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TIME DEPENDENT MALLIAVIN CALCULUS ON MANIFOLDS
AND APPLICATION TO NONLINEAR FILTERING
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JANG SCHILTZ (ME1z)

Abstract. In this paper, we prove, using Malliavin calculus, that
under a global Hormander condition the law of a Riemannian mani-
fold valued stochastic process, a solution of a stochastic differential
equation with time dependent coefficients, admits a ¥*-density with
respect to the Riemannian volume element. This result is applied to
a nonlinear filtering problem with time dependent coefficients on
manifolds.

1. Introduction. The purpose of this paper is to investigate the regularity of
the probability law of the image of a time dependent diffusion process on
manifolds through a #*-mapping. We suppose that the local coordinates of the
diffusion coefficients are Hdlder continuous in the time variable and smooth in
the space variable. We prove that under a global Hérmander condition the
solution of such an equation admits a € *-density with respect to the Rieman-
nian volume element. This is an improvement of the results of Tanigushi [17]
in which the coefficients of the stochastic differential equation are not supposed
to be.time dependent. '

The results are used to prove that the filter associated with some nonlinear
filtering problem with manifold-valued time dependent system and time depen-
dent observation process admits a smooth density with respect to the Rieman-
nian volume element.

The development of the stochastic analysis in order to give a stochastic
proof of Hérmander’s theorem has been initiated by Malliavin [11], then con-
tinued and precised by Stroock [16], Bismut [2], Norris [13], Nualart [14]
and Zakai [19]. Let us notice that Chaleyat-Maurel and Michel [3] have
proved a similar result for continuous coefficients under a global Hérmander
condition, by means of partial differential equations techniques.

The application of the Malliavin calculus to stochastic differential equa-
tions with time depending coefficients has been used by Kusuoka and Stroock
[9] for an elliptic system with bounded coefficients, then Florchinger [6]
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showed the existence of a smooth density for a diffusion with time depending
coefficients under a local Hormander condition.

Nonlinear filtering problems where the observation process evolves on
a Riemannian manifold have been studied by Duncan [4] and Pontier and
Szpirglas [15]. On the other hand, Ng and Caines [12] gave a general for-
mulation of the nonlinear filtering problem when the system process and the
observation process are both with values on a Riemannian manifold. A Bayes

formula for the conditional expectation of smooth functions of the system

process is proved, Furthermore, they proved that the density of the filter,
provided it exists, verifies a Zakai equation (cf. [18]).

In [7], Florchinger has proved, by means of Malliavin calculus, that the
filter associated with a nonlinear filtering problem on Riemannian manifolds
admits a smooth density.

This paper is divided in four sections organized as follows. In the first
section we recall some results of the stochastic calculus of variations, that we
will need later on. The aim of the second section is to prove that some time
depending differential equations on manifolds admit a unique solution under
our working hypotheses. In the third section we prove that under these con-
ditions our manifold-valued stochastic diffusion process is infinitely differen-
tiable and we compute its Malliavin derivative. Furthermore, we prove that
under a global Hérmander condition its law admits a smooth density with
respect to the Riemannian volume element. In the fourth section, we apply the
previous results to prove the existence of a ¥*-density of the filter of a non-
linear filtering problem with time depending coefficients on Riemannian mani-
folds.

1. Some stochastic calculus of variations in Euclidean spaces. In this section
we describe some results of Malliavin calculus in R" that we will need in the
sequel. We use the notation of Nualart’s book on Malliavin calculus [14].
More bibliographical references on this subject may be found therein.

Let (W, &, P) be a d-dimensional standard Wiener space, i.e. W is the
Banach space € ([0, T], R? such that w(0) = O for any w in W, equipped with
the norm ||w|| = max,go, ;)W (t)l, P is the standard Wiener measure, and % the
completion of the Borel o-algebra on W with respect to the measure P.

