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Abstruct. The paper is concerned with the asymptotic behaviour 
of solutions to the nonlinear stochastic heat equations, with spatially 
homogeneous noise, in the whole space. Sufficient conditions for the 
existence of invariant measures, in weighted spaces of locally square- 
-integrable functions, are given. 

For linear equations with multiplicative noise an invariant mea- 
sure, supported by positive functions, is constructed. The existence of 
a stationary solution to the vector Burgers equations is obtained as an 
application of the general theory. 

1. INTRODUCTION 

This work is concerned with the asymptotic behaviour of solutions to the 
stochastic heat equation: 

where A< is the Laplace operator on Rd, b is a real function, W is a spatially 
homogeneous Wiener process (see C5-j and [13]). We investigate the existence 
and supports of invariant measures for (1.1). The results of the present paper 
allow to apply the Cole-Hopf transformation to a class of solutions of ( 1 . 1 ) ,  to 
construct stationary solutions of the vector, stochastic Burgers equation: 

(1.2) a,u(t, 5) = +Asu( t ,  5)-<u(t ,  0, K + 4 t Y  t )+V#( t ,  8 
in Rd, d > 2 (cf. [ I ]  and [7]). 

The paper consists of 4 sections and is organized as follows. 
After the Introduction, we collect in Section 2 some results on Pe-spaces 

and on the heat semigroup S(t) ,  t 2 0, on those spaces needed in the sequel. 

* The paper was completed while the authors were visiting the Scuola Normale Supe 
riore in Pisa, in spring 1996. The work of the second author was also sponsored by the KBN 
Grant 2 P03A 082 08, Stochastyczne rdwnania ewolucyjne. 
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We also recall an existence result for equation (1.1) from 1131. Existence of 
solutions to (1.1) has been studied by several authors (see, e.g., [5], [8], [ll], 
and 1131). Here we use the approach from [13] which leads to Markov solu- 
tions on weighted spaces Li with weights Q. 

Our main results on existence of invariant measures for equation (1 .1 )  are 
contained in Section 3. Theorem 3.1 gives a general sufficient condition for the 
existence of an invariant measure for (1.1) on a weighted space L:. In its proof 
we use the so-called compactness method introduced, for infinite-dimensional 
systerns, in [2]. However, equations studied here are essentially daerent from 
those treated in [2]. In particular, in contrast to the situation in [2j, operators 
S ( t ) ,  t > 0,  are not compact in any Moreover, the diffusion mapping in (1.1) 
is, in general, unbounded. On the other hand, as in [2], we construct an in- 
variant measure as a weak limit of a suitable subsequence of time averages of 
the laws of X(t): 

Theorem 3.3 is concerned with a more spec$c condition for the existence 
of an invariant measure for equation (1.1) in terms of the coefficient b and of the 
correlation function of the noise. The theorem is a generaIization of a result 
obtained by Dawson and Salehi in [5] for the linear case, under stronger 
assumptions on the correlation function of the noise. In [5 ]  the chaos expan- 
sion technique was used and the invariant measure was constructed only on the 
space of tempered distributions. Here we show that the invariant measure is 
supported by I?@, where e = (1+lt13-1, &Rd, r > 2d. In the special case of the 
constant diffusion function b we can recover some recent results from [4]. It 
turns out that in this latter case, if d > 2, our sufficient condition for the 
existence of an invariant measure is, in fact, also necessary. 

The final Section 4 is devoted to more refined results for the linear equa- 
tion: 

In Section 4 we discuss also the Burgers equation (1.2). In the linear case (1.3), 
the measure where 0 denotes the function equal to 0 on Rd, is always 
invariant. It  is therefore important to show the existence of invariant measures 
with supports different from (0 ) .  This is the object of Section 4.1. Next, in 
Section 4.2, we state a condition on the spectral density of the covariance 
operator under which them exists an invariant measure on a weighted Sobolev 
space 4. Here we use a novel technique of interpolation spaces. Then (see Sec- 
tion 4.3) the existence of a stationary solution taking values in the set of strictly 
positive functions on Rd is studied by using a result recently proved in [15]. The 
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final subsection is devoted to the applicability of the Cole-Hopf transform 
X + - qlog(X) (see [I]). In fact, one of our main motivations to study the 
questions discussed in the paper was to find sufEcient conditions for the existence 
of a stationary solution of equation (1.3) to which the ColeHopf transform can 
be applied. Using the stochastic Feynman-Kac formula and some properties of 
the stochastic flows developed by Kunita [9] a construction of such a solution 
was recently proposed by Kifer [7]. Our approach, based on the theory of 
stochastic evolution equations, seems to be more natural and leads to different 
sufficient conditions (see Theorem 4.9). Moreover, it applies to non-linear equa- 
tions that me beyond the-scope of the stochastic Feynman-Kac formula. 

