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Abstract. A large number of statistical models is described by
a family of reversed submartingales converging to degenerated limits.
The problem under consideration is to estimate the maximum points
of the limit function. For this, various maximum functions are used and
consequently different concepts of consistency are introduced. In this
paper we introduce and investigate a general reversed submartingale
framework for these models. Our approach relies upon the iid. case
[6]. We show that the best known sufficient conditions for consistency
in this case remain valid for conditionally S-regular families of reversed
submartingales introduced in [13], which are known to include all
U-processes. Moreover, by using results on uniform convergence of
families of reversed submartingales [15], we deduce new conditions for
consistency. These conditions are expressed by means of Hardy’s regu- -
lar convergence [4], and are of a total boundedness in the mean type.
In this way the problem of consistency is naturaily connected with the
infinitely dimensional (uniform) reversed submartingale convergence
theorem. Applications to a stochastic maximization of families of
random processes over time sets are also given,

1. INTRODUCTION

‘1, Many statistical models from [1]-{31], [5]-[12], [16]-[18] can be
recognized as a family of reversed submartingales

| A =({h(,0, % n>1}] 0e8,)

defined on the probability space (2, #, P) and indexed by a separable metric
o space ©,. From general theory of reversed submartingales we know that each
h,(0) converges P-a.s. to a random variable & (6) as n — co. If the tail g-algebra
%, = ()=, % is degenerated, that is P(4)€ {0, 1} for all A€ S, then h, (0) is
also degenerated, that is P-a.s. equal to some constant which depends on 8 @,,.
In this case the information function associated with #:

1(0) = P-as. lim h, (6) = lim Eh, (6),
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may be well defined for all #e @,. The main problem under consideration is
to determine the maximum points of I on €, using only information available on
h,(w, 0) for n> 1.

2. Two concepts of maximum functions are naturally introduced in this
context as follows. Let {#, | n > 1} be a sequence of functions from Q into 6,
where (@, d) is a compact metric space containing @,. Then {f, | n> 1} is
called a sequence of empirical maximums associated with 5 if there exist a func-
tion q: 2 —+ N and a P-null set Ne# satisfying:

(L.1)- - § (w)e®@, for all weQ\N and all n > q(w);
(1.2) h,(w, 5,,((0)) =h¥(w, @, for all weQ\N and all n > q(w);

where h}(w, B) = supgeh, (@, ) for n > 1, weQ, and B < 6,. The sequence
{0, n>1} is called a sequence of approximating maximums associated with
S if there exist a function g: @ - N and a P-null set Ne& satisfying:

(1.3) - §.(0)eQ, for all we@\N and all n > q(w);
(1.4) lim inf &, (w, 6,(w)) > sup I(6) for all we Q\N.
n—+ o 0@

3. Despite the fact that h,(w, -) does not need to attain its maximal value
on ©,, and (1.2) can fail to hold in this case, we can always find a sequence
{6, n>1} satisfying (1.4). However, the statistical nature lying behind
imposes on 0§, to be measurable with respect to %, for n > 1. This requirement
makes the existence of approximating maximums much harder to establish and
calls for the assumption of analiticity on 6, in order to ensure the existence of
suitable measurable selections (see [14]). Further, the main preliminary task
towards the solution of the problem is to characterize the sets of all possible
accumulation and limit points of all possible sequences of approximating maxi-
mums associated with s, It turns out that a certain convergence uniformization
is important to be established in this direction (see Lemma 3.2 and the proof
of Theorem 4.1 in [14]).

Both of these questions (existence and uniformization) are answered in [6]
(see pp. 42-47). There the i.i.d. case is considered, and @, is assumed to be an
analytic metric space. It is shown in [14] that a little stronger version of these
results remains valid in the general reversed submartingale case provided that
@, is a second countable Hausdorff space satisfying the Blackwell property
(a second countable analytic space). Actually, a closer look into the proofs
shows that the same results hold without the submartingale property as well,
and the only assumption which is essentially used is the %, x % (6,)-measura-
bility of h,(w, 6). Finally, it is shown in [14] that for separable families of
reversed submartingales (see [13]) the Blackwell property is not needed.

4. Our purpose in this paper is to use the preliminary results just describ-
ed and to present conditions for consistency in the reversed submartingale case.



Families of reversed submartingales 201

By consistency, roughly speaking, we mean that every sequence of approximat-
ing maximums associated with # approaches the set of all maximum points
of the information function I on &,. We think that this problem appears
worthy of consideration, as in the context of statistical models recalled above,
as well as in the context of more general processes (Z,(t) | n > 1),.r treated in
Section 4 below. Classical results in this direction are established in [2], [3],
[71-19], [17], [18] (see [1] and [16]). A survey of these and related results is
given in [10] and [11]. The reader should note that our approach relies upon
the fact that h,(w, 6) approaches I(6), so we believe that the maximum points
of h,(w, 6) should  approach the maximum points of I (f) on &,. This, of course,
is not always the case, but it turns out to be satisfied under fairly general hypo-
theses as described below. Although this principle seems very natural and
useful for both theory and practice, we are unaware of a similar result in
general theory of stochastic processes.

5. The organization of the first part of the paper is as follows. First we
introduce some additional information functions associated with the family of
reversed submartingales 5, and present their basic properties (see Proposition
2.1). Then we show that the uniformization over compact sets outside a single
null set obtained in [6] carries over to the general reversed submartingale case
(see (2.17) and Corollary 2.3). Together with the fundamental existence theorem
mentioned above, this uniformization is crucial for the characterization of the
sets of all possible accumulation and limit points of all possible sequences of
approximating maximums associated with . It makes it possible to describe
more precisely the fact that all sequences of approximating maximums ap-
proach the set of all maximum points of the information function I on &,. This is
formally done by introducing a concept of consistency of 5, which is expressed
in terms of the information functions associated with 3 just mentioned (see
Propositions 2.4 and 2.5, Corollary 2.6, and Remark 2.1). Finally, we complete
the first part of the paper by showing that the conditions for consistency given
in [6] remain valid for conditionally S-regular families of reversed submartin-
gales introduced in [13] (see Theorem 3.3). It is important to realize that all
U-processes are known to be conditionally S-regular. In this way we obtain
a variety of important examples covered by the result.

6. Some facts in the first part of the paper are motivated by [6] with

x|

"
h(w,0) ==Y h(X;(w), 6),

j=1

where {X;|j> 1} is an iid. sequence of random variables and # is a given
function. Since the proofs in this context are similar to the proofs in [6], their
details are either omitted or briefly sketched. However, note that in this process
we do not assume that the tail s-algebra & = ﬂ":= . 9x1s degenerated, which is
by the Hewitt—Savage 0-1 law automatically true in the setting of [6]. Con-
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sequently, the random functions which are %, -measurable are not longer P-as.
equal to constants. This is mainly done in order to show that the charac-
terization of the sets of all possible accumulation and limit points of all possible
sequences of approximating maximums (obtained in Remark 2.1) has nothing
to do with this assumption, and without any particular application to the
statistical background in mind. Yet another reason for this generality is of
a technical nature. Namely, some of the desired statements concerning the
functions under consideration are first proved pointwise, and then they are
extended to their degenerated versions. This method can increase the clarity of
relations between objects involved. As an illustration of this approach, the
connection between Proposition 2.2 and Corollary 2.3, obtained by the unifor-
mization from (2.17), may be served. Moreover, a closer look into the proofs
shows that the same fact is also true for the submartingale property of families
of the functions {h,(-, 0) | n > 1} that form # for € &,, and one can easily
verify that the given characterization holds with no assumption imposed on
these families, except that each h,(w, 0) is (¥ x 2 (6,))-measurable.

7. In the second part of the paper we obtain conditions for consistency of
## by using a different method. This approach relies upon the results on
uniform convergence of families of reversed submartingales obtained in [15]. It
turns out that these results can be successfully transformed into conditions for
consistency, and in this way we obtain Theorems 3.4-3.8. We are unaware of
similar results in the general reversed submartingale context. The conditions
obtained are expressed in terms of Hardy’s regular convergence [4], and are of
a total boundedness in the mean type. The question of comparing these con-
ditions with those obtained earlier appears worthy of consideration. We do not
pursue this in more detail, but instead consider applications to a stochastic
maximization over time sets of families of random processes (see Examples 4.1
and 4.2). To the best of our knowledge, this sort of maximization has not been

~ studied previously.

