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BY 

Abstract. In this paper, we prove, using Malliavin calculus, that 
under a global Hormander condition the law of a Riemannian mani- 
fold valued stochastic process, a solution of a stochastic differential 
equation with time dependent coefficients, admits a 5%'"-density with 
respect to the Riemannian volume element. This result is applied to 
a nonlinear filtering problem with time dependent coefficients on 
manifolds. 

1. Introdnctiom. The purpose of this paper is to investigate the regularity of 
the probability law of the image of a time dependent diffusion process on 
manifolds through a %'"-mapping. We suppose that the local coordinates of the 
diffusion coefficients are Holder continuous in the time variable and smooth in 
the space variable. We prove that under a global Hormander condition the 
solution of such an equation admits a %'"-density with respect to the Rieman- 
nian volume element. This is an improvement of the results of Tanigushi [17] 
in which the coefficients of the stochastic differential equation are not supposed 
to be time dependent. 

The results are used to prove that the filter associated with some nonlinear 
filtering problem with manifold-valued time dependent system and time depen- 
dent observation process admits a smooth density with respect to the Rieman- 
nian volume element. 

The development of the stochastic analysis in order to give a stochastic 
proof of Hormander's theorem has been initiated by Malliavin [I 11, then con- 
tinued and precised by Stroock [16], Bismut [2], Norris [13], Nualart [14] 
and Zakai [19]. Let us notice that Chaleyat-Maurel and Michel [3] have 
proved a similar result for continuous coefficients under a global Hormander 
condition, by means of partial differentia1 equations techniques. 

The application of the Malliavin calculus to stochastic differential equa- 
tions with time depending coeEcients has been used by Kusuoka and Stroock 
191 for an elliptic system with bounded coefficients, then Florchinger [6] 
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showed the existence of a smooth density for a diffusion with time depending 
coefficients under a local Hiirrnander condition. 

Nonlinear filtering problems where the observation process evolves on 
a Riemannian manifold have been studied by Duncan [4] and Pontier and 
Szpirglas 1151. On the other hand, Ng and Caines [12] gave a general for- 
mulation of the nonlinear filtering problem when the system process and the 
observation process are both with values on a Riemannian manifold. A Bayes 
formula for the conditional expectation of smooth functions of the system 
process is proved. Furthermore, they proved that the density of the filter, 
pr06cjed it exists, verifies a Zakai equation (cf. [18]). 

In [73, Florchinger has proved, by means of Malliavin calculus, that the 
filter associated with a nonlinear filtering problem on Riemannian manifolds 
admits a smooth density. 

This paper is divided in four sections organized as follows. In the first 
section we recall some results of the stochastic calculus of variations, that we 
will need later on. The aim of the second section is to prove that some time 
depending differential equations on manifolds admit a unique solution under 
our working hypotheses. In the third section we prove that under these con- 
ditions our manifold-valued stochastic diffusion process is infinitely differen- 
tiable and we compute its Malliavin derivative. Furthermore, we prove that 
under a global Hormander condition its law admits a smooth density with 
respect to the Riemannian volume element. In the fourth section, we apply the 
previous results to prove the existence of a %"-density of the filter of a non- 
linear filtering problem with time depending coefficients on Riemannian mani- 
folds. 

1. Some stochastic calculus of variatiws in Euclidean spaces. In this section 
we describe some results of MalIiavin calculus in R" that we will need in the 
sequel. We use the notation of Nudart's book on Malliavin calculus [14]. 
More bibliographical references on this subject may be found therein. 

Let (W, 9, P )  be a d-dimensional standard Wiener space, i.e. W is the 
Banach space %(LO, TI,  Rd) such that w (0) = 0 for any w in equipped with 
the norm JJwJJ = max,,,,,l lw (t)f, P is the standard Wiener measure, and 9 the 
completion of the Bore1 a-algebra on W with respect to the measure P. 

Let H be the subspace of W consisting of all functions h such that each 
component ha(t) of h (t) is absoluteIy continuous and admits a square integrable 
derivative k(t). H is then a Hilbert space with the inner product 

We will call a smooth functional on the Wiener space (W, P )  any random 
variable F: W+ R of the form 
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where f is a function in %?r (P P, R) (the space of all bounded %"-functions 
$ Rd + W with bounded derivatives of all orders) and t , ,  . . ., t ,  are in [0, n. 
We denote the space of all smooth functionals on the Wiener space by Y .  