W e  pap& is a slightly modified version of prepr.int [16]. 

A c k n o w 1 e d g m e n t s. We thank Professor D, A. Dawson for the idea of 
the proof of Theorem 4.1 and Professor S. Peszat for useful discussions. 

2 P W E L ~ A R Y  RESULTS 

Before giving a precise meaning to equation (1.1) we have to recall several 
analytical concepts. 

By S we denote the semigroup generated by A on I? (Rd) or on some 
extensions of I?(R% We have, for all t > 0 and all ~ E I ?  ( e Y  

1 
S(t)rp=G(t;)*q and G ( t , 5 ) = -  - 1tI2 

where r: denotes the convolution operator. 
Since we work on the whole Rd, we will study equation (1.1) in weighted 

spaces. An admissible weight e is a positive bounded continuous function 
Q E E  (Rd) such that, for all T > 0, there exists a constant C, (T) satisfying 

(2. I) G (t, .) * e < C, (T)  @ for all t~ LO, q.. 

We denote by fie the weighted space L2 (Rdy ,) dr) with scalar product 

(rp, $), = j (P(r)$(t)L?(r)dt 
R* 

.- and norm 

Ivl,z = S rp2 (C) el t )  d l .  
R d 

Since q is bounded, I? (Rd) c cc In the following we will denote I? (Rd) simply 
by C. 

EXAMPLE. The functions 

g(t)=exp(-riel) wi thr>O and e(t)=(l+1t13-1 w i t h r > d  

are admissible weights. 
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The next proposition states that the heat semigroup is compact from 
a weighted space to another one. It is of great importance in our proof of the 
existence of invariant measure. 

PROPOSITION 2.2. For a22 admissible weights Q, the semigroup St) can be 
extended to a %,-semigroup on fie. Moreover, if $ is another admissible weights 
such that 

then, -for ail t > 01- s (t] is compact porn to L:. 

Proof. For all cp~C and for all t€[O, T'l we have 

Therefore the operator S(t) can be extended to a bounded linear map from 
Lt to itself. Moreover, since @ is dense in PQ, it is easy to show that S is 
strongly continuous in Li. 

We claim now that, if (2.2) holds, then S(t), t > 0, is a Hilbert-Schmidt 
operator, and therefore compact from EG to Ee. 

Let {e,) be an orthonormal basis in L2; then, as can be easily verified, 
{$- '1' ei) is an orthonormal basis in LC. Moreover, 

<(4n:t)-d/2 S J G(t/2, t-V)8-11V)~(t)dSdV 
R d  Rd 

< (4x t) - C, (t/2) j 6 - (5) e (5) d t  
R d  

and our claim follows by (2.2). EI 

Remark 2.2. Condition (2.2) holds for the classes of weights introduced 
in the Example. If ~ ( 5 )  = exp(-r 151) and $(C) = exp(-iIt1), then (2.2) holds if 
and only if r > r^. Moreover, if g (i) = (1 + 1513-I and 6 (t) = (1 + ~ ( l ? - ~ ,  then 
(2.2) holds if and only if r > ? + d .  

By (SZ, 9, (a, P) we denote a fixed stochastic basis. We will assume that the 
(9J-adapted Wiener process W in equation (1.1) has, in general, an unbounded 
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covariance operator Q of convolution type. More precisely we assume that 

QX = r * ~ ,  X E ~ ( Q ) ,  

where r is a positive definite distribution with even spectral density y 2 0 (see 
[6], Chapter 11). This means that the Fourier transform of the function y is 
identical with the distribution r and that 

for arbitrary rapidly decreasing functions # and $. 
Follo*g El31 we -write equation (1.1) in the integral form: 

t 

(2.3) X x  (t) = S (t) )X + j S (t - s) M (B  (xX IS))) d . 
0 

The mapping M in (2.3) is defined, for q in L2, and rapidly decreasing functions 
$, by fi 

M ( d *  = * $), 
and the mapping B: Le + L:, is given by 

where b: Rd x R -, R is a measurable function. Moreover, W is an (&)-adapted 
Wiener process on I-? with the covariance operator I. 