8. We would like to point out that our approach in some parts of Sections
2 and 3 is very formal. The reader who wants to see these results in a less
formal setting which is more suitable for straightforward applications is refer-
red to Section 4.

2. CHARACTERIZATION OF ACCUMULATION AND LIMIT POINTS

1. Let o = ({h,(®, 0), &, | n = 1} | 0€ ©,) be a family of reversed submar-
tingales defined on a probabﬂlty space (2, &%, P} and indexed by an analytic
metric space @,, and let %, denote the Borel og-algebra on @,. Then according
to [13] the family s# is said to be:

(2.1)  measurable if (w, O)— h,(w, 0) is (¥, x %,)-measurable for all n> 1
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(22)  degenerated if &, = (._, &% is degenerated, that is P(4)e {0, 1} for all
AeSy;

(2.3)- separable relative to given families & < 2% and ¢ < 2% if for each
Be & there exists a sequence {6; | i > 1} in 6, such that for all Ce % we
have

P*( U (h(0)C| 6,6 BA{h, O)eC | HEB}) =
n=1

(24)  separable if it is separable relative to the family % (6),) of all open sets in
0, and the family % (R) of all closed sets in R;

(2.5)  P-as.-upper (lower) semicontinuous on a given set I' = @, if there exists
a P-null set N € & such that the function 81— h,(w, 6) is upper (lower)
semicontinuous on I' for all we Q\N and all n > 1;

(2.6) conditionally S-regular relative to a given family # < 2% if for each
Be # there exist a P-null set N in & and versions E {h} (B) | %,+1}(®)
of the conditional expectations E {h}(B)| &,+1} satisfying

E{h* (B) | 5pn+1}(w) = hyyq(w, 0)

forall we Q\N,all 6e B,and all n > k for some k > 1. Here we implicitly
suppose that every set B in .# satisfies the following two conditions:

(i) the map w— h¥(w, B) is ¥F-measurable,
(ii)) ER¥(B) < ©
for all n > k with the given k > 1. For instance, condition (i) is by the

projection theorem fulfilled whenever 5 is measurable and B is ana-
lytic (see [6]).

For more information on (2.1)+2.6) we refer to [13]. We point out that all
U-processes are known to be conditionally S-regular relative to all analytic
(Borel) sets (see Example 4.4 in [137).

Let (©, d) be a compact metric space containing 6,, let ¥ (@) denote the
family of all open sets in @, and let # denote the Borel g-algebra on @. Then
©® is an analytic metric space and we will always set f(0) = —oo for all
0e ©\0,, whenever f: @, — R is a function. It is easily verified that definitions
(2.1)H2.6) extend with no change under the condition

h,(w,0) = —oc for all e O\O,, all weR, and all n>1
with @ being a new parameter space.

2. In the sequel we shall make use of the following auxiliary functlons
associated with #:
2.7) hz (w, B) = sup h,(w, 0),

06eB
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(28)  H#(w, B)=lim inf h* (®, B), - H*(w, B) = lim sup k¥ (w, B),

29) H(w,B)= inf Hfw,G, H@ B)= inf H*@,G),

Ge¥%(0),GoB Ge%(8),GoB

(2.10) Hy(w, 0) = inf HE (w0, b(0, 7)), H(w, 6) = inf H*(w, b(8, 1)),
r>0 r>0

@.11) n(0) = inf E*F, (), n*(B)= il E* 1} (B),

where weQ, 0c®,Bc O, and n> 1. Here F(m 6)—11m,wh*(w b(8, 1)
denotes thé upper semicontinuous envelope of h,(w, *) for weQ, 0@ and
n > 1, and E* denotes the upper P-integral. Note that H)(w, 0) = H, (v, {6})
and ﬁ (w, 6) = H(w, {0}) whenever we Q and §€ . According to [6], h,(w, 0)
is called the empirical information function, H,(w, B) and H (w, B) are called the
outer maximal functions, I-To(m 6) and H(w, 6) are called the upper information
functions, and 5 (6) and n*(B) are called the mean value mformatzon Junctions
associated with .

If o# is degenerated, then we define the information function associated
with s as follows:

1(6) = P-as. lim h,(6) = lim Eh () for all 8.

Note that every &, -measurable function is then P-a.s. equal to some constant,
and thus if 5 is measurable, then by the projection theorem the functions
H§ (-, B) and H*(-, B) are degenerated for every analytic subset B of @. We will
denote these constants by Hg (B) and H*(B), respectively, and deﬁne the
associated outer maximal functions as follows:

H(B)= iof HFG), HM®B)= iof H*(G) forall Bc@H.

Ge%(8),G>B Ge¥(0),G>B

If # is not degenerated, then respecting the statistical nature lying behind, we

~ will define the information function associated with 5# by

I(w, 0) = liminf h,(w, §) for all we2 and 0eO.

Basic properties of the objects just introduced are stated as follows:
ProPOSITION 2.1. Let # = ({h,(», 0), &% | n > 1} | 0 6,) be a given fami-
ly of reversed submartingales. Then:

(212) H,(w,*) and H(w, *) are upper semicontinuous functions on @ for all
we;
(2.13) si.lpoEBI(co, 0) < Hf (w, B) < H*(w, B) for all weQ and all B< O;

214) I(0,0)<I(v,0)<Hy(w, 0) <H(w,0) for all 0eQ and all 60O,
where I(w, ) denotes the upper semicontinuous envelope of I(w, )
on ©;
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(2.15)  sup, o H(w, 6) < H*(w, B) < H(w, B) < H(w, B) = sup, 3 H(w, 0)
for all we Q and all B = O, where B® = int (Bu(O\8O,)) and B = cl(B)
in @;

(2.16)  sup, , I(w, 0) < sup, o Hy (o, 0) < HE (0, ©) < H* (v, 0)
= sup,_o H(w, 0) for all veQ.

Moreover, if # is measurable and degenerated, then:

(2.17) - there exists a P-null set Ne % such that for every compact set K in
® we have: - --:- :
A (w,K)=H,(K) and H(w,K)=HK) for all 9eQ\N;
(218) H, and H are upper semicontinuous functions on ©;
(2.19) sup,_, I(0) < H§(B) < H*(B) for all B < ©;
(220) I1(0)<I(V) < Hy(0) < H(H), where I denotes the upper semicontinuous
envelope of I on O;
(221)  sup,_, H(6) < H*(B) < H(B) < H(B) = sup, ; H(0) for all B 6;
(2.22) sup,_, I(0) < sup, , H,(0) < H* (@) < H*(O) = sup,, H (6).

Proof. (2.12)+2.16): The last equality in (2.15) follows by the compact-
ness of B, and the remaining statements follow from definitions.

(2.17): Let & be a countable basis for the topology on ® which is closed
under formations of finite unions. By our hypotheses on # we can find
a P-null set Ne# such that

lim inf h* (0, G) = H*(G) and lim sup hf(w, G) = H*(G)

n—+aw

for all Ge# and all weQ\N. Hence by the compactness of K we find
Hy(»,K)= inf Hf(w,G)= inf HF(G)=H(K),
Ge®,G=K Ge®B,GoK

Hw,K)= inf H*(w,G) = inf H*(G)=H(K)
Ge®R,G=>K Ge®,62K
for all we Q\N, and (2.17) is proved.
(2.18)(2.22) are straightforward from (2.12}+2.16) by using (2.17). =
PROPOSITION 2.2. Let # = ({h,(w,0), % |n>1}|0€86,) be a given
family of reversed submartingales, let {0, | n > 1} be a sequence of functions
from Q into O, and let B be a subset of @. Then we have:

2.23) lim sup h¥*(w, B) < H(w, B),

n—w

(2.24) lim inf #* (0, B) < H, (@, B),

n—*oo
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(2.25) hm  sup hy(o, 0,(0) < H(o, €{0,(®)}),

(226)  lim inf h,(w, 6,(w)) < min {f, (0, € {6,(@)}), iof H(w, )}

0B {Bn(w)}

for all weQ, where € {0,(w)} denotes the set of all accumulation points in @ of
the sequence {0,(») | n> 1} for weQ.