Let H be the subspace of W consisting of all functions 4 such that each
component h*(t) of () is absolutely continuous and admits a square integrable
derivative A%(f). H is then a Hilbert space with the inner product

d

(1.1 Chygda=Y [h@®)g*®)dt, h,geH.

a=1 0

We will call a smboth functional on the Wiener space (W, &, P) any random
variable F: W— R of the form

(1.2) Fw) =f(w(ty), ..., w(t,)»
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where f is a function in €2 (R?*?, R) (the space of all bounded ¥>-functions
f: R**? - R with bounded derivatives of all orders) and t, ..., t,arein [0, T].
We denote the space of all smooth functionals on the Wiener space by %.

The stochastic gradient of a smooth functional F on the Wiener space is
the random function DF with values in the Hilbert space IZ ([0, T]; R defined
for any t in [0, T] and any j in {1,...,d} by

LAG)
A3 OuPM = 3 ST (W), ) e
k=1

Iterating formula -(1;3), we define the stochastic gradient of order N ofa sinooth
functional F as the random function DVf with values in the Hilbert space
([0, T1V; R expressed for all sy, ..., sy in [0, T] as

(1.4) DY F=D,..D,F.

We introduce the generalized Sobolev spaces of smooth functionals in the
following manner.

For any integer N > 1 and any real number p > 1, denote by ||*||y,, the
semi-norm on the space & defined by

(1.5) IFI., = IFIE+]|IDYF ns||5,
where |[D¥Fligs is the Hilbert-Schmidt norm of D¥F, ie.

d

(16) "DNF”%IS = . Z .‘. (Dgl,ﬁ) ..... UN.SN)F')Z dsl"' dSN‘

Then for any integer N > 1 and any real number p > 1, denote by Dy , the
Banach space which is the completion of &% with respect to the norm ||-||y,,-
From the definition of the stochastic derivative operator we deduce that
D is a closed unbounded linear operator from D, , into I? ([0, T]x W; R9).
The space of smooth Wiener functionals in the sense of stochastic calculus
of variations D, is then defined by

1.7 D,=(\ (\ D,

1<p keN*
Moreover, we have the chain rule:
ProPoOSITION 1.1. For any €'-function ¢: R™ — R with bounded partial de-

rivatives of all orders and all families of functionals F, ..., F,, in D, ,, it follows
that ¢ (F,, ..., F,)eD,,, and

m g
(1.8) Do(Fy,...Fy=Y a—)‘i’i(Fl, ... F.)DF,.
i=1

2. Existence and uniqueness of the solution of a stochastic differential equa-
tion on manifolds. Now, let us expand these tools to manifold-valued Wiener
functionals. Let M and N be o-compact connected manifolds of class €®, of
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respective dimensions m and n, equipped with the Riemannian metrics g,, and
 gy» respectively. Set

2.1 D,M)={G: W —M; F(GeD, for all Fe%¥y (M)},

where 4§ (M) denotes the space of M-valued ¢*-functions with compact
support. Then D_ (M) is the space of all M-valued infinitely differentiable
functionals.

Consider the time depending %¥~-vector fields A,,..., 4, on M and
a €*-mapping II from M into N such that the following two conditions hold:

(C.1) M is equipped with an atlas {(U;, ¢,), ieI} of relatively compact
charts such that, for any i in I and any « in {0, ...,d}, if

0

=gl 2
A, (¢, x) = ai(t, x) 30l
denotes the representation of the vector fields 4, in the local coordinates
(@i, ..., ™), we can extend the functions o/ (¢, x) to functions on [0, T] x R™
such that for all x€ {0, ..., d}, the functions o} (z, x), as well as their derivatives
in x are Holder-continuous in ¢ uniformly in [0, T] x A for any compact
subset o in R™, that they are ¥*-bounded in x when ¢ is a fixed element in
[0, T], and that all their derivatives in x are uniformly bounded.

(C.2) IT is a proper mapping, i.e., for each compact subset K of N, the
inverse image IT~!(K) is a compact subset of M.