In the sequel we will always require that the spectral density y and the 
function b satisfy the following assumption: 

HYPOTHESIS 2.1. (i) T h e  exists p E [I,  + a], with (1 - lip) (42) < 1, 
such that y E LP (Rd). 

(ii) There exist constants 1 a d  I, such that 

Ib(<, c ) - b ( t ,  z)l< IlC-zl and lb(5,O)I < lo  for all ~ E P ,  ~ E R .  

The number Z will be called the Lipschitz constant of b. 
Notice that, under the above hypothesis, if 4 EG, then B (4) EG and 

We can now state the existence and uniqueness result for equation (2.3) as 
proved in [13j. Let us recall that if (K, 1.1,) is a Banach space, we denote 
by VB(O, T, E(B, K)) the linear set of all (&)-predictable processes 
Y: 52 x [0, TI + K such that the map t + E(I Y (t)li) is continuous. The set is 
endowed with the norm 

THEOREM 2.3. Assume Hypothesis 2.1 is satisfied and let e be an admissible 
weight. For all x EL:, there exists a unique solution X x  (.) E VB (0, T, L2 (Sl, G)) of 
equation (2.3). 
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We finish this section with an analytical result from [13], needed in the 
following sections. It played a fundamental role in the proof of Theorem 2.3. 
If E and F are HiIbert spaces, we denote by L,(E, F )  the space of 
Hilbert-Schmidt operators from E to F, and by Il-IIL,(s,F, the corresponding 
Hilbert-Schmidt norm. 

' PROPOSITION 2.4. If Hypothesis 2.1 (i) holds, then, for all 4 E pQ, S ( t)  M (4) 
is a Hilbert-Schmidt operator from L2 to PQ and 

Remark 2.5. Theorem 2.3 and Proposition 2.4 are proved in [I31 only 
for exponential weights p(r) = exp(-r I{(). However, the results as well as the 
arguments of the proofs extend to general weights studied here. 

3 EXISTENCE OF INVARIANT MEASURES 

Let us recall that the process x'(.) is bounded in probability in I$ if 

In this section we prove that if the process x'(-) is bounded in probability 
in LC for proper 6, then there exists an invariant measure for equation (2.3) on 
the space L2,. We also give conditions on the covariance operator of the Wiener 
process implying the boundedness in probability of x"^(-). 

The following theorem is in the spirit of Theorem 4 in [2]. In contrast to 
[2], the diffusion mapping in equation (2.3) is unbounded and operators S(t), 
r > 0, considered as maps from into itself, are not compact. 

THEOREM 3.1. Assume that Hypothesis 2.1 holds and that, for an admissible 
weight e, there exist another admissible weight 6 and an element 2 in nPi such 
that 

J e (0 (4 (t))-l d t  < + oo and x".) is bounded in probability in PG. 
R* 

Then there exists an invariant measure for equation (2.3) in g .  
Proof. To prove the theorem we show that for arbitrary E E (0, 1) and all 

R > 0 there exists a compact set X in Ee such that 

(3.2) P { x ' ( ~ ) E x ) > ( ~ - E ) P { I x " ^ ( ~ - ~ ) ~ ; < R )  for all t > 1 .  

The boundedness in probability of the process x"(.) in then implies that 
the family of laws 9(x5(t)), t > 1, is tight in g .  Therefore the family 
of laws 
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is tight as well and, by a general argument, the weak limit of any converging 
sequence 

is invariant for equation (2.3) in g .  
As in [2] we divide the proof into three steps: 

Step 1. Let q > 2 and a ~ ( q - ' ,  2-I). Then operators Fa: 
- -  . -  1 

Fa = S (I-s)b-'S(l-s) f ( s ) ~ s ,  
0 

are compact from Lq((O, I), L$) to LQ. 
Since S(e ) ,  E > 0 ,  is compact from Ei to CQ, it follows that operators 

0 L 

are compact from Lq((0, I), LC) to G. 
Direct estimates imply that lim,,, F," = F, in the operator norm, so opera- 

tors F, are compact as well. 