Proof. (223) and (2.24) follow from the definitions of H(w, B) and
H, (o, B). '

(2:25)2.26): If Ge % (O) with G > % {0, ()}, then there exists n, > 1 such
that 0,(w)eG for all n>n,. Hence we get

lim sup h,(w, 6,(w)) < lim sup k¥ (w, G) = H*(w, G),
lim inf &, (@, 6, (@) < lim inf & (@, G) = H (@, G).

Taking the infimum over all Ge % (@) with G > % {0, (w)} we find that (2.25)
and the first part of (2.26) are satisfied. For the second part of (2.26) let
0e% {0,(w)} be a given point. Then there exist integers o (1) < o(2) < ... such
that 8, (w) —» 0 for j—» co. Put ¢(0) =0 and define

0, (@) =0,;(w) for all ¢(—1) <k < o() and all j>1.

Let A, = {6 (») | k > p}. Then 6, (w) - 0 for k > oo, and hence 4, = 4,0{6}
for all p> 1. By (2.23) and the last equality from (2.15) we obtain

lim inf h, (w, §,(®)) < lim inf b, (@, O, (@) < lim sup h (o, 6, (@)
n—+w Jj o k—+ o

< lim sup k¥ (0, 4,) < H(w, 4,) < H(w, 4)
= max {H (o, 6), sup H(w, §, (w))}
k2p
" By (2.12) we know that the function 6+ H (w, 6) is upper semicontinuous
on @. Thus letting p — oo and taking the infimum over all 0¥ {5 (co)} we get
lim inf b, (o, 0,(@) < iof H(w,0).

n—+w BEQ{ﬂn(aJ)}
This fact proves (2.26) and completes the proof. =
COROLLARY 2.3. Let # = ({h,(w, 0), &% |n>1} | 0@ ) be a given family
of reversed submartingales. If 3¢ is measurable and degenerated, then there exists

a P-null set Ne% such that for any sequence {, | n > 1} of functions from
Q into © and any subset B of © we have:

2.27) lim sup k¥ (w, B) < H(B),
(2.28) lim infh?¥ (, B) < H,(B),

n— oo
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(2.29) lim sup (o, 0,(0) < H(® {0,(0)}),
(2.30) lim inf h, (, 0, (w)) < min {H, (¢ {0, (a))}) mf )}H(B)}

Proof. Let N be the P-null set constructed in the proof of (2.17). Then
(2.27) and (2.28) follow from (2.23), (2.24), and (2.17). Moreover, (2.29) and (2.30)
follow from (2.25) and (2.26) in the same way. These facts complete the proof. =

ProrosITION 24. Let # = ({h,(®,0), &% |n>1}|0€6,) be a given
family of reversed submartingales, let {9 |n= > 1} be a sequence of functions
Sfrom Q into” 6, let F be a function from Q into R, and let us define:

= {weQ | lim inf h, (o, 0,(w)) > F ()},

= {weQ | lim sup h, (o, 0,(®)) > F (w)}.
Then we have: e
(2.31) ¢{0,(w)} < {00 | Hw, 6) > F(w)} for all wey,
232) €{0,(@}n{c@ | Hw,0)>F(@)}#08 for all weQF,
233) Z{0, () c{0cO|Hyw, 0)>F@)} for al weQ,

where € {0, ()} and £ {0,(w)} denote the sets of all accumulation and limit
points in @ of the sequence {0, () | n = 1} for w e Q, respectively. In particular, if
# is measurable and degenerated and F is a constant in R, then there exists
a P-null set Ne&F such that:

(2.34) ¢{0,(0)} c{0c® | HO) =F} for all weQ,\N,
(235 #{0,(@}n{fc@ | HO=F}#0 for all 0eQ"\N,
(2.36) L{0, ()} c{6e®|Hy0)=F} for all 0eQ;\N.

Proof. (2.31) follows from (2.26).

(2.32): Since the upper semicontinuous function H (w, -) attains its maxi-
mal value on the compact set % {0, (w)}, we see that (2.32) follows from (2.25)
and the last equality in (2.15).

(233): If 82 {0, (w)}, then Z{6,(w)} =%{0,(w)} = {6}, and (2.33)
follows from (2.26).

(2.34)12.36) follow from (2.31)—(2.33), respectively, by using (2.17). =

3. Let o = ({h,(w, ), % | n>1} | 0€6,) be a given family of reversed
submartingales. A sequence of functlons {0, |n > 1} from Q into O is called:

(2.37) a sequence of empirical maximums associated with 5 if there exist
a function g: 2 > N and a P-null set Ne % satisfying
(i) 8,(w)e @, for all n > q(w) and all weQ\N,
(i) h, (o, f, (@) = h¥(w, O,) for all n>g(w) and all we Q\N;
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(2.38) a sequence of asymptotic maximums associated with J# if there exist
a function q: Q@ — N and a P-null set N e & satisfying (i) in (2.37) and

lim inf h, (o, 6, (®)) > Hf (w, ) for all ®eQ\N;

(2.39)  a sequence of approximating maximums associated with # if there exist
a function q: Q —+ N and a P-null set Ne & satisfying (i) in (2.37) and

lim inf h,(w, 6,(@)) > B(w) for all weQ\N,
where ,B(w):z B = supgee, I () if # is degenerated, and
- B(w):= Supgeg, I (0, O) otherwise, for all weQ.

It is easily verified that every sequence of empirical maximums is a se-
quence of asymptotic maximums, and that every sequence of asymptotic
maximums is a sequence of approximating maximums. Although 4, (w, ) does
not need to attain its maximal value on @,, and (ii) in (2.37) may fail in this
case, we can always find a sequence of functions {f, | n > 1} satisfying:

hy (o, 0,(@) > h¥ (o, O)—¢, (@) if h¥(w, 6,) < +o,
hy (@, 6,(@) = n if h*(w, @)= +©

for all we 2 and all n > 1, where ¢, — 0 as n — oo. Passing to the limit inferior
above we see that sequences of approximating and asymptotic maximums always
exist. We emphasize that this fact is by itself of theoretical and practical in-
terest.

4. In order to describe the sets of accumulation and limit points of the
sequences of maximum functions just introduced we shall define the following sets:

M =M(#)={0cb,| H, 0 > p(») P-as.},
L=L(#)={0eO,| Hy(o, 6) > B(w) P-as.},
M* = M*(#) ={0eb, | H(w, 6) > H*(w, O) P-as.},
Mg = Mg (#)={0€6, | H(w, ) > Hf (w, ®) P-as},

=I%(#)= {06, | Hy(w, 0) > Hf (w0, O) P-as.}.

If 5 is measurable and degenerated, then from (2.17) and the definition of § we
find

™~ E’

= M(#)={0e6,| H©) > B}
L(#)= {06, | H,(6) > B},
M* = M*(#) = {06, | H(6) > H*(O)},
w—w (#) = {06, | H(©) > H (O)},

= I% () = {06, | Hy(6) > Hy (6)}.




Families of reversed submartingales 299

The next proposition and the existence Theorem 4.1 in [14] provide a com-
plete description of the sets of all accumulation and all limit points of the sequences
of maximum functions introduced in (2.37)-2.39) above (see Remark 2.1 below).

PROPOSITION 2.5. Let # = ({h,(w, 0), &% | n = 1} | 8€ B,) be a given fami-
ly of reversed submartingales.

(240) If {0, | n > 1} is a sequence of empirical maximums associated with #,
_ then there exists a P-null set N e & such that for all we Q\N we have:

@) % {0,(@)} = Mg (),
{iiy € {0,()} nM*(#) # &,
(lll) hmn—'w (6n (CO), %* ('}f)) lim infn—'uo d(gn ((D), M* (';Sﬂ)) =0,
(iv) £ {0,()} c I (o#).
(241)  If{8, | n = 1} is a sequence of asymptotic maximums associated with 3,
then there exists a P-null set N e & such that for all we Q\N we have:
(@) €{0.(@)} < M5 (),
(i) lim,-. o d(0, (), M3 () =0
(i) & {0,(w)} = I (o).
(242) If {f,|n>1} is a sequence of approxlmatmg maximums associated

with 3¢, then there exists a P-null set Ne % such that for all we Q\N
we have:

@) #{0,(@)} = M(#),
(ii) lim,- o, d(0,(w), M (#)) =0,
(iii) £ {6,(w)} = L(#).
The proposition follows by definitions and Proposition 2.4. &

COROLLARY 2.6. Let o = ({h,(w, 0), & | n> 1} | 0e@0) be a given family
of reversed submartingales. h

(2.43)  For every e M () (MgF (5£)) there exist a sequence of approximating
(asymptotic) maximums {6, | n> 1} associated with # and a P-null set
Ne#F satisfying:
(i) 0, is S-measurable for all n > 1
(ii) 0% {0,(w)} for all ®eQ\N.
(244)  For every 8e L(5#) (L% (#)) there exist a sequence of approximating

(asymptotic) maximums {9 | n > 1} associated wzth H and a P-null set
Ne% satisfying:

() 0, is S-measurable for all n>1,

i) 6,3{0) on Q,

(iii) Hy(w, 0) = lim inf,_ o h, (o, 6,(0)) < lim sup,., h, (o, §,(w))
= H(C!J ) for all weQ\N.

