
PROBABUJTY 
AND 

MATHEMATICAL STATETICS 

SOME REMARKS ON J,-REGhJkAmY AND Jo-SINGULARITY 
OF q-VARI[ATE STATIONARY PROCESSES 

. . 

BY 

L W Z  KLOTZ &EIPZIG) AND FRANZ SCHMIDT (DRESDEN) 

Abstract. We give a new proof of Makagon's and Weron's crite- 
rion for Jo-regularity (see [4], Theorem 5.3), and discuss some 
conditions of Jo-singularity of q-variate stationary processes. 

1. The present short paper is devoted to the study of J,-regularity and 
J,-singularity of a q-variate stationary process on a discrete Abelian group G, 
where the family J ,  consists of the complements of singletons of G. (For 
detailed definitions of the notions concerning q-variate stationary processes we 
refer to [3] or [4].) We give a certain description of the space which bears the 
J,-singular part of the process and use it to derive a criterion of Jo-regularity 
proved by Makagon and Weron ([43, Theorem 5.3). We treat in this paper only 
finite-dimensional stationary processes. For results concerning infinite- 
-dimensional stationary sequences the reader may consult [2]. Applying 
a method due to Matveev [5]  we obtain some conditions necessary or sufFicient 
for Jo-singulari t y. 

2. Let N, Z and C be the set of positive integers, the Abelian group of 
integers, and the field of complex numbers, respectively. For q EN, denote by Cq 
the q-dimensional Hilbert space of complex column vectors of length q, and by 
Mq the linear space of all (q x q)-matrices with complex entries. The inner 
product in Cq is denoted by (u, v), u ,  V E  Cq. The elements of Mq will often be 
interpreted as linear operators on CS For a subspace K of Cq, denote by K' its 
orthogonal complement, and by P, the orthoprojector onto K. For A EM,, the 
symbols Ker (A), R (A), det (A), A*, and A# stand for the kernel, the range, the 
determinant, the adjoint, and the MoorePenrose inverse of A, respectively. 

Let G be any discrete Abelian group, r its dual, and a the Haar measure 
on r. Throughout the paper, relations between (Borel) measurable functions on 
r are to be understood as relations which hold G-almost everywhere (abbrevi- 
ated to a-a.e.). In all integrals the domain of integration will be r. The value of 
y E r at g E G will be denoted by <g, y). 
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Let X := (XgjE, be a q-variate stationary process over G, F its spectral 
measure, and L2(E;3 its spectral space. For ~ E G ,  set 

where the symbol V denotes the closed matrix linear hull in L2 (F).  The process 
X is called 3,-regular if Wm := no., W, = (0) and J,-singular if W, = L'(F).  

Let dF = Wda+dF, be the Lebesgue decomposition of F, and X = Y + Z  
the corresponding decomposition of X. Then the process X is J,-regular if and 
only if Y is J,-regular and Z = 0. It is 3,-singular if and only if Y is 3,-sin- 
gular; This' shows that if we want to study J,-regularity or 3,-singularity, we 
can c o h e  ourselves to the case where the spectral measure is absolutely 
continuous (with respect to n). We will do so and assume throughout the paper 
that the process X has a spectral measure of the form dF = Wda. Then the 
function W will be called a spectral density matrix and the spectral domain will 
be denoted by L2(W). The space E(W) is the Hilbert space of (equivalence 
classes 00 measurable M,-valued functions @ such that the integral I@ WQI* do 
exists. 

It is not hard to see that the map 

is an isometric isomorphism from E(W) onto I? (W'). 
For g~ G, let Vg be the (matrix) orthogonal complement of W, in I? (W). 

The following lemma is the basis of our investigations. 

LEMMA 1 (cf. 131, Theorem 3.4 and Lemma 3.7). For g~ G, the set U-y^, 
consists of all M,-valued functions {g, .)A such that 

(i) A E M, and Ker (A) 2 Ker ( W) u-a.e. ; 
(ii) {g, -) AEC(W'). 

3. Now we examine conditions (i) and (ii) of the preceding lemma separate- 
ly. We start with condition (ii). 

Let V be the set of all constant M,-valued functions belonging to (W'). 
Of course, we can and will identify V with a subset of M,. 

LEMMA 2. If A EV, BE M,, and Ker (3) z Ker(A), then BE%. 

P roof. If Ker (B) 2 Ker (A), then BA # A = 3, and the lemma follows from 
the fact that I? (W') is a left M,-module. 

LEMMA 3 (cf. [3], Lemma 4.3). If A EM,, then A E W if and only ij-BR(A*l E $7. 