Step 2. Define, for all x E PG, 

then there exists k ,  such that 

To show this notice that by Proposition 2.4 we have 

where t~ = (1 - l / p )  ( 4 2 )  < 1. 
Since 2a + a < 1, by Young's inequality for convolutions we have 
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Direct estimates (see also Lemma 3 in 121) imply that for all q > 1 there exists 
k, such that 

E IXX (t)l; < k, (1 + lxl;), 

and this completes the proof of Step 2. 

Step 3. We can now conclude the proof of the theorem. By the factoriza- 
tion formula (see e.g. Theorem 5.2.5 in [4]) we have 

sin (xu) 
.. .. XX(l) = S ( ~ ) X + -  F, Yx(t). 

T[; 

then, for all 0 > 0, X(0) is relatively compact in cQ. Moreover, by Step 1 and 
Chebyshev's inequality, if 0 > lxla, we have 

where k, = sinq (an) 7tFq k,. Consequently, for all 6 > R we have 

Since X' is bounded in probability in E6, for all E > 0 we can choose R such 
that P{JX"(t)J, 2 R) < E .  It is enough now to fix 0 > R such that 
k ,  O-q (1 + Rq) < E. This compIetes our proof. 

Remark 3.2. If there exist x such that, for some weight 4 and state R 
in E;, 

(3.3) E ( J x " ~ ) ~ ~ ) ~  < w for all t > 0, 

then condition (3.1) holds. In fact; by Chebyshev's inequality we have 

The following theorem provides a condition, on the covariance of the noise, 
under which (3.3) holds for the constant function R (0 = I ( ( )  = 1 for all E Rd. 
The result is a generalization of Theorem 3.4 in [5 ]  to non-linear equations and 
to genera1 spectral densities. 

THEOREM 3.3. Assume Hypothesis 2.1 holds and define 

A A '  r (d/2  - 1) 
(3.4) r" = ly1J21 * Iy ' J 2 ]  and 1 = l F(Q 1512 -*dl3 

4ndI2 Rd 
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where r is the g m m a  function. If d 3 3 and I < I-', where I is the Lipschitz 
constant of b, then, for all ~dmissible weights Q, 

sup E(Ix'(~)~,)' < + a. 
t $ O  

P r o  of. First notice that I  EL^, for all admissible weights Q. Let 
X, (t , 5) = 0 and 

z 

X,+,(t) = I +  SS(~-~)M(B(&(~) ) )~W, .  
.. . 0 

so that X,,(t)>+ X1 (t)  in P ( O ,  G) for all admissible weights p and all t 2 0. 
Moreover, let Z, = -X, - l .  Fix a basis {ei: i E N) of I.? with e, E 9 (Rd) . Then 
for all 5 f R d  we have 

03 A_ m 

G 1 ( ( ~ ( s ,  -)*ly1i21)(z))2hds = { G(2sy z)F(z)dzds. 
0 Rd 0 Rd 

Since for all 4 E Rd we have 

and by (3.4) we get 

Therefore we can fix 5 E Rd in the definition of Z, = XI letting 

and we obtain the following estimate: 

( ( z  (t, ) )  < 1 i for all 5' E Rd. 

Consequently, we also have 

( I  5 t Y  I )  I for all t, V R d .  
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In a similar way, since Ib ( v ,  Xl b, r]))-b ( q ,  X o  (s,  q))J 5 112, (s, q)l, we have 

f-. fi 
x EIZl (s, 5+v)l IZ1 (s, 5 + ~ ) l y ' ~ ~ ( v ) y ~ / ~ ( w ) d v d w d ~  

Therefore we can ilx t € R d  first in the definition of Z, ,  and then in the 
definition of X2, letting 

and we get 
~ ( ( 2 2  ( t ,  t ~ ) ~ )  < P l Z  1;. 

In a similar way, for all n = 1, 2, .. . we have 

Therefore, for any fixed weight Q, we have 

( E  I Z n  (t)1i)1i2 < PI2 p- l lo l@lLlcRd)  

and 

This proves our claim because 41 < 1. s 

COROLLARY 3.4. Let ~ ( 5 )  = ( 1  + 151')-'. If the assumptions of neorem 3.3 
hold, then equation (2.3) admits a non-trivial invariant measure in Eg for all 
r > 2d. 