6 — PAMS 182
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Proof. The proof of the first part of (2.43) and (2.44) for non-degenerated
families of reversed submartingales # is given in [14] (see Corollary 4.2). It is
easily verified that the same proof works for the second part of (2.43) and (2.44)
as well. If 2 is degenerated, then the proof may be carried out in exactly the
same way by using (2.17) above. =

Remark 2.1. (1) Combining (i) in (2.42) with the first part of (2.43) we see
that M (o) is exactly the set of all possible accumulation points of all possible
sequences of approximating maximums associated with 5. Similarly, combining
(iii) in (2.42) with the first part of (2.44) we see that L (5#) is exactly the set of
all possible limit points of all possible sequences of approximating maximums
associated with #.

(2) Combining (i) in (2.41) with the second part of (2.43) we see that
Mg (o#) is exactly the set of all possible accumulation points of all possible
sequences of asymptotic maximums associated with 3. Similarly, combining (iii)
in (2.41) with the second part of (2.44) we see that I% (o) is exactly the set of all
possible limit points of all possible sequences of asymptotic maximums.

3. CONSISTENCY THEOREMS

1. Let # = ({h, (@, 0), &% |n>1}|0€6,) be a faniily of reversed sub-
martingales defined on a probability space (Q, &, P) and indexed by an analytic
metric space ©,. Suppose that # is degenerated and define the set

M=M@#)={0c@, | I1(0) =B,

where f = supgee,[(f). Let I' = ©. Then # is said to be S-consistent on I if
for every sequence of approximating maximums {f, | n > 1} associated with
H# we have € {0, ()} "I = M for all we Q\N, where N is a P-null set in #. In
particular, 5 is said to be S-consistent if it is S-consistent on @. Note that 5 is
S-consistent on I' if and only if every accumulation point of any sequence of
approximating maximums {f, | n > 1} associated with # which belongs to
I' is a maximum point of the information function I on 6.

2. By (1) in Remark 2.1 we know that M () is exactly the set of
all possible accumulation points of all possible sequences of approximating
maximums associated with J#. Therefore the following statements are equiv-
alent:

(3.1) s is S-conmsistent on T,

(32) ## is S-comsistent on I' (M (3#)\M (¥)),
(3.3) T'nM(#)c M (H#),

(34) H(H) < B for all 6eI'\M ().
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Suppose that {6, | n> 1} is a I'-tight sequence of approximating maxi-
mums associated with 3. This means that € {§,(w)} < I for all weQ\N,
where N is a P-null set in &. If # is S-consistent on I, then

(3.5) %{0,(@)} < M,
(3.6) lim d(f,(w), M) =0

for all we Q\N, where N is a P-null set in &.

3. Our next aim is to show that the main conditions for consistency of
# given in"[6] remain valid for conditionally S-regular families of reversed
submartingales introduced in [13]. In the next two propositions we collect
some information of independent interest, which is motivated by [6] and offers
more than really needed to complete our main aim. The main result on consis-
tency is presented in Theorem 3.3 below. Although its proof in part follows by
results of the next two propositions, we independently present a complete
self-contained proof.

In the following we will use &/ (@) to denote the family of all analytic sets
in @. We further set '

B, r0)=1{b@,7)[reQ,,r<ro}
for all 0 ® and all r, > 0. We finally recall that B® = int(BU(®\0,)) for. any
Bco.

PrOPOSITION 3.1. Let # = ({h,(w, 0), &, In>1}|0e€O,) be a given
family of reversed submartingales, and let us suppose that for some 6e®
and Be s/ (O) we have

@) <o and n*(B) < 0.
If o is measurable, then:
(3.7 H*(w, B) = H§(w, B) P-a.s. if 3# is conditionally S-regular relative to
- {B} |
(3.8) H*(B) = H§*(B) = n*(B) if A is conditionally S-regular relative to { B}
* and degenerated,

(39) H(w, 0 =H,(w, 0) P-as. for any 0e B® such that # is conditionally
S-regular relative to B(0, r,) for some r, > 0;

(3.10) H(®) = H,(0) =n(®) for any 0eB® such that # is conditionally S-
-regular relative to B(0, r,) for some r, > 0 and degenerated;

(311) () = P-as. lim,_,  h,(0) if # is conditionally S-regular relative to
B(0, rg) for some r, >0 and degenerated,

(312) H*(o, U A;) = max, <;<m H* (0, A;) P-a.s., where A, ..., A, < ©
with m > 1
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(3.13) n* (U;"= , 4;) = max, < j<m1* (4)) if # is conditionally S-regular relative
to the family {A,, ..., A,,} and degenerated, where A,, ..., A, € A (O)
with m > 1.

Proof. (3.7}3.11) follow by the definition of the conditional S-regularity
and the reversed submartingale convergence theorems, using the monotone
convergence theorem for (3.10).

(3.12) follows from the fact that limit superior and maximum over a finite
set commute. :

(3.13) -follows-from (3.8) and (3.12). ®

As in [6] we introduce two sets of points in @ that play an important role
towards consistency. Let # = ({h, (@, ), &, | n > 1} | 0 6,) be a given family
of reversed submartingales. We define the set of all I'-dominated points
of # as follows:

0,={0ec® |3Ge¥%(0), 0eG with n*(G) < w0}. -
Note that @, is an open set in © and a point 6 € @ belongs to @, if and only if
there exist m > 1, Y e I} (P) and Ge 4 (®) with ¢ G satisfying h,, (w0, 6) < ¢ (©)
for all we and all 0e GNO,. We define the set of all upper semicontinuous
points of 5 as follows:

0,={0e® | h,(w,") is P-as. upper semicontinuous
at 0 for all n >k with some k > 1}.

PropPoSITION 32. Let # = ({h,(w,0), &%, |n>1}|0€6,) be a given
family of reversed submartingales. If 3 is measurable, then:

(3.14) H(w, 6) = Hy(w, 6) P-as. for any Ge 6, such that # is conditionally
S-regular relative to B(8, ry) for some ry > 0;

(3.15) H(O)=Hy(0) =n(6) < oo for any 0€ 6, such-that # is conditionally
S-regular relative to B(0,r,) for some ry >0 and degenerated;

(316) H@O® =H,0)=n0)=I1(0) < 0 for any 0€6,n 6, such that K is
conditionally S-regular relative to B(0, r,) for some ry > 0 and degene-
rated;

(3.17)  #*(K) < oo for every compact set K c @, if # is conditionally S-regu-
lar relative to {b(0,r) | 0K, reQ,, r <r,} with some ry > 0 and de-
generated;

(3.18) #%*(©,) < © if and only if @, = O, provided that 3 is conditionally
S-regular relative to {b(0,71)| 08, reQ,,r <r,} with some ry >0
and degenerated,;

(3.19)  0e6, if and only if there exists an open neighborhood G of 0 satisfying
n*(A) < oo for every A<= Gn@, such that A =Au{6}.
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Proof. The statement (3.14) follows from (3.9). The statement (3.15)
follows from (3.10). The statement (3.16) follows from (3.15) by the definition of I.
The statement (3.17) follows from (3.13) by using a compactness argument.
The statement (3.18) follows from (3.17) by the definition of @,, since @ is
compact. The proof of statement (3.19), which is not used in the sequel, is the
same as the proof of the analogous fact given in [6] (see p. 40). Observe that the"
so-called general monotone convergence theorem is used for this purpose. m

THEOREM 3.3 (Consistency of Reversed Submartingale Models). Let
H = ({h,(w,0), % | n>1}|0€6,) be a given family of reversed submartin-
gales, and let I' be a subset of @. Suppose that H# is measurable and degenerated.