We then have the following result:

THEOREM 2.1. Suppose that condition (C.1) holds. Let x, be an F,-measu-
rable random variable with values in M such that in every chart (U, ¢) the
moments of all orders of the R™-valued random variable ¢(x,) are square inte-
_ grable. Then the stochastic differential equation

t t
22) X =Xo+ | Ao(s, x)ds+ | A, (s, x)odws,
0 0

where w, = (w}, ..., w¥) denotes the standard Brownian motion on W, has a
unique M-valued solution (X (t, Xo, W))ero,0m) » T1» Where 0(w) denotes the explo-
sion time of the solution.

Remarks. (i) From now on, in a chart (U, ¢), we will identify xe U with
its local coordinates ¢ (x) in ¢ (U).

(ii) To avoid explosion problems we could have worked on compact
manifolds. To find sensitive assumptions to ensure the non-explosion of the
solution on g-compact manifolds is rather delicate. For instance, even if M is
a complete Riemannian manifold and if the generator A,+3 Y., A2 is the
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Laplacian, we need conditions on the decrease at infinity of the curvature to
avoid that it tends too quickly to minus infinity when the process tends to the
one-point compactification of the manifold. One possibility would be to
suppose that the image of the charts contains a ball of fixed radius and that
there are uniform bounds on the derivatives of the coefficients of the vector
fields in these local coordinates. This would give what Elworthy [5] called
a uniform cover. There is a discussion about that in an article of Li [10].

Other possibilities can be found in the paper of Bakry [1].

Proof. For .cach chart (U, ¢) of the atlas satisfying condition (C.1),
consider "the .expression of the vector fields A, in the local coordinates

@' &7,
23) A,(t, %) = k(1 %)

[+ 4

0
W’ o= 0, veny d.
Let us extend the functions ¢ (¢, x) to ¥°-functions on R" satisfying the hypo-
theses of (C.1) and consider the stochastic differential equation
2.4) dx} = o} (t, x,)dt + 6% (t, x,) 0 dw?,
xh = xle R™,

We then know (cf. [8]) that it has a unique solution (X (£, x, W)),fo,r7 Which
does not explode. Let us fix x = (x!,...,x™) in U and set

vy(w) = inf {t; X (¢, x, w)¢ U}.
Define (X (t, X, W)keto,ry by
2.5) Xy(t, x, w) =X (tAvy (W), x, w).
Like that we can construct a local solution X y for each x in M and every
neighbourhood U of x. .
Furthermore, if (U, ¢) and (U, @) are two coordinate neighbourhoods

with a non-empty intersection and if xe UnU, then X, (t, x, w) = X7 (¢, X, W)
for any t < vy(W)Avp(w). Indeed, if

. 0
Aa(t’ x) = 5;(1:, J’E) 575_, :
under the local coordinate (@*, ..., ™) in U, then we have
oF
Q"

Gi(t, x) = o (t, x)

and Xy is the solution of the equation
(2.6) dx%i = 64 (t, ®)dt+6L(t, X)odwi.

On the other hand, Proposition 1.1 implies that if we express the process
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X, through the local coordinates ¢ in U, i.e. if we write X = ¢ (Xy(t, x, w),

then
_ 0§ ¢’ ¢!
¢k ¢k (xz) 0'0 (t xt) dt + ¢k (xt) Og (t xt) o dwt

= @b(t, X,)dt+6.(t, X)odw?.

Therefore X, =¢ (Xy(t, x, w)) is a solution of equation (2.6) as well as
X%, = Xg(t, x, w), and so, by the uniqueness of solutions of stochastic differen-
tial equations in Euclidean spaces, we conclude that X, (¢, x, w) = Xz (t, x, w)
for all ¢ < vy(w) Avg(w).

We will now patch together the local solutions into a global solution.

Consider for each w in W the totality of charts (U, ¢,), ..., (U, ¢)
such that x,(w) belongs to U; for all i, i=1,...,1. Then the process
X(t, X9, W) = Xy, (t, xo, w) is well defined for te[0, V,,AT], where
Vo W) = inf; <;<; {vy, (W)}, and je{l, ..., I} is such that ¥, (w) = vy,(W).