P r o  of. It is enough to apply Theorem 3.1 for e (0 = (1 + 15Ir)-' and 
~ ( 5 )  = (1+151')-1 with d < i < r - d .  

A 
Remark 3.5. If y 1 / 2  2 0, then P is identical with the Fourier transform 

r of y introduced in Section 2. 
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/-. 
Remark 3.6. Assume that y112 2 0, d 2 3 and b ( { ,  0 = 1 for all { e R d  

and for all [ER; then the assumptions of Theorem 3.3 reduce to 

A. 

By the equality l l l2-" = c 151 - 2  (see [14], p. 1281, condition (3.5) takes the form 

j r15)ITtd2dC < +a, 
Bd 

that is exactly the necessary and sufficient condition stated in [4], p. 196. 

4 LINEAR EQUATIONS 

In this section we prove more precise results for the linear equation (1.3). 
Equation (2.3) becomes now 

4.1. Non-trivial invariant measures. Equation (4.1) has at least one invar- 
iant measure: the Dirac measure SB1, concentrated on the constant function 0. 
So the question arises whether the procedure developed in the previous section 
leads to a measure different from dbl. The next theorem states that this .is the 
case if the invariant measure is constructed by using the solution to equation 
(4.1) starting from the function I. 

THEOREM 4.1. Assume that Hypothesis 2.1 (i) holds. Moreover, suppose that 
there exists an admissible weight Q and Ti r + CQ such that the sequence of 
measures on L,: 

converges weakly in L, to a measure p and that 

sup j 1x1: pj(dx) < + m. 
jEi4 Rd 

Tken p (10)) < 1. 

P r o o f. Since S (t) I = 1, equation (4.1) for x = I becomes 
t 

xi ( t )  = I +I s ( t  -s) M ( (xX(s ) ) )  d ~ , .  
0 

Taking expectation we get E(X' ( t ) )  = I .  Thus 
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Moreover, there.exists 2 such that 

Now we fix A > 0 and define 

<xy 0, if- I+, O@I 6 A, 
if {x, I ) @  A, 

Then 

Since +A is continuous and bounded on L:, we can pass to the limit with 
j -+ f oo , obtaining 

But $A(0) = 0, so by choosing A > 2x we conclude that p({O)) < 1. 

Remark 4.2. Assume that Hypothesis 2.1 (i) is satisfied. Let @, &i be two 
admissible weights such that (2.2) holds and 

Then, by Theorem 3.1, equation (4.1) has an invariant measure p on L2, and 
Theorern 4.1 implies that p ( 0 )  < 1.  Sufficient conditions under which (4.2) 
holds are given in Theorem 3.3. 

Remark 4.3. Theorem 4.1 holds in the case of non-linear function b, 
with the same proof. However, the problem is relevant only when b(5,O) = 0 
for all 5 E Rd. 

4.2. Regalarity. We show that, under suitable assumptions on y, any in- 
variant measure p in % for equation (4.1) is concentrated on a weighted Hn 
space. We obtain this result showing first that the solution of equation (4.1) at 
time t > 0 is more regular than at time t = 0. 

We have to introduce some additional notation. Let be the completion of 
the space of regular functions with compact support in Rd with respect to the norm 

The following is the main result of this section: 
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THEOREM 4.4. If p is an invariant measure for equation (4.1) in L2, 
and 

(4.3) J (l+1{12n)pyp(()d[ < rn with p > 1 and 
R d 

then p ( 4 )  = 1 .  

Since, by definition, 

the theorem is an immediate consequence of the following regularization 
result: 

THEOREM 4.5. If (4.3) holds, then, for all x in Ee and all t > 0, 
X x  (t)  E I? (a, Fo, B, Hi). I n  particular, X x  ( E )  EH:  P-almost surely. 

Pro  of. The proof is based on the interpolation theory (see [lQ]). For all 
~ ~ 1 0 ,  11 we denote by vn the real interpolation space (H:, E@),,, (see [lo], 
p. 15). Moreover, by definition, goan = and K1'" = H:.  