(320) If B= —oo, then H# is S-consistent on I' if and only if
I' = 6,u(6\6,) = O\(6,\6).

(321) If B> —oo, then # is S-consistent on I' if and only if
' MU(O\M (#))u(6,n6)

provided that 3 is conditionally S-regular relative to B(0, r,) for all
0eI' n6,n 6O, with some r,> 0.

(3.22)  If # is S-consistent on ' and I "\ M () = {0,} for some 0,€ O, then
8, > 8, P-a.s. for every I'-tight sequence of approximating maximums
{0, | n > 1} associated with 3.

Proof. (3.20): In this case M (#) = 6, and M () = &,, so the statement
is obvious.
(3.21): If 5 is S-consistent on I', then by (2.43) we have

. I = M(#)u(O\M (7))
Conversely, suppose that
_ I < M) (O\M () U(6,n 6));
then it is enough to show that H () < Bforall e I'\M (). For this, first note that
I\M (#) = T n{(@\M (5£))u(6,n O)\M (5£)},

and since H (0) < B for all 0 ®\M (), it is enough to show that H(6) < § for
all e I' n{(6,n @)\ M (s#)}. Hence we see that the proof will be completed by
showing that H(6) = I1(0) for all e '@, O,. For this, since s is degene-
rated, we have

7(0) = inf E*h, (6) > inf Eh,(6)=1(0) for all 0cO®.
nz1 nz1
For any 06, there exists k > 1 such that h,(6) = h,(6) P-as. for all n > k.
Hence we obtain
I(6) = inf Eh,(6) = inf Eh,(0) > inf Eh,(0) =n(6) for all fc@,.
nz21 nzk nz1
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Thus we may conclude that I(6) = n(6) for all f€ &,. Since, by our hypotheses,
2 is conditionally S-regular relative to B (0, r) for all 0 I' n 6,n 6, with some
re > 0, there exist ny, j, > 1 large enough to satisfy

Eh¥(b(0,279) <o for all n>n, and all j > j,
and such that by (i) and (ii) in Corollary 4.2 in [13] and the monotone conver-
gence theorem we may conclude that .
n(0) = inf Eh,(0) = inf inf Eh}(b(0,277) = inf inf ER¥(b(9, 2~ ))

nZ=neg nzng jZJje JZje nZng

"= inf HF(b(0,279) = inf H*(b(0, 27)) = H,(0) = H(O)
izje iZzJje
for all e I'n ©,nO,. Thus 1(8) = n(0) = H(O) for all 0eI'n O, O,, and the
proof of (3.21) is complete.
(3.22) follows by the definition of S-consistency of # on I'. m

4. We continue to examine conditions for consistency by using a different
method. As before, we assume that # = ({h,(w, 0), &, |n=1}|0€®,) is
a measurable and degenerated family of reversed submartmgales Our main
idea is based upon the fact that the set of all possible accumulation points of all
possible sequences of approximating maximums M () is described in terms of
the upper information function H which is given by

H(0) = inf lim sup h¥(w, b(8, r))
. - r>0 n—w
for all weQ outside some P-null set N,e 4. Hence we see that conditions
implying
lim sup h¥(w, b0, r)) = sup I(¢)
n— oo &eb(o,r)
for all weQ outside N, and all reQ,,r <r,;, have as a consequence
H(6) = I(6),
where e ® is a given point and r, >0 is a given number. Since the set
M = M(#)={0€6, | I(6) > B}

is 'clgsed and contains M (), we obtain cl(M (#)) = M (). Conversely, if
6e M (o), then there exists a sequence {0, |n > 1} in O satisfying

d@,,0<2™™ and I0)=2@BAn—-2"" forall n>1.

Thus, if 6,—6 with 1(8,)— f implies I(§) =B for all @eM (#), then
M(#) = M(#) =cl (M (5#)). This is for instance true if I has a closed graph,
or if I is upper semicontinuous on M (). It is instructive to observe that I
is always upper semicontinuous on M (), as well as that for every 0e M ()
we actually have T(0) = .
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5. Our next approach is based upon the basic idea just described. First we
consider the separable case in Theorems 3.4, 3.5 and 3.6. Then we examine the
non-separable case in Theorems 3.7 and 3.8. All these results are based upon
conditions for uniform convergence of families of reversed submartingales
established in [15]. In this context we find it convenient to recall some definitions
needed in the sequel.

Let # = ({h, (0, 0), % |n>1}|0€6,) be a given family of reversed
submartingales defined on a probability space (2, & P) and indexed by an
analytic metric space 6y, let D = {5, | j > 1} be a countable subset of 6,, and
let D, ={d],...,5,} for all n> 1. For a given set A = @, let us put

M, (h,) =suph,(f) for all n> 1.

feAd

Then ## is called totally bounded in P-mean relative to D if any of the following
five equivalent conditions is satisfied (see [15]):

(3.23) The double sequence {E(Mp,(h,) | n, k > 1} is regularly convergent
(in Hardy’s sense).

(324)  The double sequence {E (My, (h,)) | n, k > 1} is convergent (in Prings-
heim’s sense).

(325) —oo < lim E(Mp, (hy)) = lim E(Mp(h,)) < +oo.
k— o n-*w
(3.26)  For all & > 0 there exists p, > 1 such that for all n, m, k, I > p, we

have
|E (Mp, (1)) — E (Mp, ()| <&
(327) For all ¢ > 0 there exists p, > 1 such that
E(Mp (hpe))—E (Mp,, (ho) <e.

where h, (0) denotes the P-a.s. limit of h,(0) as n — co for all O @,
In this case the limit of {E (Mp, (k,) | n, k > 1} from (3.23) and (3.24) is
equal to E(Mp(h,)), and we have

lim lim E(Mp, (k) = E(Mp(h,)) = lim lim E(Mp, (h,).

k—~+ow R= @ n—ro k=
Moreover, by Theorem 3.1 in [15], then we have
M, (h,) > M, (h,) P-as. and in I (P)

as n— oo. For more information in this direction we refer to [15].
We recall that I denotes the upper semicontinuous envelope of I on @.
The graph of I is defined by

gr() = {(6, 1(6)) | < 8).

A finite cover of the set T is any family of non-empty subsets 4,, ..., 4, of
T satisfying T = U';= 1 4;. The class of all finite covers of T'is denoted by I" (T).
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Finally, according to [13], we set
% o (R)={(—o0,p] | peQ}.

THEOREM 3.4. Let # = ({h,(w, 8), %, | n = 1} | 0 6,) be a given family
of reversed submartingales, and let I' be a subset of ©,. Suppose that H# is
degenerated and that any of the following three conditions is satisfied:

(3.28)  # is separable;

(329) A is separable relative to B(0, ry) and 6 (R) for all 0 "M (Jf)
with some fy > 0;

(3.30) éf is P-a.s.-lower semicontinuous on I M ().

If the family of reversed submartingales ({h,(®, ¢), &, | n> 1} | eb(@, r) is
totally bounded in P-mean relative to b(0, r)n D, for all 0eI' "M (#) and all
reQ.,, r <ry with ry > 0, where D, is a countable subset of ©, satisfying the
conditions of the separability definition of # relative to B(0, r,), then:

(331) H(O) =1I(0) for all 0T AM (5);

(332) I'mM(s#)={0el | I(0)=p}.

If I in addition satisfies any of the following two equivalent conditions:

(3.33) I is upper semicontinuous on I "M (),

(334)  c(gr@M)n((rnM¢)x {B}) < gr(I) or, equivalently, if 6,—0 and
I1(8,) - B with 8’ n M (), then 1(0) =8,

then S is S-consistent on I.