The stochastic gradient of a smooth functional F on the Wiener space is 
the random function DF with values in the Hilbert space L2 ([0, 7'l; R") defined 
for any t in [0, and any j in { I ,  ..., d )  by 

" af (4, F) (w) = C 7 (w (t,), - -, w (t,)) l[o.w (t). 
k = l  ax 

Iterating foiinfia (1.3), we-define the stochastic gradient of order N of a smooth 
functional F as the random function DNf with values in the Hilbert space 
I?([O, TIN; Rd) expressed for all s,, ,. ., s, in [O, TI as 

We introduce the generalized Sobolev spaces of smooth functionals in the 
following manner. 

For any integer N 2 1 and any real number p > 1, denote by l l . l l N , p  the 
semi-norm on the space Y dehed by 

11.51 IIFIIP;.p = 11~11~+ 11 llDNF IlasII:, 

where llDNFlfHs is the Hilbert-Schmidt norm of D ~ F ,  i.e. 

Then for any integer N 2 1  and any real number p > 1, denote by D,,, the 
Banach space which is the completion of Y with respect to the norm tl - l lN ,p .  

From the definition of the stochastic derivative operator we deduce that 
D is a closed unbounded linear operator from Dl, ,  into I? (LO, x W; Rd). 

The space of smooth Wiener functionals in the sense of stochastic calculus 
of variations Dm is then defined by 

(1.7) om = n n D ~ , ~ .  
l < p  k d *  

Moreover, we have the chain rule: 

PROPOSITION 1.1. FOP any V1-funetion ip: Rm + R with bounded partial de- 
rivatives of all orders and all families of functionals F , ,  . . ., F, in Dl,,, it follows 
that cp(F,, . . ., F J E D ~ , ,  and 

2. Existence and uniqueness of the solation of r stochastic differential equa- 
tion on manifolds. Now, let us expand these tools to manifold-valued Wiener 
functionals. Let M and N be a-compact connected manifolds of class V", of 
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respective dimensions m and n, equipped with the Riemannian rnetrics g, and 
g,, respectively. Set 

(2.1) D,(M) = (G: W -t M; F ( G ) E D ,  for all F~%'g(11/1)},  

where V$(M) denotes the space of M-valued Vm-functions with compact: 
support. Then Dm (M) is the space of all M-valued infinitely differentiable 
functionals. 

Consider the time depending Vm-vector fields A,, .. ., A, on A4 and 
a %'":mapping fl from M into N such that the following two conditions hold: 

(~11)  M is equipped with an atlas ( ( U i ,  #,), ~ E I )  of relatively compact 
charts such that, for any i in I and any cl in (0, ..., d), if 

denotes the representation of the vector fields A, in the local coordinates 
(4i1, . .., &"), we can extend the functions d ( t ,  x) to functions on [O, T] x Rm 
such that for all a E (0, , , ., d}, the functions (t, x), as well as their derivatives 
in x are Holder-continuous in t uniformly in [0, x X for any compact 
subset S in R", that they are %"-bounded in x when t is a fixed element in 
[0, TI ,  and that all their derivatives in x are uniformly bounded. 

(C.2) I7 is a proper mapping, i.e., for each compact subset K of N, the 
inverse image fl-l(K) is a compact subset of M. 

We then have the following result: 

THEOREM 2.1. Stappose that condition (C.1) holds. Let x, be an Fo-measu- 
ruble random variable with values in M such that in every chart (U, 4) the 
moments of all orders of the Rm-valued random variable $(xo) are square inte- 
grable. l3en the stochastic dierential equation 

(2.2) xt = x0 + j A. (s, x$ ds + j A,(s, x,) o dwf, 
0 0 

where w, = (w:, ..., 4) denotes the standard Brownian motion on has a 
unique M-valued solution (X(t, x,, w ) ) ~ , ~ ~ , ~ ~ ~ ~  ,, where B(w) denotes the explo- 
sion time of the solution. 

Remarks. (i) From now on, in a chart (U, 4), we will identify X E  U with 
its local coordinates 4 (x) in 4 (U). 

