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MOMENTS AND GENERALIZED CONVOLUTIONS. III

BY

K. URBANIK* (WROCLAW)

Abstract. The paper deals with some uniqueness and characteri-
zation theorems for probability measures and generalized convolu-
tions in terms of negative moments.

1. Preliminaries and notation. This paper is a continuation of the author’s
earlier works [8], [9] and is organized as follows. Section 1 collects together
some basic facts and notation concerning generalized convolutions needed in
the sequel. In Sections 2 and 3 some properties of negative moments are discus-
sed. Section 4 contains auxiliary results on mappings of measures and differen-
tiable characteristic functions. In thé last section these results are applied to
some uniqueness and characterization theorems for probability measures and
generalized convolutions in terms of negative moments. For the terminology
and notation used here, see [6]. In particular, P will stand for the set of all
probability measures defined on Borel subsets of the half-line [0, c0). The set
P is endowed with the metrizable topology of weak convergence. As usual, we
let 6, stand for the probability measure concentrated at the point c. Given
a random variable X we shall denote by distrX its probability distribution.
Further, for any pair X and Y of independent random variables with distr X
= p and distrY = v, respectively, we put pyv = distrX'Y. Two measures u and
v from P are said to be similar if y = 6,v for a certain positive number c.

A continuous commutative and associative P-valued binary operation
o on P is called a generalized convolution if it is distributive with respect to the
convex combinations of measures and the operations u — é,u (c = 0), J,, is its
unit element and an analogue of the law of large numbers is fulfilled:

(1.1) 0., 08" >y # J

for a choice of a norming sequence c, of positive numbers. The power 69" is
taken here in the sense of the operation o.
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Let m, be the sum of §, and the Lebesgue measure on [0, o). It has been
proved in [6], Theorem 4.1 and Corollary 4.4, that each generalized convolution
admits a characteristic function, i.e. a one-to-one correspondence u — fi between
measures g from P and real-valued Borel functions i from L (m,) such that

(cu+(A—c)y)" =cA+(1—c)9, (B, m)" (@)= flat), (uov)" =y

for all ce[0, 1], ae(0, o) and u, ve P. The weak convergence p, — i is equiv-
alent to the convergence fi, — fi in L, (m,)-topology of L, (m,). Moreover, if
u is absolutely continuous with respect to the measure m,, then the function
fi is contindous. The characteristic function is uniquely determined up to a
scale change and is an integral transform

fit) = | Q(tx) p(dx).
0
The kernel Q is a Borel function with Q(©0) =1 and

(1.2) Q@I <1 for te[0, ).
It is easy to check the formula
(13) w®)" = | A0 (dx)

0

for u, ve P. By P, (o) we shall denote the subset of P consisting of measures
u with nonnegative characteristic function f. It is clear that the set P, (o) does
not depend upon the choice of a characteristic function.

A measure p from P other than 4§, is said to be o-stable if the measures

l1 O U, and u are similar provided the measures y,, u, and y are similar. In the
sequel the set of all o-stable measures will be denoted by S (0). It was shown in
[6], Theorem 4.2, that there exists a constant %(0) (0 < x(0) < o0) with the
following property: peS(o) if and only if either '
(1.4) fi(t) = exp (—ct”)
‘with ce(0, o0) and pe(0, %(0)] N (0, o) or %(0) = oo and pu =4, for some
ae(0, co). The constant p does not depend upon the choice of the characteristic
. function and is called the exponent of u. Obviously, all o-stable measures with
the same exponent are similar. The limit measure y from (1.1) is o-stable with
the exponent x (o). '

Given p, g > 0 we denote by g(p, g) the probability measure on the
half-line [0, co) with the density function pI'(q/p)~'x?~'exp(—x?).

Many examples of generalized convolutions are to be found in various
branches of probability theory (see [10]). We shall quote some of them. In all
examples the random variables X and Y are assumed to be independent.