Proof. Since Ker(A) = Ker(PR(,?), Lemma 3 is an immediate conse- 
quence of Lemma 2. 

LEMMA 4. Let  EN and Aj€W, j = 1, ..., n. If 
n 

BE M ,  and Ker (B) 2 n Ker(Aj), 
j= 1 

then BE%. 
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Proof. Since Aj€ %, from Lemma 3 we obtain P R ( A b  E W, j = 1 ,  . . . , n. 
Hence A : = z=, PwI) belongs to %'. Let u E Ker (A). Then 

n- 1 

( P ~ ( ~ j )  u,  U) = -(PR{A;) u), 
j =  1 

which yields 
n-1 

er E Ker ( P R 1 p , )  and u E Ker ( PKIA3) 
j'l 

Repeating the argument, we eventually obtain u E Ker (PR(,;>) = Ker (Aj),  

j = 1, . . . ; n. Since the inclusion Ker (Aj) E Ker (A) is obvious, we get 
n 

Ker (A) = n Ker (Aj). 
j= 1 

But A belongs to Q. Thus an application of Lemma 2 completes the proof. 

Let dl := (AEM,: A E ~  and A*€%'). 

LEMMA 5. Let A E M,. Then A E W if and only if PRIA3 E dl. 

P r o  of. Use Lemma 3 and the fact that PqA*, E W if and only if PRcAl, E dl .  

LEMMA 6. The set dl is u von Neetmann algebra. 

Proof. Clearly, d l  is a *-algebra. It remains to show that dl is closed. 
Let (A,), G dl be a sequence converging to AE M ,  (with respect to the 
topology of M,). Since Cq has finite dimension, there exists an no E N such that 

no m 

Ker (A,) = 0 Ker (A,). 
n= 1 n =  1 

Since Ker (A) 2 Ker (Ad, Lemma 4 yields A E ~ .  In an analogous way 
one obtains A* E W. 

LEMMA 7 .  There exists a subspace H1 of Cq such that a (q  x q)-matrix 
A belongs to % if and only if Ker(A) 2 HI. 

Proof. According to Proposition 5.1.8 in [I] the von Neurnann algebra 
dl contains a maximal orthoprojector, i.e, an orthoprojector PI such that 
R (PI) 2 R (A) for all A E dl. Let H1 : = Ker (PI). Then HI G Ker (A*), and 
hence H I  G Ker(A) for all AE dl, and Lemma 5 yields H1 c Ker (A) for all 
AEW. On the other hand, since P1 E%', Lemma 2 implies that A € %  for all 
A E Mq such that Ker (A) 2 HI. 

The next lemma sheds some light on condition (i) of Lemma 1. 

LEMMA 8. There exists a subspace Hz of C"ith the following properties: 

(1) Ker ( W) c Hz a-a-e. 

(2) If for any subspace K of Cq the relation Ker(W) c K a-ax. holds, then 
Hz G K. 
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P r o of. Set d,  : = (A E Mq: = PR(W) A = A a-a.e.1. Clearly, dz is 
a von Neumann algebra, and an orthoprojector Q E Mq belongs to d, if and 
only if Ker(Q) 2 Ker(W) g-a.e. Using these facts it is not hard to see that if 
P ,  denotes the maximal orthoprojector of d2, the space H z  := Ker (P,) has 
properties ( 1 )  and (2). 

Now it is easy to obtain a certain description of the set U"T,. 

LEMMA 9. There exists a subspace H of C9 such that 

Proof. Combining the results.of Lemmas 1,7 and 8, we see that the space 
H := HI +Hz has the desired property. 

In the rest of the paper, we will denote by HI, Hz and H the subspaces of 
Lemmas 7, 8 and 9, respectively. 

PROPOSITTON 10. A function @€I? (W) bebngs to dY, $ and only if 
R (PR(W) @*) G H u-u,e. 

Proof. A function @ EI? (W) belongs to Ww if and only if it is (matrix) 
orthogonal to YB or, equivalently, if and only if U8 is (matrix) orthogonal to 
UVv for all Q E G .  Hence, by Lemma 9, di belongs to Wm if and only if 

for all g E G and all A E Mq such that Ker(A) 2 H. This in turn is equivalent to 
the fact that APR(,) @* = 0 a-a.e. for all A E Mq such that Ker (A) 2 H, and the 
result of the proposition follows. 

A Although we do not have an effective recipe for determining the space 
H, the result of the preceding proposition enables us to give a new proof of 
Theorem 5.3 in [4]. 

