that A"?. have zero quadratic varia- 
tion in the sense of Definition 2.10 with respect to every P,, x E R (see [Ill, 3.7). 
So, 2 is a perfect continuous additive functional of W having zero quadratic 
variation up to DE(W) and, consequently, up to each D(ai,bi)c(W), where (a,, b,) 
denote the components of the open set R\E, since D(,l,bi)~(W) B DE(W) holds 
a.s. By Remark 2.11, for each i, Theorem 3.2 now yields a real function gi with 
gil(ai.bi)c = 0 and gi](ai,br) E k c  ((ai, bi)) such that 

At = j g,(x)d,LW(t, 

holds a.s. on {t < D(al,br)~ (W)) . We set g : = (xi g i ) l  cR\n. Then g E Go, (R\E) and, 
for each x ~ ( a , ,  b,), we have 

This means 

= g (x) d, Lw (t, X) on { t  < DE (W)) a.s. 

We conclude 

By Theorem 2.9 (iii) and Remark 2.12 we immediately realize the following 
converse of Theorem 4.1. 

12 - PAMS 18.2 
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Remark 4.2. Let ~EI&,(R\E).  Then 

A , = S g b ) d x L X ~ t , x ) ,  t < D , ( X ) ,  

is a continuous perfect additive functional of X on [0, D,(x)) having zero 
quadratic variation up to DE(X] in the sense of Definition 2.5. 

Using Theorem 3.3 and the fact that time changes leave the class of con- 
tinuous strong local Dirichlet processes invariant (see [ll], 2.5) as well as 
Theorem 2.9 (iii) we obtain the following result on continuous perfect additive 
functionals which -are (strong) local Dirichlet processes. 

THEOREM 4.3. (i) Let A be a continuous pegect addititre functional of X on 
[0, D, (X)) which is a strong ZocaI DirichIet process up to D, (X) with respect to 
euery P,, X E R ,  in the sense of DeJinition 2.10. Then A takes the form 

t 

( 5 )  A, = J f (XJ dX,  + J g (x) d, LX (t ,  x) on ( t  < D, (X)) as., 
0 

where f, g E Lq,, @\a. 
(ii) Conversely, an Fx-adapted process A satisfying (5) is a continuous per- 

fect additive functional of X on [O, D,(X)) that is a continuous local Dirichlet 
process up to D,(X) in the sense of Defifinition 2.5. 

Acknowledgement. 1 am grateful to Professor H. J. Engelbert for 
many fruitful discussions. 
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