ExaMPLE 1.1. The convolutions #, (0 < p < o). These convolutions are
defined by the formula :

(distr X) =, (distr Y) = distr (X7 + Y?)'/7.
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Here we have x%(x,) = p and Q(t) = exp(—t?). For p=1 we obtain the or-
dinary convolution =

ExaMpLE 1.2. Max-convolution *_. This convolution is defined by the
formula
(distr X) =, (distr Y) = distr (max (X, Y)).

Here we have % (x,) = oo and () is equal to the indicator of the unit interval
[0, 1]. By Lemma 2.1 in [6], %(c) = oo if and only if 0 = .

ExampLE 1.3. Kingman convolutions *,,(p >0, g > 1). The geng:falized

convolution” ,,, is defined by the formula
(distrX) %, , (distr Y) = distr X2P 4 Y2P 4 2XP YP Uq)1/;p,

where the random variable U, is independent of X and Y, distrU,
=4(6-,+9,) and for g > 1 the probability distribution of U, is concentrated
on the interval [—1, 1] and has the density function

B(1/2, ¢/2)~ (1 —x?)a~ 72,
where B is the beta function ([5], Example 1.2). Here we have % (%, ;) = 2p and
(1.5) Q,,q(t) = I'(/2) (/7)™ D12 Ty 5y (£7),

where J, is the Bessel function. The probability measure ¢ (2p, 2pg—p) is
*, ,~stable with exponent 2p.

2. Negative moments. Given s >0 and ueP we put
(1) = § x7° p(dx).
0

The set of all measures p from P with finite moment = (u) will be denoted
by P,. It is clear that

@1) : (1) > 0,

(2.2) (W) = T, (Wm,0) -

for all u, ve P and - -
(2.3) P,cP,

whenever 0 < u < s.

Given s > 0 and a generalized convolution o with the characteristic func-
tion u — fi we denote by F, (o) the set of all probability measures u from P for
which the limit

fs(8) = Iim }ﬁ(t)t“ldt

€00 o

exists. It is evident that the set F, (o) does not depend upon the choice of the
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characteristic function. As an immediate consequence of formula (1.4) and
Example 1.2 we get the following inclusion:

24) $(0) < F(o)
for all generalized convolutions ¢ and s > 0.
LemMA 2.1. If ueF, (o) and veP, then uveF/(o) and
S} =f,(@) g (v).
Proof. For ¢>.0 we have, by (1.3),

@5 [w@ e td=v(o) S+ [ ] A0 dyxTIv).
0 o+ 0

Since ve P, the measure v has no mass at the origin. Consequently, by the
bounded convergence theorem, the right-hand side of (2.5) has the limit
f.(@) = (v), which completes the proof.

LemMa 2.2. If peP, (o) and pveF,(0), then uekF (o) and veP.
Proof. The condition ueP, (o) and formula (2.5) yield the inequality

j' pv ()~ £ de = v({0}) %s (c > 0).
o

Since the left-hand side of this inequality has a finite limit as ¢ — oo, we con-
clude that v({o})=0. Now, by (2.5 and the Fatou lemma, we get the
inequality

[ Z=,0) | a@e"dt,
4]
which, by (2.1), yields

n,(v) < oo and fs(ﬁ)=}oﬁ(t)ts"1dt<oo.
0

The lemma is thus proved.
"~ Lemma 23. If P,n P, (o) # D, then
P,nP, (o) c F,(o) < P,.

Proof. We note that, by (24), F (o) #9. Taking peF (o) and
veP.n P, (0) we get, by Lemma 2.1, yve F (o). Applying now Lemma 2.2 we
have ueP, and ve F (o), which completes the proof.

As an immediate consequence of the above lemma we get the following
result:

COROLLARY 2.1. If P.n P, (o) # D, then P.n P, (0) = F ,(c)n P, (0).
Lemma 2.4. If peP, (o)n F,(0) and veP, then poveF (o).
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Proof. It is clear that the function fi(f)t*~ ! is integrable on the half-line
[0, c0). By the inequality [(uov)*| = || [¥] < 4, also the function (uov)” ()~ !
is integrable. This yields the assertion of the lemma.