Step I. First we prove that if an initial state is in some vwn, then the 
solution of equation (4.1) is in W(0, T, I? (a, vl")). The result is proved in [13] 
for spaces 23:. By Proposition 2.4 the map 4 -, S ( t)  M (4) is bounded from 
EQ to L, (I?, g) and 

We also know (see [13]) that if (4.3) holds, then the map t$ + S ( t )  M ( 4 )  is 
bounded from & to L2 (I?, 4) and 

From the definition of the interpolation spaces (see [lo], p. 15) we easily 
obtain 

(A ,  (EY 41, L z ( P ,  G)),,2 c L2 (L2, y). 
By the interpolation property we infer that if (4.3) holds, then # w S ( t)  M (4) is 
a bounded map from Vgn to L, (I? ,  v33, and 

Now the claim follows from a standard fixed point argument in the space 
w9(o, 2 ,  E(52, y")). 

Step 2. Since IS(t)l 
9 ( ~ & ~ b  

4 Ct -"I2, by interpolation we get, for all 

ol2 0 , 6  2 0 with a+6 < 1 ,  

5 - PAMS 18.2 
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Consequently, 

where C, = C2 22"6+ ( 1  - l / ~ ) ( d / 4 )  

S t e p, 3. Now .we claim that if 

1 - ) ]  2n and a ~ [ O , l - d ] ,  

then for all x in and all t > 0 

It is enough to show that 
t 

J s ( t - s ) ~ ( X * ( ~ ) ) d ~ ~ P ( f i ,  3, P, e+@>n). 
0 

But, if 2n6 + ( 1  - l/p) (42) < 1, then 

and the statement holds. 
Step 4. We are now in a position to conclude the proof. Fix t  > 0 and 

choose rn E N such that m > 2n [l - ( 1  - l/p) (d/2)] - l .  Applying Step 3, in the 
interval [0, t/m] with a = 0 and S = m-I we get 

Then applying again Step 3, but now in the interval [t/rn, 2t/m] and with 
a = m- l ,  6 = m- l ,  by the Markov property we obtain 

Proceeding in this way, after rn steps we obtain the claim. ra 

4.3. Strict positivity. In this brief subsection we show that any stationary 
solution of equation (4.1) with values in the set of non-negative continuous 
functions on Rd has, in reality, values on the space of strictly positive functions 
on Rd. This is done by using the following strict positivity result proved in [15]. 
Remark that, by [13], if x belongs to the space I.?, then equation (4.1) has 
a unique solution X x  in 'ig, (0 ,  T, L? (a, I?)). 
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THEOREM 4.6. Assume that Hypothesis 2.1 (i) holds and let x belong to 
l? (Rd). I f  x 2 0 and, for some E > 0, the set ( 5  E Rd: x (e) 3 E )  has the non-empty 
interior, then X x  (t)  > 0 almost surely in S2 x Rd for all t > 0. 

TBe result can be easily extended to weighted spaces by using a standard 
comparison resuIt (see Section 4 in [15], or [12], or 181). 

COROLLARY 4.7. Let Q be an admissible weight and assume that Hypothesis 
2.1 (i) holds and let x E G. I f x  2 0 a d .  for some E > 0, the set ( 5  E Wd: x (e)  2 E )  

has the noa-empty interior, then X x  (t)  > 0 almost surely in SZ x Rd for all t > 0. 

Proof. -We can assume that x 2 ~ l ~ { ~ , ~ )  for some E > 0, r > 0, S E P ,  
where by B ( r ;  r)  we denote the open ball in of center 5 and radius r. Let 
x, = xlsts,,, and x, =  XI^^^,^) for R > r .  Then x, E I? (p), xR E I? (P); more- 
over, ~ l ~ ( ~ , ~ )  < X, < xR and, finally, x, + x in Lt as R r + co. By [15], Proposi- 
tion 4.1, we know that, for fixed t,  Xxr (t)  < XxR (t)  almost surely in P@ p .  
Moreover, as can be easily proved by a parameter-depending contraction prin- 
ciple (see Section 2), XxR ( t )  X X ( t )  in Li as R r + a. The claim follows 
since, by Theorem 4.6, P ( t )  > 0 almost surely in Sa xRd .  rn 

We are now in a position to prove the main result of this subsection. We 
denote by B, the set (X EG: x (0 > 0 for h o s t  every [ EP]. Notice that 

BQ = {x EL@: x ([) 2 0 for almost every [ E Rd}. 

