PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 18, Fasc. 2 (1998), pp. 351-357

SOME REMARKS ON J,-REGULARITY AND JO-SINGULARITY
a OF g¢-VARIATE STATIONARY PROCESSES '

BY

LUTZ KLOTZ (Lerrzic) AND FRANZ SCHMIDT (DRESDEN)

Abstract. We give a new proof of Makagon’s and Weron’s crite-
rion for J,-regularity (see [4], Theorem 5.3), and discuss some
conditions of Jy-singularity of g-variate stationary processes.

1. The present short paper is devoted to the study of J,-regularity and
Jo-singularity of a g-variate stationary process on a discrete Abelian group G,
where the family J, consists of the complements of singletons of G. (For
detailed definitions of the notions concerning g-variate stationary processes we
refer to [3] or [4].) We give a certain description of the space which bears the
J,-singular part of the process and use it to derive a criterion of J,-regularity
proved by Makagon and Weron ([4], Theorem 5.3). We treat in this paper only
finite-dimensional stationary processes. For results concerning infinite-
-dimensional stationary sequences the reader may consult [2]. Applying
a method due to Matveev [5] we obtain some conditions necessary or sufficient
for J,-singularity.

2. Let N, Z and C be the set of positive integers, the Abelian group of
integers, and the field of complex numbers, respectively. For g eN, denote by C?
the g-dimensional Hilbert space of complex column vectors of length g, and by
M, the linear space of all (g x g)-matrices with complex entries. The inner
product in C? is denoted by (u, v), u, ve C% The elements of M, will often be
interpreted as linear operators on C% For a subspace K of C? denote by K* its
orthogonal complement, and by Py the orthoprojector onto K. For A€ M,, the
symbols Ker(A), R (A), det(A4), A*, and A* stand for the kernel, the range, the
determinant, the adjoint, and the Moore—Penrose inverse of A, respectively.

Let G be any discrete Abelian group, I' its dual, and ¢ the Haar measure
on I'. Throughout the paper, relations between (Borel) measurable functions on
I’ are to be understood as relations which hold s-almost everywhere (abbrevi-
ated to o-a.e.). In all integrals the domain of integration will be I'. The value of
yeI' at geG will be denoted by (g, ).
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Let X := (X,),.c be a g-variate stationary process over G, F its spectral
measure, and I?(F) its spectral space. For geG, set

%:= \/{(h» >: heG, h #g},

where the symbol \/ denotes the closed matrix linear hull in I? (F). The process
X is called Jy-regular if #, ﬂ W, = {0} and J-singular if %, = I?(F).

Let dF = Wdo +dF, be the Lebesgue decomposition of F,and X = Y+2Z
the corresponding decomposition of X. Then the process X is J,-regular if and
only if Y is Jy-regular and Z = 0. It is J-singular if and only if Y is J,-sin-
gular: This shows that if we want to study J,-regularity or J 0-s1ngu1ar1ty, we
can confine ourselves to the case where the spectral measure is absolutely
continuous (with respect to ¢). We will do so and assume throughout the paper
that the process X has a spectral measure of the form dF = Wdo. Then the
function W will be called a spectral density matrix and the spectral domain will
be denoted by I? (W). The space I?(W) is the Hilbert space of (equivalence
classes of) measurable M-valued functions @ such that the integral {@W &* do
exists.

It is not hard to see that the map

U: & 0W, ocl>(W),

is an isometric isomorphism from I? (W) onto IZ(W¥).
For geG, let ¥, be the (matrix) orthogonal complement of ¥, in I*(W).
The following lemma is the basis of our investigations.

LeMMA 1 (cf. [3], Theorem 3.4 and Lemma 3.7). For geG, the set UY,
consists of all M gvalued functions {g, ) A such that

(i) AeM, and Ker(4) 2 Ker (W) o-ae.;

@) <g, ')AeLz(W#)-

3. Now we examine conditions (i) and (ii) of the preceding lemma separate-
_ ly. We start with condition (ii).

Let € be the set of all constant M -valued functions belonging to I? (W#).
Of course, we can and will identify € with a subset of M,.

LemMMmA 2. If Ae¥, BeM,, and Ker(B) = Ker(A), then Be¥.

Proof. If Ker (B) = Ker(A), then BA* A = B, and the lemma fo]lows from
the fact that I2(W?) is a left M, -module.

LeMMA 3 (cf. [3], Lemma 4.3). If Ae M, then A€ % if and only if P4+ 6.

Proof. Since Ker(4) = Ker(Pg4+), Lemma 3 is an immediate conse-
quence of Lemma 2.