THEOREM 2.1. The following conditions are equivalent:

@) S() =P,
(i) S(E)NP,#0,
(i) P.AP,(0) # D,
@ - 7 F()cP,

Proof. Since S(o) # @, the implication (i) = (ii) is evident. The inclusion
S(0) = P, (o) yields the implication (ii) = (iii). By Lemma 2.3 we have the im-
plication (iii) = (iv). Finally, inclusion (2.4) yields the implication (iv)=> (i),
which completes the proof. o

In the sequel, I (o) will denote the set of all positive real numbers s fulfilling

the condition S (o) = P,. The problem whether the set I (o) is non-void for all
generalized convolutions o is still open.

ExampLE 2.1. From the implication (iii) = (i) of Theorem 2.1 we get the
equality I(0) = (0, c0) whenever P, (o) = P. In particular, I(x,)=(0, c0)
(0 <p< o).

ExampLE 2.2. Given p > 0 and g > 1 we conclude, by Example 1.3, that
2(2p, 2pq—p)e S (*,,4). It is easy to check that ¢ (2p, 2pg—p)e P, if and only if
s < 2pq—p. Consequently, applying Theorem 2.1 (parts (i) and (ii)), we get the
formula I(x,,) = (0, 2pq—p).

THEOREM 2.2. Given se I (o) and a characteristic function u — [i there exists
a positive constant c, such that '

n,(4) = ¢, f,(§) for every peF, (o),

Proof. Let ueF (o). Taking a o-stable measure 4 we have, by Theo-
rem 2.1, AeP,. Applying Lemma 2.1 we get the formula -
2:6) LW =f@)m, (). -
Moreover, by Theorem 2.1 (iv), u€ P, and, by (2.4), A€ F,(0). Now, applying
Lemma 2.1, we get the formula

S )" = f(Dmg (),
which together with (2.6) yields the assertion of the theorem with the constant
¢ = m,(/f, ().

Changing the scale fi(f) = fi(cl”*f) we get a hew characteristic function
u— fi for which the constant appearing in Theorem 2.2 is equal to 1. This
characteristic function will be called s-normed.




158 : K. Urbanik

3. Semigroups associated with generalized convolutions. Given s > 0 and
a generalized convolution o we denote by Q,(o) the set of all probability
measures p fulfilling the condition u°"e P, for all positive integers n.

THEOREM 3.1. Q. (0) # @ if and only if sel(0).

Proof. Suppose that ueQ,(0). Then poueP,.n P, (o), which, by Theo-
rem 2.1 (iii), yields se I (o). Conversely, suppose that seI (o). Let AeS (o). The
power A°" being similar to A also belongs to S(o). Consequently, i°"€ P,
(n=1,2,..) or, in other words, A€ Q,(0), which completes the proof.

- The followmg result will play a crucial role in our considerations.
THEOREM 3.2. A measure p belongs to Q,(o) if and only if both measures
u and pou belong to P,. :

Proof. The necessity of our conditions is evident. To prove the sufficien-
cy let us assume that u and popu belong to P,. Since popue P, (o), we have, by
Theorem 2.1 (implication (iii) = (iv)), the inclusion

(3.1) F,(0)c P,

Moreover, by Corollary 2.1, poueF,(o) n P, (o). Applying Lemma 2.4, we
infer that u°"e F (o) for n > 2, which, by (3.1), shows that e Q (o). The theo-
rem is thus proved.

THEOREM 3.3. For every s > 0 and every generalized convolution o the in-
clusion P,n P,_(0) = Q,(0) is true.