LEMMA 11. if 1 W# do exists and for some subspace K of Cq, R (W) = K 
a-a.e., then X is J,-regular. 

Proof. If 1 W' da exists, then HI = {O), and if R (W) = K, then H z  = KL.  
Thus H = K L .  If Q, belongs to "W,, then R(PRlw,@*) c H ,  by Proposition 10. 
On the other hand, R (P,(w, @*) c R (PR(TY)) = HI. It follows that PR(,, @* = 0. 
This implies @ = 0 in L2 (W). 

LEMMA 12. If the process X is J,-regular, then J W#do exists and R (W) 
= H I  a-a.e. 

Proof. The function 8 : = P ,  belongs to Wm (cf. Lemma 8 and Proposi- 
tion 10). Since, by assumption, Ww = (01, we get j PH WPHda = 0 or 
Pa W1I2 = 0 a-a.e., and hence R (W) G HI. But since R(W) 2 H; 2 H', we 
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obtain R (W) = HI. Finally, we have P,I W# PH1 = W #  and from Lemma 7 
the existence of 1 Pal W# Plrl do follows. 

Combining Lemmas 11 and 12, we obtain Theorem 5.3 and, as an im- 
mediate consequence of Theorem 5.3, Theorem 5.2 in [4]. 

5. Since the process X is J,-singular if and only if it is not minimal (cf. [3], 
Definition 4.1, for the definition of minimality) and since Theorem 4,6 in [3] 
contains several conditions equivalent to the minimality of X, it is trivial, to 
formulate criteria for J,-singularity. For example, from Theorem 4.6 (c) in [3] 
it follows that X is 3,-singular if and only if for all orthoprojectors P E M ,  such 
that Ker (P)  2 Ker (W) D-a.e. the integral PW' Pdu is equal to zero or does 
not exist. It is not hard to see that the following proposition contains an 
equivalent statement. 

PROPOSITION 13. A process X is Jo-singular and only $for all u E H:, 
u # 0, the integral j (W#  u, u) da does not exist. 

Unfortunately, it seems to be rather difficult to use the preceding criterion 
in practice. Thus it makes sense to search for necessary or sufficient conditions 
of .I,-singularity, which are easier to handle. We obtain some results in this 
direction if we apply Matveev's method 151 to our situation. To formulate 
them let us introduce some notation. 

If W = : ( w ~ ~ ) : , ~ = ~  is the spectra1 density matrix of X, we set 

Moreover, we use the convention 0-I = a. 

PROPOSITTON 14. If X is Jo-singular, then 

j = 2, . . . , q and 1 w;: da = oo, then X is Jo-singular. 

Proof. Use the formula for the spectral measure of the orthogonal projec- 
tion of a stationary process onto a stationary cross-correlated process (6. 
Theorem 1.8 in [6]), and the arguments in the proofs of Theorems 1 and 2 
in [ 5 ] .  We omit the details. 

COROLLARY. Assume that det (W) > 0 a-a.e. If X is  Jo-singular, then 
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det (Wj- ,) 
J d a ( q  

db = 00, 

j = 2, . . . , q, and J w;: dn = m, then X is Jo-singuIar. 

Proof. The results are immediate consequences of Proposition 14 and the 
well-known relation 

With the aid of Proposition 13 it is easy to construct an example that shows 
that (3) is not sufficient for 3,-singularity, On the other hand, since 
J w ~ t  du = m implies that the first component (or, by the change of indices, at 
least one component) of the process X is J,-singular, it follows that condition 
(4) is not necessary for Jo-singularity. In fact, the Zvariate process 

where (e,),,, is an orthonormal system, is Jo-singular, but both its components 
are Jo-regular. 

6. We conclude our paper with the remark on processes of rank 1. 
A q-variate stationary process is called a process of rank 1 if its spectral measure 
is absolutely continuous and its spectral density matrix has rank 1 a-a.e. 

PROPOS~ON 15 (cf. [2], Corollary 2.5.5). A process of rank 1 is either 
Jo-regular or .To-singular. 

P r o  of. Let the spectral density matrix W of the process X have rank 1. If 
the range of W is not constant, then H2 = C4 and, by Proposition 13, X is 
Jo-singular. If the range of W is constant, then H 2  is a (q- 1)-dimensional 
subspace of C4. Let Q be the orthoprojector onto H;. If j Q W #  Qdn does not 
exist, then again Proposition 13 yields the Jo-singularity of X. Otherwise, X is 
J,-regular according to QW# Q = W' and Lemma 11. 
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