Proof. Suppose that 5# is degenerated and that any of the conditions
(3.28)(3.30) is satisfied. Then, by (ii) in Proposition 4.3 in [13], it is no restric-
tion to assume that (3.29) holds. Hence, by (i) in Proposition 3.3 in [13], for

given 8eI'n M (#) there exists a P-null set Nye# such that

sup h,(w, &)= sup h,(o,)

geb(0,r) Zeb(0,r)nDe
for all we Q\N,, all re @, ,r <r, and all n > 1, where D, is a given countable
subset on @, satisfying the conditions of the separability definition of J# rela-
tive to B(0, ry) with r, > 0. Since by our hypotheses the family of reversed
submartingales ({h,(w, &), %, | n=1} | £eb(0, 1)) is totally bounded in P-
-mean relative to b(f, r)nD,, by Theorem 3.1 in [13] we have

sup h,(w,&)—> sup I(¢) as n— o0
¢eb(0,r)nDg ¢eb(8,r)nDg

for all we 2\N, and all re @, , r < r,, where N;e # is a P-null set. Hence by
(2.20) we find

H(9) = inf lim sup h¥(w, b(8, r)) = inf 11m h¥(w, b(0, ) Dy)

r>0 n—+ r>0n

=inf sup I(O<IWO)< H(O)I.

r>0 &eh(8,r)nDo
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These facts imply H(6)=I(f)> p and complete the proof of (3.31)
and (3.32). -

In addition, given 0 I' " M () there exists a sequence {, | n > 1} in 6,
satisfying

d@,,0) <2 and I(0)>(@BAn—2"" for all n> 1.

Hence we see that 6§, — 0 and I(6,) — B. Thus if (3.34) is satisfied, we obtain
I'nM () c M(o#). Moreover, it is straightforward to verify that (3.33) is
equivalent to (3.34) under (3.32). These facts complete the proof. m

Remark: 3.1. If any the conditions (3.28)(3.30) in Theorem 3.4 is satis-
fied, then by Remark 3.2 in [13] and (ii) in Proposition 4.3 in [13] we see that
there exists a countable set D in 6, satisfying the conditions of the separability
definition relative to all open sets %(6,) in 6, and ¥_ , (R). Moreover, if (3.30)
is satisfied, then D can be taken as an arbitrary countable dense subset
of &,. Consequently, it might be possible in these cases that in the assumption
of total boundedness in P-mean in Theorem 3.4 we actually have D, = D for all
eI "M (#).

Remark 3.2. Under the hypotheses of Theorem 3.4, let us suppose that
0e®,. Then there exists r, > 0 such that Eh¥(b(0, r)nD,) < co for some
k =1, where Dy = {9; | j > 1} is a countable subset of &, satisfying the con-
ditions of the separability definition of s# relative to B(0, ry). Since D, is
countable, the family {h¥ (b (0, )nD,), &, | n > k} forms a reversed submartin-
gale for all 0< r < r,. Hence we easily find that the family of reversed submar-
tingales

({h(@, &), F, | n=1} | E€b(@, 1)

is totally bounded in P-mean relative to b (8, r)n D, if and only if the following
condition is satisfied:

(3.39) —o0 < lim H*(b(6, r)nDg,) = H*(b(0, )N D) < + 00,
k-
where Dy = {0;, ..., 6} for all k> 1 and 0 <r < r,. In this case we have

(3.36)  H*(b(0, VD) = H (b(0, )N D) = lim Eh}(b(8, )N D)
= int; Eh}(b(0, r)nD,) = sup I1(5)
nz L izl

for all 0 <r <r, Note also that we have
(3.37) H* (b (0, r)ﬁDoyk) = H)* (b (B, r)nDe,k)
= lim Eh}(b(0, r)nDey) = sup I(5)

n— o 1$jsk

for all 0<r<r, and all k> 1.
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6. We continue by examining conditions for consistency of # that are
expressed in terms of an internal (Lipschitz) property of the sequence
{h,(0) | n = 1} when 6 runs over @. Our next result in this direction is based
upon Theorem 4.7 in [15] and the following simple inequality:

(3.38) _ sup (a@,—b,)* = sup a,—sup b,,
nz1 nz1 nz1
where a,, b,eR for n > 1, with the convention oo —co =0.
THEOREM 3.5. Let o = ({h,(w, 0), &, | n > 1} | Be@) be a given family

of reversed submdrtingales, and let I' be a subset of ©,. Suppose that # is
degenerated and that any of the following three conditions is satisfied:

(3.39) o is separable;

(3.40)  S# is separable relative to B(0, r) and % (R) for all 6T M (#)
with some rq > 0;

(3.41) # is P-a.s.-lower semicontinuous on I' M ().

Suppose that for all e I' "\ M there exists r, > 0 such that the following condition
is satisfied:

(342) for all £ > O there exists I1 = {4, ..., 4,,}eT'{(b(0, re)an) and there
- exist 0,€4,, ..., 0y €Ay, such that for all N > 1, there exist n, > N
and ¥, ..., ¥, e} (P) satisfying:
(@) (I6)—1©)* <& for all ted;and all j=1,...,m,
(i) (hn,(&)— h,,,:(é_,))+ <Y for all (ed;and all j=1,...,m,
(iii) max E(¥)<e,

1<j<m,

where D, is a countable subset of @, satisfying the conditions of the separability
definition of # relative to B(0, ry). Then:

© (343) H(@®) =I0) for all 6e "M (#);

(344) TI'nM(#)={0ecI' | I(6) = B}.
If I in addition satisfies any of the following two equivalent conditions:
(345 I is upper semicontinuous on I'nM(#),

(346) d(grM)n(F M) x{B}) < gr(l) or, equivalently, if 0 -6 and
1(0,)— B with BEFnM(,;f), then 1(6) = B,

then # is S-consistent on I.
Proof. We have shown in the proof of Theorem 3.4 that under the hypo-
theses (3.39)«3.41) for every eI’ n M (2#) there exists a P-null set N,e % such

that
sup h,(w, &)= sup h,(w, &

&eb(8,r) &eb(0,r)n Dy
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for all we Q\N,, allre @, r < r,, and all n > 1, where D, is a given countable
subset of @, satisfying the conditions of the separability definition of # relative
to B(0, rp) and ro > 0 is a given number. Let 8eI' n M (3#) be a given point.
Since for given points £eb(f, ry) and 6;,€b(8, r))nD, with j> 1 we have

(0, O =T )~ (e, G)—I3))) " < (B, (O~ P, (&) +{T B -1 (D),

by (3.42) and Theorem 4.7 in [15] we may conclude that the family of reversed
submartingales

({(m©=1@)*, % In>1} | Eebo, o)
is totally bounded in P-mean relative to b(0, r;)nD,. Thus, by Theorem 3.1in

" [15], we have
sup  (h,(O—1()* >0 P-as. and in L (P)

Zeb(0,rg)nDg

as n—oo, for all re@,, r<r, Note that by (i) in (3.42) for given
reQ,, r<ry, we have ER¥(b(@,r)nDg<oo. Thus the family
{nx(b(0, r)nD o)> &, | n>n,} forms a reversed submartingale. Moreover, it is
clear that _
sup I(&)<lim sup A, (¢ P-as.
&eb(0,r)nDe n— o &eb(@,r)nDo

Hence by (3.38) we obtain
sup h,(w,8)—> sup I(§) asn—oo

&eb(6,r)nDg ) &eb(8,r)nDeg

for all we Q\N,, where N;e # is a P-null set. The remaining part of the proof is
the same as the last part of the proof of Theorem 34. =

The next theorem concerns the martingale case and is based upon Propo-
sition 4.9 in [15].

THEOREM 3.6. Let # = ({h,(w, 0), %, | n = 1} | 6 &,) be a given family
of reversed martingales, and let I be a subset of ©,. Suppose that H# is degene-
rated and that any of the following three conditions is satisfied:

(3.47) # is separable;

(3.48) 3 is separable relative to B(0, r,,) and €_, (R) for all 0T A\ M (#)
with some ry, > 0;

(3.49) ¥ is P-as.-lower semicontinuous.

Suppose that for all 0eI' "M () there exists ry > O such that the following
condition is satisfied:

(3.50) foralle> Othereexistn,> 1,11 = {4,, ..., 4, } e (b(6, r)nDy) and
Y. ..., Y€l (P) satisfying
@ |hy, (6)— h,ls(e")| W, for all 0, 0", and all j=1,...,m,
(i) max E(f) <

15j<mg
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where Dy is a countable subset of @, satisfying the conditions of the separability
definition of H# relative to B(0, ry). Then:

(3.51) sup |k, (O)—I(E) -0 P-as. and in I'(P), as n— oo, for all

Seb(B,re)n Do

el "M (#);
(3.52) H(®) =T(0) for all 0T "M ();
(3.53) I'nM(#)= {0l | I(0) = B}.
If I in addition satisfies any of the following two equivalent conditions:
(3:54) CIis upper semicontinuous on I \M (#),

(3.55)  cl{erM)n(T M (#)x {B}) < gr () or, equivalently, if 6,— 0 and
1(8,)— B with 0T "M (), then I1(0) = B,

then 3 is S-consistent on I.