Set vi(w) =79, WAT and x, = %, for te[0, v,].

Inductively, if v,(w) and x, = X (¢, x,, w) for all te[0, v,(w)] are defined,
then on the set {w;v,(w)< T}, x,=x,,, and we define w, =0, w, where
(0, w)(s) = Wers—w, and vpiq =V, (W)AT.

Then we set x, = X (t—v,, x,, w,) for ¢t in [v,, V44,1

So, we have constructed a global solution of equation (2.1). The unique-
ness follows easily since condition (C.1) implies that the local solutions
Xy(t, x, w) are unique for every x in M and every coordinate neighbourhood
Uof x. m

From now on, we suppose that the image of the charts contains a ball of
fixed radius and that there are uniform bounds on the derivatives of the coef-
ficients of the vector fields in these local coordinates, so the process x, will be
well defined on all [0, T].

‘ Furthermore, the family of morphisms x> X (¢, x, w) is a flow of diffeo-
morphisms of M into itself (cf. [8]) and we denote it by (X (¢, W))ejo, 7 Let us
fix now the M-valued random variable x, and set

dXi = —— (x)odxk =

27 x, (W) =X (t, x4, W)
and
(2-8)' Ve (W) = H(xt (W))

3. Stochastic calculus of variations on manifolds. Under the above hypo-
theses y, is an infinitely differentiable N-valued Wiener functional for all ¢ in
[0, T]. Indeed, we have the following result:

THEOREM 3.1. For each t in [0, T], y,(w) is an element of D_(N). More-
over, for any function f in €3 (N) and any h in H, the following equality holds for
any t in [0, T]:

(3.1) <D(f ) W), hD g = (T )i g B ) {(X ¢ w)o X (s, W)™ !)y Au}t,ziom fds-
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Proof. Consider fe%$(N). Then condition (C.2) implies that
foIlle¥§ (M). So we can define, for each chart (U;, ¢,) from the atlas satis-
fying condition (C.1), a function f; in ¥¢ (R™) by f;= foIlo¢; ! (since the
charts are relatively compact). Consequently, f o IT = f;0 ¢, in the domain of
the chart (U,, ¢).

Let us suppose at first that for any ¢ in the interval [v,, v,+1] the process
x, is in the domain of the chart (U,, ¢,), where the v; are the stopping times
introduced above. Then, for any ¢ in [v,, v,+1],

DO, kyw = (D0 ¢) (<)), hyu
- (D(ﬁ X (t—Va> Xp» W) W), By
= f 1 (s) D(f;c(X(t"V", Xn> W,))* (W) () ds.
0

But, by Proposition 1.1 and equation V-10.3 from [8],

DR 5 w00 = £ § 2%

j10

3 (R v, %, ) (2,27 ds,

where s
Zm_l,(t) = a_xj %k (t, X, W)

Hence

PO, >z = | B (5) {(Xon € W0 Xo (5, W) Ay, TS

where 4% denotes the representation in local coordinates of the vector field A4,
in the chart (U,, ¢;). So,

(D(f )W), hDg = g () {(X (£, W)o X (s, W) ™), At £ dS

= ()0 ] (X, WO X 6 7Y, Anim S ds.

And since the interval [v,(w), v,+; ()] forms a partition of [0, T7], the result
follows for every ¢t in [0, T]. &

Let us introduce now the Malliavin covariance matrix of the process y,.

We define a #™-tensor field B® on [0, T]x M of type (2, 0) by
d

(3.2) ng (uy, uy) = Z uy ((Au)t,x) u, ((Au)t,x):

a=1
te[0,.-T], xeM, u,, u,eTFM.

Then the Malliavin covariance matrix of y, is the non-negative definite and
symmetric bilinear form {{D Ve Dy,>» (w) on T, defined for all u,, u, e T¥,, N
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and all ¢t in [0, T] by
(33) <<Dyts Dyt>>(w) (ul’ uz)

= [ (I )som {(X (¢, wo X (s, W)™ 1), B°} (uy, u,)ds.