(ii) To avoid explosion problems we could have worked on compact 
manifolds. To find sensitive assumptions to ensure the non-explosion of the 
solution on a-compact manifolds is rather delicate. For instance, even if M is 
a complete Riemannian manifold and if the generator A, + xf=, A: is the 
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Laplacian, we need conditions on the decrease at infinity of the curvature to 
avoid that it tends too quickly to minus infinity when the process tends to the 
one-point compactification of the manifold. One possibility would be to 
suppose that the image of the charts contains a ball of fixed radius and that 
there are uniform bounds on the derivatives of the coefficients of the vector 
fields in these local coordinates. This would give what Elworthy [ S )  called 
a unqorm cover. There is a discussion about that in an article of Li [lo]. 

Other possibilities can be found in the paper of Bakry [I]. 
Proof,- For ;each chart ( U ,  4) of the atlas satisfying condition (C.11, 

consider -the ,expression of the vector fields A, in the local coordinates 
w, -. - 9  dJml, 

Let us extend the functions a;(t, x )  to Wm-functions on Rn satisfying the hypo- 
theses of (C.1) and consider the stochastic differential equation 

We then know (cf. [8]) that it has a unique solution (X(t, x, w ) ) ~ ~ , ~  which 
does not explode. Let us fix x = ( x l ,  . . ., xm) in U and set 

v,(w) = inf{t; X(t, x, w)$ U). 

Define (X,(t, x, w)),[,*q by 

(2.5) X U ( t ,  X, W) = ~ ( t  A v~(w) ,  X, w). 

Like that we can construct a local solution Xu for each x in M and every 
neighbourhood U of x. 

Furthermore, if (U, 4) and (0, are two coordinate neighbourhoods 
with a non-empty intersection and if X E  ~n f i ,  then X, (t, x, w) = Xfi (t, x, w) 
for any t d v, (w) A vu (w). Indeed, if 

under the local coordinate (TI, . . . , $7 in 0, then we have 

and Xo is the solution of the equation 

(2.6) dx"f = db(e, 2Jdt + g ( t ,  Zt)odw;. 

On the other hand, Proposition 1.1 implies that if we express the process 
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X, through the local coordinates 6 in 6, i.e. if we write = $ ( ~ , ( t ,  x, w)), 
then 

-. a$ a$ a p  
dX: = - (xJ o = 7 (x,) a!, ( t  , xJ dt + 7 (x,) a! ( t ,  xi) o dw; a#k 84 a4 

Therefore 3, = $ ( ~ , ( t ,  x, w)) is a solution of equation (2.6) as well as 
2, = X,(t, x ,  w), and so, b y  the uniqueness of solutions of stochastic differen- 
tial equations in Euclidean spaces, we conclude that Xu ( t  , x, w) = X, (t , x, w) 
far dl t 4 v,(w)*vfi(w). 

w e  will now patch together the local solutions into a global solution. 
Consider for each w in W the totality of charts (U,, #,), .. ., (U,, 4,) 

such that x ,  (w) belongs to Ui for all i ,  i = 1 ,  . . ., l .  Then the process 
2 (t, x,, w) = XU, (t, xO, w) is well defined for t E [ O ,  v",, A TJ, where 
O,,(w) = infiGiGl (vUi (w)), and j~ ( 1 ,  . . . , I )  is such that i , , (w)  = vu, (w). 

Set v, (w) = q x , ( w ) ~  T and x, = 2, for t E [0, v l ] .  
Inductively, if v,(w) and x, = X ( t ,  x,, w )  for all t E [0, v,(w)] are defined, 

then on the set {w; v,(w) < T) , x, = xVm, and we define w, = 0,. W ,  where 
(O,W)(S) = W , + ~ - W ,  and v,,, = O,.(W~)A T. 

Then we set x, = 2 ( t  - v,, x,, w,) for t in [v,, v,+ J.  
So, we have constructed a global solution of equation (2.1). The unique- 

ness follows easily since condition (C.l) implies that the local solutions 
X ,  ( t ,  x, w) are unique for every x in M and every coordinate neighbourhood 
U of x. Ei 

From now on, we suppose that the image of the charts contains a ball of 
fixed radius and that there are uniform bounds on the derivatives of the coef- 
ficients of the vector fields in these local coordinates, so the process xi will be 
well defined on all [0, T I .  