Proof. The case P.n P, (0) = & is evident. In the opposite case we have,
by Theorem 2.1 (iii), sel(o). Let ueP,n P, (0). Then, by Corollary 2.1,
ue F (o), which, by Lemma 2.4, yields po ue F (o). Consequently, by Theorem
2.1 (iv), popueP,, which, by Theorem 3.2, shows that u €Q,(0).

THEOREM 3.4. Let seI(0). The set Q. (o) is a semigroup under operation o.

Proof Let u, veQ,(0). Since u®*", v°2"e P,n P (0), we have, by Corol-
lary 2.1, the relation u°?", v°?"eF, (o) (n =1, 2, ...). Consequently, the func-

~ tions %" (f)¢°~ %, ¥*"(¢)¢*~! are integrable on the half-line [0, o). By the in-

equality
(zov®*)] = RO PO < 3(@" 1)+ ()

the functions (uov(®)*)'t™' (n=1,2,..) are also integrable. Thus
(uov)®"eF,(0) n=1,2,..). Now, applying Theorem 2.1 (iv), we get
poveQ, (o), which completes the proof.

THEOREM 3.5. Let se€l(0). If peQ. (o) and veP,, then uve Q (o).
‘Proof. By (2.2), uve P, and, by (1.3),

32 (o) ®=ww") < f 2(tx)v(dx) = (uowv)" ().
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Since (uop)ve Pyn P, (o), we infer, by Corollary 2.1, that (uo p)ve F (o) and,
consequently, the function (1 o p) v)" (9)£* 1 is integrable on the half-line [0, o).
Inequality (3.2) shows that also the function (uv) o (uv))" (1) £~ 1 is integrable. Thus
(uv) o (uv)€ F (o), which, by Theorem 2.1 (iv), yields the relation (uv)o(uv)eP,.
Applying Theorem 3.2 we get uveQ (o), which completes the proof.

THEOREM 3.6. Q (o) = P, if and only if 6,06,€P,.

Proof. The necessity of the condition J, 0, € P, follows from the rela-
tion §; € P, and Theorem 3.4. Conversely, by Theorem 3.2, the relations 8, € P,

and 8,00, € P, yield §, €Q.(0). Now, applying Theorem 3.5, we conclude that
p=20,ueQ (o) for every ueP,, which completes the proof.

ExAaMPLE 3.1. As an immediate consequence of Theorem 3.3 we get the
formula Q (o) = P, for all s > 0 provided P, (o) = P. In particular, we have
Q.(+,) =P, for all s>0 and 0 <p < .

ExaMPLE 3.2. Kingman convolutions. According to Example 1.3 we have
the formula

81 %pg8y = distr Q+2U )2 (p>0,q3> 1).

Consequently,

1
T (01 %5,401) = B(1/2, q/2)™" | (2+2x)7¥2P (1 —x?)@~ 32 gx,
-1

Hence it follows that §, *,,d, € P, if and only if 0 < s < pg—p. Taking into
account Theorems 2.1 and 3.5 and Example 2.2 we get

Qs(*P-q)=Ps If0<S<Pq_P=
B # Qs(+,9 #P, if pg—p <s5<2pg—p,
Qi(xp) =9 if 5> 2pg—p.

4. Auxiliary results. In this section we gather some auxiliary results on
mappings of measures and differentiable characteristic functions needed in the
sequel. Given a positive number s we denote by m, the measure on the half-line
[0, o0) with the density function x*~1. As usual, the set of all real-valued Borel
square mg-integrable functions on [0, co) will be denoted by I? (m,). Given
fel?(my) we put

(fms) (E) = my (f_ ! (E))

for Borel subsets E of [0, co0).
The proof of the following lemma is based on an idea due to Braverman et
al. ([3], Theorem 2.1).

LEMMA 4.1. Let ge I? (m,) and x,€(0, o). Suppose that g(x,) > 0 and the
derivative of g at x, exists and is equal to 0. Then for every positive number c and
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sufficiently small positive number h the inequality
(gm) ([g (xo)—h, g(xo)+h]) = ch
is true.