Since T;*,, N is equipped with the inner product assigned by the Riemannian
metric gy, we can define the determinant det({(Dy,, Dy,>) (w)) in the usual
way. We put

34 gw= ,
otherwise.

{1}det («Dy, Dyyy () if det ((Dy, Dy ) >0,
0

Let us consider the following condition:

(A) fg'e (| P for all fe€s(N).

pell, +o[
Under this assumption we can then prove the following two inte-
gration-by-parts formulas as in [17].

PRrOPOSITION 3.2. For every differential operator 0 on N and every function
¢ in €3 (M), there exist p>1, reN and a continuous linear mapping
¢: Dy, — L' (P) such that, for any f in €% (M) and G in b,,,

(3.5) E(2f ) ¢ 0) G) = E(f() €(G)).

PROPOSITION 3.3. For each G in D, the function gg(x) = {85, G is €,
and for any f in €3 (M)

(3.6) E(fp)G) = I\j; S (X) g6 (x)v(dx),

. where 8, is the Dirac d-function at x in M, and v is the Riemannian volume
element on M. In particular, the function p defined by p(x) = {5, 1) is the
€ *-density of the law of the stochastic process (¥)wjo,r; With respect to v.

Hence, if condition (A) is satisfied, then the law of the process y, has
a smooth density with respect to the Riemannian volume element. We will
show that this holds under a global Hérmander condition.

With this aim, for any ¢ in [0, T] and any x in M, denote by £,, the
subspace of T,M generated by the vector fields (4,),, i=1,...,d, and
([4is [ - [y A1 1 ])ees 1 Sip < d,0<i;< d,j=1, ..., g, g€ N*. Con-
sider the following assumption:

(H) (H*)x BI,x = T;, N

for any ¢ in [0, T] and any x in M, where y = II(x).
Under this assumption the main result of this section holds.
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THEOREM 3.4. Assume that Hérmander's condition (H) holds. Then for all
t in ]J0, T] the probability law of the process y,(w) has a € -density with respect
to the Riemannian volume element.

Proof. We have to prove that condition (A) holds for every ¢ in 70, T].
Condition (C.2) implies that foIl e4g (M) for any function fe¥§ (N). As
f) = (foll)(x,), it suffices to prove that, for all ¢ in ]0, T],

3.7 gd= () IE@).
pe[l, + o[

Let (V5, ¢) be a relatively compact chart on N such that Vo€V, and let
(Uy, ¢) be a chart from the atlas satisfying condition (C.1) such that x,e U,.
Then there exists a compact subset U, of U, such that IT(U,)) < ¥, and

=¢ilIl, 1<g<nin U0

Consider the representation of the vector fields 4, through the local coor-
dinates (¢, ..., ¢™),

(3.8) A (t, X) = oi(t, X) ¢l, a=0,...d.

Extend the functions ¢ (¢, x) to ¥°-functions on R™ that satisfy the hypotheses
of condition (C.1) and consider the process X, (w), a solution of the stochastic
differential equation

39 . ciii = a.';) (t, X)dt+oi(t, X)odws,
X = @' (x,)eR™,

Let v be the stopping time defined by

(3.10 v(w) = inf {t; X (¢, x,, w)¢ Up}.

To prove (3.7), we construct a random process &,(w) such that for any ¢ in

10, v]

(i) 0 < ¢, < det (KDy,, Dy,>)) ps
and o
(i) &te ) (D).

: ps[l,+ o[

Let §,(w) be the solution of the stochastic differential equation
t t

(B.11)  Ji(e) = 05+ [ B, 0k(s, ) F(s)oadwi+ [ 8, 0h(s, X) T (s)ds,
0 o

where 5} denotes the Kronecker symbol. Then, for every 0 < s < t < v, we have
Dixi =7 (F)) 1 ok(s, %), ie. Di%, =7, 9 0,05, ).