Proof. We have shown in the Eroof of Theorem 3.4 that under the hypo-
theses (3.47)-(3.49) for every e I' n M () there exists a P-null set N;e % such
that

sup h,(w,&)= sup h (o)
£eb(B,r) Eeb(8.r) Do
for all we Q\N,, allr = @, r < r,and all n > 1, where D, is a given countable
subset of &, satisfying the conditions of the separability deﬁmtlor} of # relative
to B(0, r), and ry > 0 is a given number. Take a point 8 e I'n M (5); then by
(3.50) and Proposition 4.9 in [15] we may conclude that the family of reversed
submartingales

({Ir, (D) =1, Zu1n>1}, Eeb (O, ra))
is totally bounded in P-mean relative to b(0, re)mDo with r, > 0. Thus, by

~ Theorem 3.1 in [15], we have

sup |h,(§)—I(¢) =0 P-as. and in }(P) as n— o0
Eeb(0,r)nDp

for all reQ,, r <r, Hence we find

sup h,(@,¢)—> sup I(§) asn-o o
&eb(8,r)nDe Zeb(8,r)nDg
for all e 2\N, and all re @, r < rp, where Nye & is a P-null set. These facts
complete the proof of (3.51)3.53) and of the last statement of the theorem in
exactly the same way as in the last part of the proof of Theorem 3.4. =

7. We proceed by studying the conditions for consistency of not neces-
sarily separable families of reversed submartingales. First we consider the sub-
martingale case in Theorem 3.7. Then we present its martingale version in
Theorem 3.8. We find it convenient to recall some definitions from [15].
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Let @, be an analytic metric space, let (@, d) be a compact metric space
containing @,, and let f be a real-valued function defined on ®. Then we
define the lower, upper and absolute jump of f, respectively, at a given point
e ® as follows:

3*(9,f)=ri§f sup. [FO)-f(©], 070,f)=inf sup [f()—f(O)],

r>0 Zeb(6,r)

2(0,f) = max{0+(0 ),076,0); = inf sup If (O)~f ).

&eb(o,r)

In addition, we lntroduce the following notation:
a* (f)—sup{@*(ﬂ f)16eB}, A (f)y=sup{0~(0,f)| 06},
A(f) = sup {9(0, /) | 0 ©}.

THEOREM 3.7. Let o = ({h,(w, 0), &%, | n > 1} | O€ 6,) be a given family of
reversed submartingales, and let I be a subset of ©,. Suppose that ¥ is degene-
rated and for all 0 I "M () there exists ry > O such that the followzng con-
dition is satisfied:

(3.56)  for all ¢ >0 there exist II = {4,, ..., 4, }€I'(b(0, rg D) and there
exist 6,€4,, ..., 0, €Ay, such that for all N > 1 there exist n,= N
and ¥, ..., P e} (P) satisfying

() I@)—I()" <& for all tcA;and all j=1,...,m
(i) (P, (O)—h, O ) < for all (cA;and all j=1,...,m,,
(i) max E(¥)<e,

1<j<m,

where D is a countable subset of ©,. Then we have:

(3.57)  If (3.56) is satisfied for each countable subset D of ©, and A* (h,)— 0
P-a.s. as n— o0, then:

() H@®) =1I(6) for all 0T "M (),

(i) TnM (o#) = {0l | I(6) = B}.
If I in addition satisfies any of the following two equivalent condltzons
(i) I is upper semicontinuous on I "M (),

@iv) cl(gr ()N (T "M (o)) x {ﬁ}) < gr(I) or, equivalently, if 6,— 0
and 1(0,) > B with 6eI’' "M (), then 1(0) = B,

then S is S-consistent on I.
(3.58)  If (3.56) is satisfied for some countable dense subset D of ©,, I is upper

semicontinuous on | Jo.r 51,0 (0, 75), and 47 (h,) >0 P-as. asn— oo,
then:

i) H(6) = 1(6) for all el N M (H#),
@) I'nM#)={0el | 1(0) =B},
and H is S-consistent on I.
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Proof. By Theorem 4.7 in [15] we see that condition (3.56) is equivalent
to the fact that the family of reversed submartingales

({(rO—1©)*, &, I n= 1} | E€b(@, 1y)

is totally bounded in P-mean relative to b(0, r))nD, where r, > 0 is a given
number. Hence, by the first hypothesis in (3.57), or the first two hypotheses in
(3.58), and by Theorem 4.1 in [15], there exists a sequence of random variables
{V, | n > 1} satisfying V, -0 P-as. as n— oo such that

sup (hy(w, O—1(&)* < 4% (hy(@)+V, ()

&eb(0.re)
for all weQ and all n > 1. Thus the assumption 4* (h,) > 0 P-as. for n— ©
implies

sup (h,()—I()* -0 P-as. as n—
Eeb(o,r)

for all reQ,, r <r,. Since the following two inequalities are satisfied:
sup (h,(@, §)—1()* > sup h,(@, &)— sup I(¢),

Eeb(o,r) Eeb(a,r) Eeb(0,r)

lim sup sup k,(¢) = sup I() P-as.

n—aw Eeb(0,r) &eb(@,r)
whenever weQ, we may conclude that

sup h,(w, &) — sup I(() as n—o0
Eeb(o,r) &cb(8,r)

forall e @\N;and allre @, ,r < ry, where Njis a P-null set in &. The remaining
part of the proof is the same as the last part of the proof of Theorem 34. =
THEOREM 3.8. Let o = ({h,(w, 0), &, | n > 1} | 0€ 6,) be a given family of

reversed martingales, and let I be a subset of ©,. Suppose that # is degenerated
and that for all 0 M (#) there exists ry > 0 such. that the following con-
" dition is satisfied:
(3.59) foralle > Othereexistn, > 1,11 ={4,, ... A,,,s} el (b(8, r9)nD), and

v, ..., P, €} (P) satisfying

(@) |h,,: 0)—=h, (0 < ¥ for all 0, 0"€A; and all j=1,

(i) max E(¥)<e,

1<j<me

where D is a countable subset of ©,. Then we have:

(3.60) If (3.59) is satisfied for each countable subset D of ©, and A(h,)—0
P-as. as n— oo, then:

() H(B) =1(0) for all 0T "M (#),
(i) TnM(#)={0eI' | I(6) = B}.
If 1 in addition satisfies any of the following two equivalent conditions:
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(iii) I is upper semicontinuous on I’ NM (#),

@iv) cl(gr(D)n((" nM (#)) x{ﬁ}) < gr(l) or, equivalently, if 6,— 0
and 1(6,) — B with 0e ' "M (5£), then 1(0) = B,

then 3 is S-consistent on I

(3.61)  If (3.59) is satisfied for some countable dense subset D of 6,, I is con-
tinuous on errnmmb(g’ ro), and A(h,) -0 P-as. as n— oo, then:

() H©O) =1(0) for all 0T "M (¥),
(i) TnM(#)={0el | 1(6) =B},
and H is S-consistent on T.

Proof The proof can be carried out as the proof of Theorem 3.7 upon
using Proposition 4.9 in [15] instead of Theorem 4.7 in [15], and Theorem 4 3
in [15] instead of Theorem 4.1 in [15]. = ‘

4. EXAMPLES OF APPLICATION AND CONCLUDING REMARKS

There is a large number of statistical models that are covered by the
preceding results. We cannot review them all here, but will instead refer the
reader to [1]-[3], [51-[12], [16]-[18]. Of course, there are various examples
of statistical models which stay out of this scope, but they usually require
individual treatments. Our main aim, however, was to unify as many examples
as possible, under common and simple conditions.