Proof. Setting for ye(0, o)
a(y) = sup {lg (xo) —g ()l/Ixo—x|: x>0, 0 <|xo—x| < y}

we have a(y) — 0 as y - 0. Consequently, for every b > 0 there exists a positive
number h(b) such that the inequalities bk < x, and a(bh)b < 1 are fulfilled for
0 < h < h(b). Observe that the inequalities 0 < h <min(g(x,); k(b)) and
|xo—x| < bh imply

lg (xo)—g (| < a(bh)xo—x| < a(bh)bh < h.
Hence we get the inclusion

[xo—bh, xo+bh] < {x: |g(xo)—g ()| < h} = g7 *([g(xo)—h, g (xo)+h]).

Consequently,
(gmy) (L9 (xo)—h, 9 (x0)+K]) = m, ([xo—bh, xo+bH])
=5 1(xo+bhY—s~ ! (x,—bh) = ch,
where ¢ = x37'b and 0 < h < min(g(x,), k(b)), which completes the proof.

THEOREM 4.1. Let f, ge I? (m,). Suppose that both functions are continuous
on {0, o0) and differentiable on (0, 00). Further, suppose that the derivative of g is
negative on (0, co) and

4.1) fO)=9g0)>gx) (x>0).
Then the equality
(4.2) Jm, = gm,

“on (—0, 0)u (0, o) yields f =g.

Proof. By the assumption the function f is decreasing on [0, o). Since

-felI?(my), it converges to 0 at oo. Thus f is positive on [0, c0), which shows, by

(4.1) and (4.2), that both measures fin, and gm, are concentrated on the interval
[0, £ (0)]. Hence it follows that the function g is nonnegative. Denote by ¢ the
inverse function for f mapping the interval (0, f(0)] into [0, 00). Of course,
@ is decreasing and differentiable on (0, f(0)). Suppose that x, >0 and
g(xg) > 0. Then, by (4.1), the function ¢ is differentiable at the point g(x,).
Moreover, by (4.2),

(gmy) ([g (xo)—h, g (xo)+HK]) = (fin) ([g (xo)—h, g (xo)+h])
=571 (g (x0)—H)—s " @*(g (xo)+h)
whenever 0 < h < g(x,). This shows that the left-hand side of the above equali-

e
SEsR
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ty is less than ah for some constant a. Applying Lemma 4.1 we conclude that
the derivative of the function g at x, does not vanish. In particular, the function
g has no local extremum at the points x,€(0, o0) with g(x,) > 0. Hence and
from the assumption g € I? (m,) it follows that the equality g(x,) = 0 for x, > 0
yields g(x) =0 for x > x,. In this case we have, by (4.2), the contradiction

o = m((0, o)) = (fny)((0, £ ©)]) = (gm)((0, f (©)])
=m,([0, x,)) < oo,
which shows that g(x) > 0 for all x (0, o0) and, consequently, the derivative of
g does not vanish on (0, o). By inequality (4.1) this derivative is negative,
which shows that the function g is decreasing on (0, oc©). Thus

(4.3) (gm)([9(x), g@)) =s""'x" (x> 0).
By (4.1) we have the formula ¢(g(0)) = ¢ (f(0)) = 0. Consequently,

(fim) ([9 (x), g (0)]) = s~ ' @ (9 )",
which, by (4.2) and (4.3), yields ¢ (g(x)) = x for x > 0. Thus f = g, which com-
pletes the proof.

To state the next result we introduce some notation. Given a generalized
convolution o we denote by D(o) the set of all probability measures u from
P whose characteristic functions j are continuous on [0, o), differentiable on
(0, o0) and fulfil the inequality fi(t) < 1 for t(0, o0). It is clear that this defini-
tion does not depend upon the choice of a characteristic function.

The subset of D (o) consisting of measures u for which the derivative of fi is
negative on (0, co) will be denoted by 4 (o).