Furthermore, the family of morphisms x H X ( t ,  x ,  w) is a flow of diffeo- 
morphisms of M into itself (cf. [8]) and we denote it by ( X ( t ,  w ) ) , ~ ~ , ~ .  Let us 
fix now the M-valued random variable x ,  and set 

(2.7) 
and 

(2.8) 

3. Stochastic calculus of variations on manifolds. Under the above hypo- 
theses y, is an infinitely dserentiable N-valued Wiener functional for all t in 
[0, n. Indeed, we have the following result: 

THEOREM 3.1. For each t in [0, TI ,  y, (w) is an element of D,(N).  More- 
ouer, for ~ n y  function f in %?; ( N )  and any h in H ,  the foIIowing equality holds for 
any t in [0, q: 

t 

(3.1) <D(f 0) ( w ) , h ) ~ = ( f l , ) , ~  [ @ ( s ) ( ( ~ ( t ,  w)oX(s,w)-l),A,}t,,,,,, fds. 
0 
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Proof. Consider Iff Q; (N). Then condition (C.2) implies that 
fo  ll EV," (Mj. So we can define, for each chart (Ui, $J from the atlas satis- 
fying condition (C.1), a function A in QF (F) by = f o n o  I$; l (since the 
charts are relatively compact). Consequently, f o ll = x o  d i  in the domain of 
the chart (Ui, #i). 

Let us suppose at first that for any t in the interval [v,, v.+ l] the process 
x, is in the domain of the chart (U,, #,), where the v j  are the stopping times 
introduced above. Then, for any t in [v,, v,+J, 

But, by Proposition 1.1 and equation V-10.3 from [8], 

where 

Hence 

a 
G.(t) = - Xbk(t1 x, w). 

dxJ 

where 2: denotes the representation in local coordinates of the vector field A, 
in the chart (U,, 4,). So, 

t 

<! (f Or)) (w), h)E = k(s) ((X (t? W) O X ( ~ ?  w)-')* A $ ~ , X ~ ( ~ )  f d~ 
0 

I 

= ( ~ * ) x , w  S ((X ( t ,  w) 0 X (s, w)-'), A,) ,,,,, f ds.  
0 

And since the interval [v,(w), v , + ~  (w)] forms a partition of [0, TI, the result 
follows for every t in [0, TI. 

Let us introduce now the Malliavin covariance matrix of the process y,. 
We define a %"-tensor field BO on LO, T] x M of type (2, 0) by 

Then the MalZiavin covariance matrix of y, is the .non-negative definite and 
symmetric bilinear form <{~y,, ~ y , ) )  (w) on Tj?,, defined for all u,, u, E T,:(,,,, N 
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and all t in [0, TI by 

(3.3) <{DY~, D Y ~ ) }  (w) (u, 3 ~ 2 )  

t 
= (fl,)x,~ {(X ( t ,  w) 0 X (s, w)-'), Bo) (u,, u,) ds. 

0 

Since Ty?,, N is equipped with the inner product assigned by the Riemannian 
metric g,, we can define the determinant det ( ( ( D ~ , ,  Dy,}}(w)) in the usual 
way. We put 

. . -. . 

(3.4) 'gt (w) = 
l/det (<@Y,, DY,}) (w)) if det ( ( { ~ y , ,  ~ y , } )  (w)) > 0, 

otherwise. 

Let us consider the following condition: 

(A) f C v , ) g ' ~  0 E(P) for all f ~ g , " ( N ) .  
p ~ [ l .  +m[ 

Under this assumption we can then prove the following two inte- 
gration-by-parts formulas as in [17]. 

PROPOSITION 3,2. For every differential operator 8 on N and every function 
# in V,"(M), there exist p > 1 ,  T E N  and a continuous linear mapping 
5 :  D,,,+C(P) such that, for any f in %$(M)  and G in D p,, ,  

PROPOSITION 3.3. For each G in D,, the function gG(x) = (&, G )  is W", 
and for any f in %," (M) 

where S, is the Dirac 6-finetion at x in M ,  and v is the Riemannian volume 
element on M. In particular, the function p deJined by p(x) = (&, 1 )  is the 
%"-density of the law of the stochastic process (VJtE[o,rl with respect to v. 