For each te[0,T] and {eR™ we can define the quadratic form a,(w)
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on R™ by
d v
(G.12)  aW[{] =7, 21 g L (7 a,(s, X)) (st ou (s, £ LD ds Tt

This allows us to define for any ¢ in [0, T} the random variable £, as follows:

(3.13) L) =éo{ inf a,(w)[A]}"

where 7= (3,0, ...,0eS" " nes" !, and

' : o 0

&o = inf <det (gx)nx 367 oF ; xeUyp.

The proof of the theorem will then be complete if we show that for any ¢ in
]0, v] the conditions (i) and (ii) hold. Actually, this implies that (3.7) holds for
every t in ]0, v]. But since the function ¢ det({{Dy,, Dy,>))(w) is increasing
in t, we have g* < g* for any ¢ in [v, T]; hence ¢’ is in I (P) for all p > 1 and
tin [0,T]. =

LemMma 3.5. &, satisfies (i) for any t in 0, v].

P_roof. We have for all 1 €4qg,r<n, te]0, v],

Dy, Dyy) (w)(@d*, d)
= g {[X (ta W)OX(S, W)_IJ* Bo}t,x,(w) (d¢q’ dd’r) dS

= Bl o (dd?0X (t, wo X (s, w) 1, d¢ o X (t, w)o X (s, w)™ )

t

d
=X { FOF6) " oals, %) F OF6) " 0lls, X)ds

. .
§ It o, (s, %), (551 0, (s, ) ds 7.
0

Consequently,
det (KDy,, Dyy))(w) > { inf a,(w) [0}
Moreover, a,(w) is a non-negative definite quadratic form, so &, > 0 for every
tin 10, T]. =
LeMMA 3.6. ¢, satisfies (ii) for any t in ]0, T].

Proof. Consider the representation of the vector fields 4, through local
coordinates, introduced in (3.8), and denote by /L, «=0,...,d, the vector
fields on R™ given for each x in R™ and any t in [0, T] by

(3.14) A,(t, x) = 6L (¢, x) % |
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Denote by Z(4,, ..., 4, (respectlvely, Z(4,,..., A)) the Lie algebra gene-
rated by the vector fields A, ..., A, (respectlvely, ZI, ..., A) and by
F(4,, ..., A) the ideal generated by the Lie algebra #(4,, ..., A;) in the Lie
algebra _(f(zo, ...» Ay). Tt follows from Hormander’s condition (H) that

(3.15) FA,, ..., A)0, x,) = R™.

On the other hand, we know from [14] that the Malliavin covariance matrix
M, associated with the stochastic process X, is given by
t d

(B16) - M;=3[9" Y 0, X)ayls, £y () ds 5.

B 0 a=1
Hence, since g, is a constant, to conclude it suffices to prove that (det M,) ™1
belongs to the space IF (P) for every p in [1, + co[ and every ¢ in ]0, v]. But
assumption (C.1) and relation (3.15) imply that the hypotheses of Theorem 1.1.3
from [6] are satisfied, and this theorem gives the result. m

4. Application to a nonlinear filtering problem. In this section, we will use
the results of the preceding section to prove that the filter associated with some
nonlinear filtering problem on Riemannian manifolds has a ¥®-density with
respect to the Riemannian volume element. In fact, we will consider a generali-
sation of a nonlinear filtering model on Riemannian manifolds 1ntroduced by
Ng and Caines in [12].

Let (2, #, P) be a complete probability space, and w and v two indepen-
dent Wiener processes on this space of dimensions d and n, respectively. Let
M be a o-compact, connected and orientated Riemannian manifold of dimen-
sion m, equipped with the Riemannian metric g,,. Denote by Gl (M) the bundle
of linear frames over M, and by p,, the projection of Gl(M) onto M. Let
(x', €),1,j =1, ..., m, be local coordinates around the element (x, ¢) of Gl (M),
and {I'f;} the Christoffel symbols of the Riemannian connection on M, com-
patible with the metric g,,.