THEOREM 4.8. Assume that Hypothesis 2.1 (i) holds, let Q be an admissible 
weight, and p an invariant measure for equation (4.1) in L:. Suppose that 
p(Be) = 1, p({O}) = 0 ,  and the set of elements of L: which have no continuous 
mod$cation is of measure 0 relatively to p. Then p is concentrated on Be, that 
is: p(BJ = 1 .  

Proof. Our assumptions imply that p-almost every x €Ee belongs to 
4 - (0) and has a continuous modification. Moreover, if x # 0 lies in B, and 
has a continuous modification, then for a suitable E > 0 the set 
( 5 € R a :  x(<) 2 E )  has a non-empty interior. Therefore, by Corollary 4.7, for 
fixed t > 0, Xx(t)  E B, P-as. The claim follows since, by definition, 

P (Be) = J IS, ( X x  (t)) P (ax) = 1 . 
~2 

4.4. Applicability of the CoI~Hopf transform. The previous parts of Section 4 
were devoted to the study of specific properties of the support of invariant 
measures to the stochastic linear heat equation (1.3). One of our main motiva- 
tions in doing so was to find conditions under which there exists a stationary 
solution of equation (1.3) to which the Cole-Hopf transform can be applied. 

Let us recall (see also [I] and [7]) that the ColeHopf transform associates 
with a real function q: Rd -+ R the vector field Xq: Rd -+ R' defined by 
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It is evident that the definition of &f' requires that cp belongs to the set 

H = (q  E H:,, (Itd): (P (5 )  > 0 for almost every ( E R ~ ) .  

The Cole-Hopf transform was introduced in the deterministic framework to 
construct a solution to the Burgers equation and has been recently used 
(see [7]) in the case of the stochastic Burgers equation: 

(see [I] for the one-dimensional case). Note that if X (t), t 2 0, is a solution to 
equation (1.3) and one defines u(t )  = 2 ( X ( t ) ) ,  t 2 0, then differentiating u (t) 
formally, by the It6 rule, one gets exactly (4.4). 

The following theorem gives conditions under which the Cole-Hopf trans- 
form can be applied to a stationary solution of (4.1). 

THEOREM 4.9. Assume that d > 2,  

with deJined as in Theorem 3.3, and that 

with p > 1, (1 - l /p)  (dj2) < 1 ,  n E N,  n > 4 2 .  Let moreover Q be an admissible 
weight such that 

for some admissible weight 6 .  Then there exists a measure ,Li on Li invariant for 
equation (4.1) and satisfying ii (H) = 1. In particuIur, if X (t)  is a stationary 
solution to equation (4.1) with Y(X(t)) = J, then the Cole-Hopf transform is 
applicable to X ( t ) .  

Proof. Theorems 3.1 and 3.3 imply that there exists a sequence T j  r + ao 
such that the sequence 

1 T # + 1  

weakly converges to a measure p on fie invariant for equation (4.1). Theorem 
3.3 also yields that the assumptions of Theorem 4.1 are satisfied. Therefore we 
have p ((0)) x 1. Moreover, by Theorem 4.4 it follows that p(H:) = 1. Finally, 
Corollary 4.7 implies that X1( t )eB ,  P-almost surely; therefore p(B, )  = 1 
(for the definition of B, see Subsection 4.3). 

Now let 

Since 6, is an invariant measure for equation (4.11, ji is an invariant measure 
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as well and 
ji { E  - 0 = 1 and ji ( H i )  = I. 

Moreover, by the Sobolev embedding theorem, we know that H i ,  with n > d/2,  
is included in the set of functions of L2, having'a continuous modification. So 
we can conclude that the measure ji satisfies the conditions of Theorem 4.8. 
Therefore we have ji (Bn H", = 1 and the claim follows being H", HL, (PI 
and B n H :  c H .  rn 

Re-ma rk  4.10. In reality, what we obtain, under the assumptions of The- 
orem 4.9, is that f i(Bn q) = 1 ,  which is a stronger property than what we 
were looking for. This additional regularity was needed to ensure that the 
measure y was concentrated on continuous functions, and thus the applica- 
bility of Theorem 4.8. 
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