Hence, if condition (A) is satisfied, then the law of the process y, has 
a smooth density with respect to the Riemannian volume element. We will 
show that this holds under a global Hormander condition. 

With this aim, for any t in [0, and any x in My denote by & ,  the 
subspace of T ,M generated by the vector fields i = 1,  ..., d, and 
( [A, , ,  [ ..., [Ai,, Ajo ] . . . ] ] ) t , x ,  1 4 i, 4 d,O 6 ij $ d, j = 1, ..., q,  q ~ n " .  Con- 
sider the following assumption: 

for any t in [0, 17 and any x in M, where y = n ( x ) .  
Under this assumption the main result of this section holds. 
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THEOREM 3.4. Assume that Hormander's condition ( H )  holds. Then for aEE 
t in 10, TJ the probability law of the process y, (w) has a Wm-density with respect 
to the Riemannian volume element. 

Proof.  We have to prove that condition (A) holds for every t in 10, n. 
Condition (C.2) implies that f o ZI E V," (M) for any function ~ E V , "  (N). As 
f (yt) = Cfo 17) (xJ, it suflices to prove that, for all t in 10, TI, 

13-71 gt = n ..(PI. 
~ [ l , + m C  

Let .(V6, & be a relatively compact chart on N such that yo E V ,  and let 
(U,, 4) be a chart from the atlas satisfying condition (C.1) such that x , ~  U,. 
Then there exists a compact subset 0, of Uo such that ~ ( 0 ~ )  c and - 
$q=@Ol l ,  1 G q d n  in U,. 

Consider the representation of the vector fields A, through the local coor- 
dinates (qjl, . . . , 4"), 

Extend the functions ai(t, x) to Ww-functions on Rm that satisfy the hypotheses 
of condition (C.1) and consider the process Tt(w), a solution of the stochastic 
differential equation 

Let v be the stopping time defined by 

To prove (3.7), we construct a random process &(w) such that for any t in 
303 v l  
(9 
and 
(ii) 

Let Jt(w) be the solution of the stochastic differential equation 

where 6: denotes the Kronecker symbol. Then, for every 0 < s < t < v, we have 

& 2 ~ = $ ( t ) ( ~ ( ~ ~ ) - ~ ~ $ ( s , 3 2 , ) ,  i.e. D42f=Jtjj;1ai(~,2s). 

For each t E [O, and IE Rm, we can define the quadratic form a, (w) 
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I 
on Rm by 

I 

I This allows us to define for any t in [0, 7'l the random variable c, as follows: 

where t j  = (v,  0, ..., O)€Sm-", ~ E F - ' ,  and 
. . 

The proof of the theorem will then be complete if we show that for any t in 
10, v] the conditions (i) and (ii) hold. Actually, this impIies that (3.7) holds for 
every t in 10, v]. But since the function t H det({<Dy,, Dy,))) (w) is increasing 
in t, we have g*' < gv for any t in [ v ,  7'l; hence gt is in E(P)  for all p > 1 and 

I 

I t in [0, a. I 
I 

I LEMMA 3.5. E, satisfies (i) for any t in 10, v ] .  

Proof. We have for all 1 < q ,  r < n, t ~ l O ,  v], 
I 

Consequently, 
det (<(DY,, DY,))) (4 2 { inf a, (w) [rill". 

~ E S "  - 1 

Moreover, a,(w) is a non-negative definite quadratic form, so 0 for every 
t in 10, TI. 

LEMMA 3.6. 5, satisfies (ii) for any t in 10, TI. 