THEOREM 4.2. For every generalized convolution o the inclusion A(0)
< P, (o) is true.

Proof. It is clear that for ue A(o) the limit

4.4) ' lim () =c

. t—
exists and - s
@5 j(®)>c for t=>0. B

Let A be a o-stable measure with finite exponent p and the characteristic func-
tion A(f) = exp(—1t?). Put v = ui. By (1.3),

$(0) = | oxp(—t2x") u(dx),
which yields °
46 lim 5(2) = #({0}).
On the other hand, ¥(t) = : f(tx) A(dx). Since, by Lemma 2.2 in [6], the mea-

11 — PAMS 19.1
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sure A has no atom at the origin, the last equality and (4.4) yield

lim ¥#(f) = c.

t— 00

Comparing this with (4.6) we get the inequality ¢ > 0, which, by (4.5), shows

‘that peP, (o). The theorem is thus proved.

Given an absolutely continuous measure y from P with the probability
density function g we denote by T (u) the total variation of the function xg (x)
on the half-line [0, cc). Denote by P* the set of probab111ty measures y with
finite total variation- T (u). . :

Lemma 4.2. If peP* veP and v({o}) =0, then uve P*.

Proof. Observe that the probability density function of uv is given by the
expression [, g(x/y)y~*v(dy), where g is the density function of 4. It is easy to
check the inequality T (uv) < T(u), which yields the assertion of the lemma.

We define the family of transformatlons V,(p>0) of P by setting
V, (distr X) = distr X /7,

LEMMA 4.3. The set P* is invariant under transformations V, (p > 0).

Proof. Let peP*. Observe that the transformed measure V,u has the
density function pg (x?) x? "1, where g denotes the density function of . Hence
the equality T(V,u) = pT (u) follows, which completes the proof.

A probability measure 4 on the real-line (— oo, o0) is said to be unimodal if
for some ¢ the function x — A((— 0, x)) is convex on (— 0, ¢) and concave on
(¢, 00). The point c is called a mode of A. The mode of a unimodal probability
measure is not necessarily unique, but the mode of a probability measure from
P concentrated on [0, c0) is nonnegative.

LeMMA 4.4. Let u be a unimodal measure from P with the probability den-
sity function g and the mode c. If the function cg is bounded on [0, ), then
HEP*,

Proof. First observe that the measure u+dJ_. regarded on the whole
line (—o0, o0) is unimodal with the mode 0-and the density function

g.(x) =g(x+c¢) for xe(—c, o) and g,(x) =0 otherwise. By the Khintchine

theorem ([4], Chapter 6) the function
_f gc(u) du_xgc (JC) .

is non-decreasing and bounded on (— o0, o0). Hence it follows that the function

Ig(u)du (x—0)g(x)

is non-decreasing and bounded on [0, o0). Now it is easy to verify that the

total variation T (u) is finite provided the function cg is bounded on [0, o0).

" The lemma is thus proved.
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Denote by S*(o) the subset of S(o) consisting of o-stable measures with
exponent less than x(0).

THEOREM 4.3. For every generalized convolution o the inclusion S* (o) = P*
is true.

Proof. First consider an ordinary convolution *. It is well known that
the measures from S* () are absolutely continuous with bounded density func-
tion. Moreover, by the Yamazato theorem [11], they are unimodal. Conse—
quently, by Lemma 4.4, we have the inclusion
@n . - S*(x) < P*.

By Lemma 2.5 and Proposition 4.4 in [6], each measure p from S* (o) is of the
form p = (V,v) A, where p > 0, ve $*(+) and 1€ S (0). By Lemma 2.2 in [6], the
measure A has no atom at the origin. The relation pe P* is a consequence of
(4.7) and Lemmas 4.2 and 4.3, which completes the proof.

THEOREM 4.4. For every generalized convolution o other than the max-con-
volution the inclusion P* — D(0) is true.