LEMMA 4. Let neN and A;e¥, j=1,...,n If
BeM, and Ker(B)= () Ker(4),
=1
then Be%.
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Proof. Since A;€%, from Lemma 3 we obtain Pg,y€®%,j=1,....n
Hence A:=3_, Pruy belongs to €. Let ueKer(4). Then

n—1
(Y Pruzyt, u) = —(Preaty U, 4),
j=1
which yields
n—1
uec Ker (PR(A:)) and ueKer ( PR(A;))-
=1

o J
Repeating the argument, -we eventually obtain ueKer(Pgey) = Ker(4),
j=1,...,n Since the inclusion ﬂ:= , Ker(4)) = Ker(4) is obvious, we get
Ker(4) = () Ker(4)).
=1

J
But A belongs to ¥. Thus an application of Lemma 2 completes the proof.
Let ofy:={AeM,: Ae¥ and A*c¥%}.
LEMMA 5. Let AcM,. Then Ac¥ if and only if Prve ;.
Proof. Use Lemma 3 and the fact that Pr,+ €% if and only if P44 € .9/,.
LEMMA 6. The set o, is a von Neumann algebra.

Proof. Clearly, &/, isa *-algébra. It remains to show that .« is closed.
Let {4,},.y S o/, be a sequence converging to Ae M, (with respect to the
topology of M,). Since C has finite dimension, there exists an no€ N such that

(.11} o
() Ker(4,) = () Ker(4,).
. n=1 n=1
Since Ker(4) 2 ﬂ:;l Ker(4,), Lemma 4 yields Ae%. In an analogous way
one obtains A*e¥.

LeMMA 7. There exists a subspace H, of C? such that a (q % q)-matrix
A belongs to € if and only if Ker(A4) 2 H;.

Proof. According to Proposition 5.1.8 in [1] the von Neumann algebra
&/, contains a maximal orthoprojector, i.e. an orthoprojector P; such that
R(P,)2 R(A) for all Aes/y. Let H, := Ker(P,). Then H, = Ker(4*), and
hence H; < Ker(4) for all Aes/,, and Lemma 5 yields H, = Ker(4) for all
A€%. On the other hand, since P, €%, Lemma 2 implies that Ae¥% for all
AeM, such that Ker(4) =2 H,.

The next lemma sheds some light on condition (i) of Lemma 1.
LeMMA 8. There exists a subspace H, of C? with the following properties:
(1) Ker(W)c H, c-ae.

(2) If for any subspace K of C? the relation Ker(W) < K o¢-a.e. holds, then
H,c K. '
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Proof. Set o, := {AeM,: APrw) = ProvyA = A c-ae.}. Clearly, &, is
a von Neumann algebra, and an orthoprojector Q € M, belongs to </, if and
only if Ker(Q) = Ker (W) g-a.e. Using these facts it is not hard to see that if
P, denotes the maximal orthoprojector of .o7,, the space H, := Ker(P,) has
properties (1) and (2). '

Now it is easy to obtain a certain description of the set U7,

LEMMA 9. There exists a subspace H of C? such that
U¥;=1{<g, > A: AeM,, Ker(d)2 H}, g€G.

Proof. Combining the results of Lemmas 1, 7 and 8, we see that the space
H:= H,+H, has the desired property.

In the rest of the paper, we will denote by H;, H, and H the subspaces of
Lemmas 7, 8 and 9, respectively.

ProposITION 10. A function decI? (W) belongs to W, if and only if
R(PR(W) Qp*) < H o-ae.

Proof. A function @eI? (W) belongs to #7,, if and only if it is (matrix)
orthogonal to ¥} or, equivalently, if and only if U® is (matrix) orthogonal to
U7, for all geG. Hence, by Lemma 9, @ belongs to #, if and only if

[<g, > AW* (p) W(y) D* () o (dy) = [ {9, 7> AP gy P* (y) o (dy) =

forallgeG and all Ae M, such that Ker (4) 2 H. This in turn is equivalent to
the fact that APgy) ®* = 0 o-a.e. for all 4 M, such that Ker(4) 2 H, and the
result of the proposition follows.

4. Although we do not have an effective recipe for determining the space
H, the result of the preceding proposition enables us to give a new proof of
Theorem 5.3 in [4].

Lemma 11. If _[ W#*do exists and for some subspace K of C%, R(W)=K
g-a.e., then X is Jy-regular.