Proof. Consider the representation of the vector fields A, through local 
coordinates, introduced in (3.8), and denote by A,, ol = 0, . .., d, the vector 
fields on Rm given for each x in Rm and any t in [O, TI by 
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Denote by 9(Ao ,  . . ., A,,) (respectively, 2'(A",, . .., Ad)) the Lie algebra gene- 
rated by the vector fields &, ..., Jd (respectively, A,, ..., &) and by 
9 (A", , . . . , the ideal generated by the Lie algebra 9 (A", , . . ., Jd) in the Lie 
algebra Y (A",, ..., Jd). It follows from Hormander's condition (H) that 

On the other hand, we know from [I41 that the Malliavin covariance matrix 
M, associated with the stochastic process Zt is given by 

Hence, since E~ is a constant, to conclude it suffices to prove that (det MJ-I 
belongs to the space D(P) for every p in [I, + col: and every t in 10, v ] .  But 
assumption (C.l) and relation (3.15) imply that the hypotheses of Theorem 1.1.3 
from [6] are satisfied, and this theorem gives the result. ra 

A Application to a nonlinear fltering problem. In this section, we will use 
the results of the preceding section to prove that the filter associated with some 
nonlinear filtering problem on Riemannian manifolds has a Vm-density with 
respect to the Riemannian volume element. In fact, we will consider a generali- 
sation of a nonlinear ffltering model on Riemannian manifolds introduced by 
Ng and Caines in [12]. 

Let (a, P) be a complete probability space, and w and v two indepen- 
dent Wiener processes on this space of dimensions d and n, respectively. Let 
M be a o-compact, connected and orientated Riemannian manifold of dimen- 
sion na, equipped with the Riemannian metric g,. Denote by GI (M) the bundIe 
of linear frames over M, and by p ,  the projection of Gl(W onto M. Let 
(x i ,  e;), i, j = 1 ,  . . ., my be local coordinates around the element ( x ,  e) of G1 (M), 
and (rfl) the Christoffel symbols of the Riemannian connection on M, com- 
patible with the metric g,. 

Consider some time depending %*-vector fields Aj, j = 1, . . ., d ,  on GI (M) 
whose representation through local coordinates is given by 

Furthermore, let A, be a time depending Vm-vector field on M which is 
expressed in local coordinates as 

a 
A, (t, x) = ab (t, x) -. ax1 

Denote its horizontal lift with respect to the connection (rfl) by A",.~hen 3, is 
expressed in local coordinates as 



Now, introduce the system process ( x , ) , , ~ ~ , ~  as the M-valued stochastic 
process defined for any t in [O, TI by 

(4.4) ~ t = ~ M ( ~ t ) r  . 
where r, = (x,, eJ is the solution of the stochastic differential equation 

with- r ,  = .(x,, e , )~Gl  (M). In local coordinates, (4.5) can be expressed - as 

dxj = a: ( t ,  x,) dt + a:@, x,, e,) o dwf, 
E =  1 ,  ..., rn. 

dck, = - T i R  (x,) 4 o dxy, 

Let us notice that, unlike in Ng-Caines' model, the process r, may leave 
the space 0 (M), even if its starting point r, is inside this space. Theorem 2.1 
insures however that the process is well defined on [0, 71 if the vector fields Aj  
satisfy condition (C.1) of the second section. 

To construct the observation process y, we follow the model given in [7]. 
Let N be a a-compact, connected Riemannian manifold of dimension n, equip- 
ped with the associated Riemannian metric g,. Denote by O ( N )  the bundle of 
orthonormal frames on N and by p,  the projection of O(N) onto N. Let 
( y i ,  fi), j = 1, . . .1 n, be the representation through local coordinates around 
the element ( y ,  f )  in O(W, and {ya) be the Christoffel symbols of the Rieman- 
nian connection on N compatible with respect to the metric g,. Denote by 
{HI, . . ., H,} the family of canonical horizontal vector fields on O(N) with 
respect to the Riemannian connection {ya). Note that around (y,f)  in 0 (N) ,  

Hj = 1, . . ., n) is expressed as 

Introduce a time depending %'"-vector field h(t, x,, y) on N written in local 
coordinates as 

Let 6 be its horizontal lift with respect to the connection ( y a ) .  Then is 
expressed in local coordinates as 

We then define for any t in [0, TI the observation process (J,),,~,,~ by 
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where s, = Cyt,n is the solution of the stochastic differential equation 
t t 

with so = (yo ,  fo) in 0 (N). In local coordinates, (4.11) can be expressed as 

Let us notice that since (yfi) is compatible with respect to the metric g,, s, is 
necessarily a prockss evolving in O (N) (cf, [S]). Moreover, since p, is a proper 
mapping, we 'have 

which implies that it is equivalent to observe the stochastic process ( x ~ ) ~ ~ , ~  
through a(q; 0 < z < t) or a(y t ;  0 d t < t ) .  