1. To obtain a better feehng for apphcatlons in general, we find it convenient

to restate and clarify the result of Theorem 3.3 in a less formal setting. Let

=({h, (@, 0), &, |n>1}|0€6,) be a family of reversed submartingales

defined on the probability space (2, %, P) and indexed by the analytic metric

space 6, (with the Borel g-algebra £,). Let © be a compact metric space containing
©,, and set h,(w,0) = —oo for n> 1, weQ and 0 @\B,. Suppose that

@4.1) (w,0)—h,(o,0) is % xB,-measurable for all n>1,
42) % =().., %, is degenerated.

Let I' = @ be given. Then # is S-consistent on I' as soon as the followmg
conditions are fulfilled:

@4.3) [ sup. (@, OPdw) < o for all eI with some re > 0;

44) h,(w,-)is P-a.s. upper semicontinuous at 6 for all n > 1 and all 0T}

(4.5) oF is conditionally S-regular relative to
BO,rg)={b0,r)|reQ,,r<ryt for all feI' with some r, > 0.

In other words, whenever (4.3)(4.5) are satisfied, every accumulation point of
any sequence of approximating (asymptotic, empirical) maximums {0, | n > 1}
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associated with 5 which belongs to I' is a maximum point on &, of the
information function I associated with #.

2. We find it useful to explain condition (4.5) in more detail. For this, first
recall the definition (2.6). Note that if (4.1) and (4.3) above are fulfilled, then (i)
and (ii) from this definition are satisfied with B = b(8, r) whenever #eI" and
reQ.,, r <r, By the definition of a reversed submartingale and the mono-
tonicity a of conditional expectation, we can clearly select a P-null set Nye #
depending on the given e B such that

460  TE{RB)| i1} (@) > E{h(0) | £41} (@) 2 hyr1 (@, 6)

for all we Q2\N,. However, B might be uncountable, and therefore we cannot
generally pass to the supremum in (4.6) over all 0e B (see [13] for a coun-
terexample). This is a crucial fact to be understood about the property of the
conditional S-regularity of s# relative to {B}. Note that this property states
that such a passage to the supremum is possible.

Generally, the condition (4.5) is fulfilled in any of the following cases:

(47)  The process (h,(®, 0))ses, is separable for n > 1 (see Proposition 4.1 in
[13]).

(4.8) The trajectory h,(w, -) is lower semicontinuous (on the neighborhood
of I') for P-as. wef and n > 1 (see Proposition 4.3 in [13]).

(49) Any U-process:

h,(w, 6) = ;,l_r Y h(X,(@),0 @®=1 0eQ, 06,
* gePn
satisfies (4.5) whenever X =(X,, X,,...) is exchangeable and
Eh(X, ) < oo for all f€ 6, (see Example 4.4 in [13]). We recall that &,
denotes the set of all permutations of {1,2,...,n}, and that
= (Xos --» Xap» Xu+1, --.), Where X; takes values in any measurable
space. The map h(, ) is real valued for all d€@,.

We think that (4.9) is of theoretical and practical interest. In this way we
see that the preceding results cover a variety of important examples. Note also
that Theorems 3.4-3.8 offer a different type of conditions for S-consistency of
. These results are particularly useful when condition (4.4) fails, but the
information function I associated with 5# is still upper semicontinuous.

3. In the remainder we explain the role of the preceding results in the area
of stochastic processes. In this context the following problem appears worthy of
consideration.

Let = {(Z,(O)er | n > 1} be a sequence of stochastic processes defined
on the probability space (2, &, P) with the common time set T. Let {, (w) be
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a maximum point of Z, (»,') on T:
(4.10) Z, (0, (@) =supZ,(w,t) for weQ and n>1
teT
The problem is to describe the asymptotic behavior of i,(w) for n— 0.
Under the hypotheses in this paper we have
4.11) Z,(,t)—> L(t) P-as. asn— oo,

where L(t) is degenerated (a constant) for all te T. It indicates that maximums
t,(w) could approach the set M T of all maximum points of the limit Lon T.
Since it may happen that the supremum in (4.10) is not attainable, we weaken
this condition by requiring that

4.12) Z, (0, i,(®) = (sup Z, (o, t)—g (@) A
for weQ and n > 1 with ¢, (w) » 0 as n - o0. We assume that the time set T is
an analytic metric space, and for any compact metric space T which contains

Twe set Z,(w, ) = —o0 for n> 1, weR, and te T\T. We moreover suppose
that

4.13) (w,t)— Z,(w,t) is measurable

as a map from @ x T into R for all n > 1. Observe that, by passing to the limit
in (4.12), we get

4.14) 11m 1nf Z, (o, i,(w) > sup L(t) P-as.

In this way a sequence of approximating maximums {f, | n > 1} associated
with & is obtained. We may then ask when the consistency statement is sat-
isfied:

(4.15) - Every accumulation point of any sequence of approximating maximums
{t, | n > 1} associated with &, which belongs to the given set I < T, is
a maximum point on T of the limit process L of Z.

4. In this paper we find a solution of this problem under the additional
hypothesis:

4.16) {Z,t), % |n=1} is a reversed submartingale for all teT.

The following conditions (see Theorem 3.3) are then sufficient for (4.15):
@417 SUPprry Z1 (@, 5) P(dw) < oo for all teI” with some 7, > 0;
(4.18) Z,(, ) is P-as. upper semicontinuous at ¢ for all n > 1 and all teT’;

(4.19)  Z is conditionally S-regular relative to {b(t,r) | re Q,, r <r,} for all
teI’ with some r, > 0.

7 — PAMS 182
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It is moreover known (see [13]) that any of the following conditions is
sufficient for (4.19):

(420) The process (Z,(t))r is separable for n> 1.

(4.21)  The trajectory Z,(w, *) is lower semicontinuous (on the neighborhood
of I') for P-as. weQ and n > 1.

(422) Any U-process:

Z,(o,1) =$ Y z(X,(w),t) (=1, 0eR, teT)

* oeB,
satisfies (4.19) whenever X =(X,, X,,...) is exchangeable and
Ez(X,t)< oo for all teT. '

Finally, note that Theorems 3.4-3.8 offer a different type of conditions for
(4.15). These results are useful when condition (4.18) fails, but the limiting
process L is still upper semicontinuous.

5. We conclude the paper by giving two examples of application which
follow the same pattern and can easily be modified to treat new cases. We are
unaware of similar results.

Throughout {X;|j> 1} denotes an iid. sequence of random variables,
and the processes Z,(w, t) are of the form (4.22).

ExaMpPLE 4.1. Let X; ~ N (0, 1) be from the standard Gaussian distribu-
tion with density function

f(x) =exp(—x?/2)//2n  for xeR.

Let T be a compact set in R and let « = min(T) and B = max(T). If {,(w)

maximizes the process
n

m—10)Z,(0,0)= Y, (cos(tXi(w))—% _

i=1 J

over teT (in the sense of (4.12) or (4.14) above), then we have

1° (|lof > |Bl)=1{, > o P-as.,

2° (|| < |B)=£,— B P-as.,

3° (o= |B]) = £, - {a, B} P-as.
as n— . We clarify that #, » {«, f} P-a.s. means that every accumulation
point of {f,(w)|n> 1} is either o or B for P-as. weQ.

These facts readily follow from (4.17)-(4.19) by putting

z(x, t) = (cos (tx,) —cos (tx,))*/2
in (4.22) and using the identity

}J exp(—x?%/2) cos (tx)dx = \/2_nexp(—t2/2) for teR.

- o0

:21 cos(tX (m)))2
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It should be noted that L from (4.11) takes the form
L(t) = Var(cos(tX;)) = 3+ 3exp(—2t%)—exp(—t?) for teT

ExampLE 4.2. Let X, ~ U(0, 1) be from the uniform distribution on
[0, 1]. Let T = [—a, f] for « > 0 and B > =. If {,(w) maximizes the process

nn—1)Z,(@,0)= Y Y X()sin(X;(w))
Lj=1 i#j
over te T (in the sense of (4.12) or (4.14) above), then £, —{ P-as. as n— .
The given { is a unique number from J0, =[ that satisfies { sin({)+cos({) = 1.
This fact readily follows from (4.17)-(4.19) by putting z(x, t} = x, sin (tx,)
in (4.22). It should be noted that L from (4.11) takes the form

L(t) = E(X, sin(tX,)) = 1(1 cos(t)) for teT,

as well as that { is a unique maximum point of L on R.

6. The problem of asymptotic normality in these and similar examples
appears worthy of consideration.
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