Proof. Let ueP. The continuity of g on [0, o) is an immediate con-
sequence of the absolute continuity of u. Further, by Lemma 2.2 in [7], we
have the inequality fi(f) < 1 for ¢ > 0. To prove the differentiability of i on
(0, ) we introduce a signed bounded measure m by setting

m(dx) = p(dx)—d(xg (x)) = —xdg(x),
where g is the probability density function of u. By (1.2) the integral transform

m(t) = | Q(tx)m(dx)
0
is bounded and for t >0

(4.8) %irh(u)du =—

o | =

_g g Q (ux) xdg (x) du = —g { Qty)dydg (x).
0

Obgerve that, by (1.2), )

|£ Qeydyl<x (x=0).

Since the total variation T () is finite, the function xg (x) has the limits as x — 0
and x — co. These limits are equal to 0 because of the integrability of g. Using
this fact and integrating by parts the right-hand side of (4.8) we get the formula

i(t) =%jn‘1(u)du (t>0),
0

which shows that the function j is differentiable on (0, c0). The theorem is thus
proved.
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As an application of Lemma 4.2 and Theorem 4.4 we deduce the following
result:

COROLLARY 4.1. Let o be a generalized convolution other than the
max-convolution. If ue P* n4(o) and ve P with v({0}) =0, then uve 4(o).

We conclude this section by some examples.

ExampLE 4.1. Taking into account Example 1.1 we get the equality
4.9) Ax)=P
whenever 0 < p < oG. Moreover, by Example 1.2, we have A4(x,) # P.

EXAI\:[PLE 4.2, It is easy to verify, by Example 1.2, that o (p, g)e 4 (x,,) and
e(p, q)e P* for all p, q > 0. Applying Theorem 4.4 we get the relation

(4.10) e, 99eD(0)

for all p, g > 0 and all generalized convolutions o.
Before we go further we establish some results for Kingman convolutions.
LEMMA 4.5 If 1< qg<r and p >0, then the inclusions

(4.11) Py (%p,9) < Py (%,,)
and

(4.12) P*A(xyq) = A(xp,)
are true.

Proof Given a, b, c > 0 we denote by A(a, b, ¢) the probability measure
concentrated on the interval [0, 1] with the density function

2aB (b, ¢) "1 x?® 1 (1 —x29° L,
From the Sonine integral (see [2], 7.7 (5)) and (1.5) we get the formula

Qpr () = | Qpa(tx) (P, —1/2, 7—g) (d).

‘Consequently, denoting by u — ji and u — 7 the characteristic functions for the

Kingman convolutions *,, and *, ., respectively, and taking into account (1.3),
we get the equality

“.13) 4@ = (I) () A, g—1/2, 7~ g) (%) = (kA (2, g —1/2, r—q))” (),

which yields inclusion (4.11). Suppose now that pe P* n 4(*,,). Then, by Co-
rollary 4.1, pi(p, q—1/2,r—q)e A(%,,). Comparing this with (4.13) we get
inclusion (4.12), which completes the proof.

ExaMpPLE 4.3. Let p,q > 0. Then
(4.14) e, Qe d(+p,) i r=max(l, q/p)
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and
(4.15) e, ¢P.(xp,) i q>pand 1 <r<gq/p.

Proof. Given p > 0 and r > 1 we denote by u — fi the characteristic func-
tion for the Kingman convolution *,,. From the Hankel integral (see [2]
7.3 (16)) for every g > 0 we get the formula

4.16) 6(p, 9)(t) = (1 +*))"V?7 ,F (q/2p,(rp—p—q)/2p; 7/2; t*7)(1 +17P)),

where ,F; denotes the hypergeometric function. )
First ct)‘nsidei' the case g = p. Then setting r = g/p we have, by (4.16) and
formula 2.8 (4) in [1],