We then define the filter as usual by 

DEFINITION 4.1. For any t in [O,  and any function $ in V," (Ad), denote 
by x, 5l' the filter associated with the system-process observation pair (x,, y,), 
given by (4.4) and (4.101, defined by 

where 9Yt = o h ;  0 < z < t). 
By means of a change of probability measure, we are now able to define an 

unnormalized filter linked with the filter .n, by an abstract Bayes formda. 
Let (a, $ p) be an independent copy of the probability space (By P). 

Consider on the probability space (0, $ f i  the M-valued stochastic process 
(2i),e,,q which has the same probability law as the stochastic process (xJ,,~,,~. 
This means that on the probability space (0, $ p) the equality 

holds, where r; is the solution of the stochastic differential equation 

with Fo = r , .  This allows us to introduce the Girsanov exponential, associated 
with the stochastic processes (2th,10,q and (JJ ,) , ,~~,~,  as usual in nonlinear 
filtering problems by 

8 - PAMS 182 



where H = (hi, . . ., h w n d  {., a), denotes the inner product in T, N induced by 
the Riemannian metric g,. Then the unnormalized filter associated with the 
system-process observation pair can be defined by 

DEFINITION 4.2. For any t in [0, and any function $ in %; ( M )  denote 
by p, ($) the unnormalizedfilfer associated with the system-process observation 
pair (x,, yr), given by (4.4) and (4.10), defined by 

(4.18) et ($1 = J% [$ (fJ A (gt, utll, 
where E; ..stands -for the expectation with respect to P". 

We then have the abstract Bayes formula: 

THEOREM 4.3 (Ng and Caines [12]). For all t in [O, TI and any function 
9 in %'; (M), we have 

This allows us to prove, by means of Malliavin calculus on manifolds, that 
the filter x, has a %"-density with respect to the Riemannian volume element. 
With that aim, for any t in LO, T ]  and any r in GI (M), denote by i?,,, the ideal 
generated at the point (t, r) by the vector fields A,, . . ., Ad in the Lie algebra 
generated by the vector fields 4, A,, . .., A,. Consider the assumption: 

for any r in Gl(M), any t in [0, TI, where x = p,(r). Then we have the 
following result: 

THEOREM 4.4. Assume that condition (H') holds and that the vector fields 
&, A,,  . . ., A, satisfy condition (C.1) from Section 2. Then, for any t in 10, TI, 
the probability law of the filter .n, has a %"-density with respect to the Rieman- 
nian volume element on M.  

Proof. Since the filter 7c, is linked with the unnormalized filter Q, by the 
Bayes formula (4.15), it is equivalent to show the existence of a %"-density for 
the filter n, or the unnormalized filter q,. 

Since the vector fields A", , A,, . . ., A, satisfy condition (C.l) and the map- 
ping p, satisfies condition (C.2), we have Z,ED,. Furthermore, since h is 
a bounded %'"-function and p, is a proper mapping, y, E Dm. Consequently, the 
results on Malliavin calculus from the preceding section and the usual ar- 
guments of Malliavin calculus on Euclidean spaces imply 

PRo~os~no~  4.5. For any t in [O, n, d(Zt, y,) is an element of the 
space Dm. 

Moreover, for any t in [0, TI it follows from (4.15) that X, = p,(i,), where 
the stochastic process (ft)tEIO,Tl is a solution of a stochastic differential equation 
whose coeficients satisfy conditions (C.l), (C.2) as well as Hormander's condi- 
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tion (El'). Hence Proposition 4.5 applied to (4.18), together with Proposition 3.3 
and Theorem 3.4, implies that for every t in 10, TI there exists an M-valued 
%"-function p, such that 

{4.20) et9 = 1 $ [ ~ ) ~ ~ b ) v ( d x ) .  
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So p, (x)  is the %"-density of the unnormalized filter g, with respect to the 
Riemannian volume element on M. 

Acknowledgment. The author thanks Professor M. Emery and K. D. Elwor- 
thy for their helpful comments on the theory of stochastic dzerential equations 
on manifolds. a 

[I] D. Bakry, Un critkre de mn-explosion pour certaines difisions sur une varidtk riemannienne 
complkte, C. R. Acad. Sci. Sir. I, 303 (1986), pp. 2326. 