Proof If [ W*do exists, then H; = {0}, and if R(W) = K, then H, = K*.
Thus H = K*. If @ belongs to #/,, then R(Pgw,P*) < H, by Proposition 10.
On. the Other hand, R (PR(W) Q*) c R(PR(W)) = HJ-. It fOl]OWS that PR(W) Q* = 0.
This implies @ = 0 in I? (W).

LeEMMA 12. If the process X is Jo-regular, then | W* do exists and R (W)
= H* ¢-ae.

Proof. The function ¢ := Py belongs to #, (cf. Lemma 8 and Proposi-
tion 10). Since, by assumption, ¥, = {0}, we get j' PyWPygdo=0 or
Py W'? =0 g-ae., and hence R(W) < H*. But since R(W) =2 H; = H*, we
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obtain R(W) = H*. Finally, we have Pg. W* Py, = W* and from Lemma 7
the existence of (Pg.W* Py.do follows.

Combining Lemmas 11 and 12, we obtain Theorem 5.3 and, as an im-
mediate consequence of Theorem 5.3, Theorem 5.2 in [4].

5. Since the process X is J,-singular if and only if it is not minimal (cf. [3],
Definition 4.1, for the definition of minimality) and since Theorem 4.6 in [3}
contains several conditions equivalent to the minimality of X, it is trivial to
formulate criteria for J,-singularity. For example, from Theorem 4.6 (c) in [3]
it follows that X is Jo-singular if and only if for all orthoprojectors P € M, such
that Ker (P) = Ker (W) o-ae. the integral [ PW#* Pdo is equal to zero or does
not exist. It is not hard to see that the following proposition contains an
equivalent statement.

PROPOSITION 13. A process X is Jo-singular if and only if for all ue Hz,
u #0, the integral [(W* u, u)do does not exist.

Unfortunately, it seems to be rather difficult to use the preceding criterion
in practice. Thus it makes sense to search for necessary or sufficient conditions
of J,-singularity, which are easier to handle. We obtain some results in this
direction if we apply Matveev’s method [5] to our situation. To formulate
them let us introduce some notation.

If W=:(wy),-, is the spectral density matrix of X, we set

Woi= Wiljpzr» n=1,...,9, Wo=0.
Moreover, we use the convention 0~ ! = co.

ProrosiTION 14. If X is Jgy-singular, then

qu -1

(3) _‘. |:qu—(wa Ve Wq'q_l) W{l#il [ J:l de = oo.
Wa-1,q

If
le -1

(4) j |:Wjj'—(Wj1 Ve wj.j—l) Wrﬁl i| do = 00,
Wi-1.j

i=2,...,q and [wij'de = oo, then X is Jy-singular.

Proof. Use the formula for the spectral measure of the orthogonal projec-
tion of a stationary process onto a stationary cross-correlated process (cf.
Theorem 1.8 in [6]), and the arguments in the proofs of Theorems 1 and 2
in [5]. We omit the details.

COROLLARY. Assume that det(W) >0 g-a.e. If X is Jy-singular, then
jdet¥h-)
det (%))

do = o0
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1
/ det (W;- 1)

I getom) det(w) 0%
j=2,...,4, and [wi{ do = oo, then X is Jo-singular.

Proof. The results are immediate consequences of Proposition 14 and the
well-known relation

le |
det(W) det(W, 1) |:W” (wjl coe Wy j— 1)W [ }:l .

Wj-1,

With the aid of Proposition 13 it is easy to construct an example that shows
that (3) is not sufficient for Jy-singularity. On the other hand, since
{wiido = oo implies that the first component (or, by the change of indices, at
least one component) of the process X is J,-singular, it follows that condition
(4) is not necessary for Jy-singularity. In fact, the 2-variate process

X\ . |
Xn= x@ J° Xs,)2= s Xfl);= en+1s neZ,
n

where (e,),cz is an orthonormal system, is Jg-singular, but both its components
are Jo-regular.

6. We conclude our paper with the remark on processes of rank 1.
A g-variate stationary process is called a process of rank 1 if its spectral measure
is absolutely continuous and its spectral density matrix has rank 1 c-a.e.

ProrosrTion 15 (cf. [2], Corollary 2.5.5). A process of rank 1 is either
Jo-regular or Jy-singular.

Proof. Let the spectral density matrix W of the process X have rank 1. If

. the range of W is not constant, then H, = C? and, by Proposition 13, X is

Jo-singular. If the range of W is constant, then H, is a (g— 1)-dimensional
subspace of C% Let Q be the orthoprojector onto Hj. If { QW* Qdo does not
exist, then again Proposition 13 yields the J,-singularity of X. Otherwise, X is
Jo-regular according to QW* Q = W* and Lemma 11.
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