Consider some time depending #-vector fields 4;,j = 1, ..., d, on GI(M)
whose representation through local coordinates is given by

, d 0
@.1) A,(t, x, e) = aj(t, x, e)( - Ff,ei,gg).

Furthermore, let 4, be a time depending €*-vector field on M which is
expressed in local coordinates as

. 0
42) Ao (¢, x) = ap (t, x) pp

Denote its horizontal lift with respect to the connection {I'}} by 4,.Then 4, is
expressed in local coordinates as

0 0
4.3 Ay(t, x, €) = ah(t, x)( - F?lei’a_e;’>'
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Now, introduce the system process (X,)efo,r7 as the M-valued stochastic
process defined for any ¢ in [0, T] by

(44) X¢ = Dm (rt)9 .
where r, = (x,, e, is the solution of the stochastic differential equation

t t
(4.5) r,=ro+ [ Ao(s, r)ds+ [ A,(s, r)odws
[1] (4]

with_r, = (x,, e,)eGl1(M). In local coordinates, (4.5) can be expressed -as

{dx:; = d\ (t, x)dt+d.(t, x,, e) o dw,

P i U4
eolzt - _rmk (xt) € O dx;n,

(4.6) i=1,...,m.

Let us notice that, unlike in Ng—Caines’ model, the process r, may leave
the space O (M), even fif its starting point r, is inside this space. Theorem 2.1
insures however that the process is well defined on [0, T7] if the vector fields A4;
satisfy condition (C.1) of the second section.

To construct the observation process y, we follow the model given in [7].
Let N be a o-compact, connected Riemannian manifold of dimension n, equip-
ped with the associated Riemannian metric gy. Denote by O (N) the bundle of
orthonormal frames on N and by py the projection of O(N) onto N. Let
0 f),j=1,...,n, be the representation through local coordinates around
the element (y, f) in O(N), and {y%} be the Christoffel symbols of the Rieman-
nian connection on N compatible with respect to the metric gy. Denote by
{H,, ..., H,} the family of canonical horizontal vector fields on O(N) with
respect to the Riemannian connection {y§}. Note that around (y, f} in O(N),
H, j=1,...n is expressed as

/o 2
@.7) - H,=f (a—yi—ﬂ: 1 7,;)-

Introduce a time depending €®-vector field h(t, x,, y) on N written in local
coordinates as

. 0
(48) h(ts X¢» y) = hl(t:v Xt J’) 6_y‘

Let # be its horizontal lift with respect to the connection {y%}. Then 4 is
expressed in local coordinates as

' 0 d
(4.9) ﬁ(t7 X, ¥)=h <5};_y?l fPl bf—;)

We then define for any t in [0, T] the observation process (¥)eo,r1 bY
(4.10) Ve = pu (s,
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where s, = (y,, f;) is the solution of the stochastic differential equation

t t .
(4.11) S, = So+ j hGs, x,, s)ds+ j H,(s)odw]
with sy = (¥4, fp) in O (N). In local coordlnates (4.11) can be expressed as

L= Rhi(t, x,, y)dt+H\(t, y,, dvi,
(4.12) _ (ix‘ ¥) it v, )0 dui i=1,...,m.
, dfer = — Ve (V) el 0 Ay,

Let us notice that since {y%} is compatible with respect to the metric gy, s, is
necessarily a procés's evolving in O (N) (cf. [8]). Moreover, since py is a proper
mapping, we have
4.13) o(s,; 0 <t)=o0(,; 0<t<H),
which implies that it is equlvalent to observe the stochastic process (x,)c0,1]
through o(s;; 0<t<t) or o(y,; 0<T <)

We then define the filter as usual by

DEerFINITION 4.1, For any t in [0, T] and any function ¢ in 3 (M), denote
by =,y the filter associated with the system-process observation pair (x,, y,),
given by (4.4) and (4.10), defined by

(4.14) Y = E[Y(x)/¥.1,
where #,=0(y,; 0<1<19). .

By means of a change of probability measure, we are now able to define an
unnormalized filter linked with the filter =, by an abstract Bayes formula.