[2] J. M. Bismu t, Mmtingales, the Malliavin calculus and hypoellipticity under general conditions, 
2. Wahrsch. Verw. Gebiete 56 (1981), pp. 469-505. 

[3] M. Chale  y a t -Maure l  and D. Michel, Hypoellipticity theorems and conditional laws, ibi- 
dem 65 (1984), pp. 573-597. 

[4] T. E. Duncan,  Some filtering results in Riemannian manifolds, Inform. and Control 35 (1977), 
pp. 182-195. 

[5] K. D. El  w o r  t h  y, Stochastic Differential Eqmtions on Mangolds, London Math. Soc. Lecture 
Note Ser. 70, Cambridge University Press, 1984. 

[6] P. F lo r c  h i  n ge I, Malliavin calculus with time depending coeficients and application to non- 
linear filtering, Probab. Theory Related Fields 86 (1990), pp. 203-233. 

[7] - Existence of a smooth density for the filter in nonlinear filtering on manifolds, in: Partial 
Diffwential Equations and n e i r  Applications, B. Rozovskii and R. Sowers (eds.), Lecture 
Notes in Control and Inform. Sci. 176, Springer, 1992. 

[8] N. Ikeda  and S. Watanabe,  Stochastic Diffkrential Equations and Drffusion Processes, 2nd 
edition, North-Holland-Kadansha, 1989. 

[9] S. K u s u o k a and D. W. St  ro  o c k, Applications of the MaZliavin Calculus. Part I :  Taniguchi 
Symp. (Katata-Kyoto 1982), K. It8 (ed.), North-Holland, Amsterdam-Oxford-New York 
1984, pp. 277-306. Part 11: J. Fac. Sci. Univ. Tokyo Sect. IA 32 (1985), pp. 1-76. 

[lo] X. M. Li, Properties at infinity of d i f i ion  semigroups and stochastic flows via weak uni$orm 
covers, J. Potential Analysis 3 (1994), pp. 339-357. 

[1 l] P. M a1 li av i n, Stochastic calculus of variations and hypoelliptic operators, in: Proceedings of 
the International Conference of Stochastic Diferential Equations 1976, 'Kyoto, Kinoku- 
niya-Wiley, TokyeNew York 1978, pp. 195-263. 

[12] S. K. Ng and P. E. Caines, Nonlinear $filtering in Riemannian manifolds, IMA J. Control. 
Inform. 2 (1985), pp. 25-36. 

[13] J. Norris ,  Simpl$ed Malliauin calculus, in: Shinaire de Probabilitks X X ,  J. &ma and 
M. Yor (Eds.), Lecture Notes in Math. 1204, Springer, Berlin-Heidelberg-New York 1986, 
pp. 101-130. 

El41 D. Nualar t ,  The Malliavin Calculus and Related Topics. Probabilities and Their Applications, 
Springer, New York-Berlin-Heidelberg 1995: 

[15] M. Pon  t ie r  and J. Spzirglas, Filtering with observation on a Riemannian symmetric space, 
SIAM J.  Control Optim. 26 (3) (1988), pp. 609-4127. 



334 . J. Schiltz 

[I67 D. Stroock, Some appIications of stochastic calculus to partial dryerential equations, in: Ecole 
d%tk de Probubilitb de Saint Flour, P. L. Hennequin (Ed.), Lecture Notes in Math. 976, 
Springer, Berlin-HeidelbereNew York 1983, pp. 267-382. 

[17] S. Taniguahi, Malliavin's stochastic culcuius of uariations for mm$old-valued Wienerfunc- 
tionals and its applicarions, Z .  Wahrsch. Verw. Gebiete 65 (19833, pp. 269-290. 

[lg] M. Zakai, On the optimal jltering of digusion processes, ibidem 11 (19691, pp. 23C-243. 
1191 - The Maliiavin calculus, Acta Appl. Math. 3-2 (1985), pp. 175-207. 

U.RA. C.N.R.S. No 399, apartment  de Mathhatiqua 
Universitk de Met& BP 80794 
F-57012 Metz Cedex, France 
schiltz@poncelet.univ-rnetz.fr 

Received on 4.1 1.1997 