Let (9, &, P) be an mdependent copy of the probability space (2, Z, P)
Consider on the probability space (2, &, P) the M-valued stochastic process
(X:ero, r; Which has the same probability law as the stochastic process (x,);jo,11-
This means that on the probability space (¢, &, P) the equality

(4.15) X =pu()
holds, where 7, is the solution of the stochastic differential equation

t t
(4.16) Fo=Fo+ [ Ay(r, F)di+ [ A,(t, F)odw?
0 0

with 7, = r,. This allows us to introduce the Girsanov exponential, associated
with the stochastic processes (X)ir0,7; and (¥,)co,73» a8 usual in nonlinear
filtering problems by

. t . 1 t n ) . .
(417) At(xt’ yt) = €Xp (_{ <h (S’ Xg» ys)» dys>ys_§ j‘ z 'yﬁj(ys)hj(s’ Xss ys) ds
0 jk=1

( s, X, ys)> ds

1 t

Pl

1 t

Ej' <h(s, %, ys) h(s, X, ys)>ysds) P®P ps.,
0

8 — PAMS 182
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where H = (h', ..., k") and (-, -}, denotes the inner product in T, N induced by
the Riemannian metric gy. Then the unnormalized filter associated with the
system-process observation pair can be defined by

DerFmiaTION 4.2. For any ¢t in [0, T] and any function ¥ in 4§ (M) denote
by o, () the unnormalized filter associated with the system-process observation
pair (x,, y,), given by (4.4) and (4.10), defined by

(4.18) (2} (d’) =E; ['l’ ('ft)A('ft’ yt)l
where Ej -stands for the expectation with respect to P.
" We then have the abstract Bayes formula:

THEOREM 4.3 (Ng and Caines [12]). For all t in [0, T] and any function
Y in €3 (M), we have

&V
1 .

This allows us to prove, by means of Malliavin calculus on manifolds, that
the filter 7, has a ¥*-density with respect to the Riemannian volume element.
With that aim, for any ¢ in [0, T] and any r in Gl (M), denote by £, , the ideal
generated at the point (¢, r) by the vector fields 4,, ..., 4; in the Lie algebra
generated by the vector fields 4y, 4,, ..., 4,. Consider the assumption:

(H) Oaee) 8er = T.M

for any r in GI(M), any t in [0, T], where x = p,,(r). Then we have the
following result:

THEOREM 4.4. Assume that condition (H') holds and that the vector fields
Ay, Ay, ..., A, satisfy condition (C.1) from Section 2. Then, for any t in ]0, T1,
the probabzlzty law of the filter ©, has a €*-density with respect to the Rieman-
nian volume element on M.

Proof. Since the filter =, is linked with the unnormalized filter g, by the
Bayes formula (4.15), it is equivalent to show the existence of a ¥*-density for
the filter @, or the unnormalized filter g,.

Since the vector fields 4,, 4,, ..., 4, satisfy condition (C.1) and the map-
ping p,, satisfies condition (C.2), we have X,eD_. Furthermore, since h is
a bounded ¢*-function and py, is a proper mapping, y,€ D . Consequently, the
results on Malliavin calculus from the preceding section and the usual ar-
guments of Malliavin calculus on Euclidean spaces imply

(4.19) 7, =

ProPOSITION 4.5. For any t in [0, T], A(X,, y,) is an element of the
space D, .

Moreover, for any ¢ in [0, T7] it follows from (4.15) that X, = p,, (7), where
the stochastic process (F).o,r7 1 2 solution of a stochastic differential equation
whose coefficients satisfy conditions (C.1), (C.2) as well as Hérmander’s condi-
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tion (H'). Hence Proposition 4.5 applied to (4.18), together with Proposition 3.3
and Theorem 3.4, implies that for every ¢ in ]0, T7 there exists an M-valued
#*-function p, such that

(4.20) &Y = Afl ¥ () p, (x)v(dx).

So p,(x) is the ¥ -density of the unnormalized filter g, with respect to the
Riemannian volume element on M. =
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