6(p, g)(t) = (1 +22)~ @+ 0i2p

which shows that ¢(p, g)€ 4 (,,4,). Since ¢(p, g) € P*, using Lemma 4.5 (in-
clusion (4.12)) we get relation (4.14) for q > p.
Suppose now that ¢ < p and put r = 1 into (4.16). Then, by [1], 2.8 (11),

é(p, q)(t) = (1 +£2P)~ 4P cos % (arcsin (t7/,/1+¢27)),

which, by a standard calculation, shows that ¢(p, g)€ 4 (,,;). Arguing as be-
fore we get relation (4.14) for g < p.
Now assume that ¢ > p and max(1, g/p—2) < s < g/p. Then

I'((sp—g)/2p) < 0.
Setting r = s into (4.16) we have, by formula 2.8 (46) in [1],

lim (1 +127)92? §(p, q)(t) = ,F,(a/2p, (sP—P—49)/2p; 5/2; 1)

=T(s/2T(1/2) T (sp—q)2p) " T((p+4q)/2p)" " <0.

Consequently, ¢ (p, q)¢ P, (*p,5), which, by Lemma 4.5 (1nc1us1on (4.11)), yields
relation (4.15). This completes the proof. -

~ 5. Characterization theorems. We start by the deﬁnition of an equiValence
relation. Given s > 0 by [o, ], we denote the pair consisting of a generalized
convolution o and a probability measure u from Q. (o). Two pairs [o, u], and
[, v], are said to be equivalent, in symbols [o, ul, ~ [, v],, if
n,(uo") =m0 (n=1,2,..).

THEOREM 5.1. Let u— fi and v — V be characteristic functions for general-
ized convolutions o and [, respectively. Suppose that

peE(©©)nQ (), veEK([MnQ,(O)

and

(5.1) L@ =b0" @m=12,..)
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Jor a certain constant b > 0. Then [o, u], ~ [, d,v],, where
(5.2) a = (m, (v)/m, ()"
Proof From (5.1) and Theorem 2.2 we obtain the equalities
(W) =cn, (V") (m=1,2,..)

for a certain constant c. Setting n = 1 and taking the constant a defined by (5.2)
we have ¢ = a™°. Consequently, by (2.2),

A0 =007 = 7,607 @=1,2,..),
which completes the proof.
As an application of Theorem 5.1 we get the following result:
ExXAMPLE 5.1. Suppose that 0 < p< q and 0 <s < q. Then
(5.3)  [*paips €(Ps D15 ~ [*p,2401p 0a0 (5 P+ )]s ~ [*2p, 6,0(2P, P+ )],
where a = (1—5s/q)'"* and
b=TI(p+q—5)/2p)" T (a/p)"" T (0+a)/2p) " T ((a—s)/p) "
Proof. By a standard calculation we get the formula
(5.4) n(e(, 9) = I'((g~s)/p)/T'(g/p) for 0<s<gq.
By (4.14) and Theorem 4.2 we have the relation

e, 9P, (*,,) for r=>q/p,
which, by Corollary 2.1 and Theorem 3.3, yields

(5.3) 0P, PeF (*p) N Qs(%,,) for r>g/p and 0 <s<gq.
A similar reasoning leads to the relation
(5.6) o(p, 9)eF,(x)nQ,(%x,) for r>0 and 0 <s<qg.

Denote by u — fi, u — fi and u — [i the characteristic functions for the general-
ized convolutions #, 45, %52+ 4, and *,,, Tespectively. Setting r = g/p into (4.16)

~we obtain §(p, q). Similarly, setting r = 1+ ¢g/p into (4.16) and replacing g by

p+4q we get §(p, p+q). Further, by a standard calculation, we get §(2p, p+9).
This yields the equality '

0, @) =3a@, p+a® =3Qp, p+q)(t) = (1 +1?7)~*+0/2p,

which, by (5.5), (5.6) and Theorem 5.1, proves relations (5.3). The constants
a and b can be calculated by means of formulae (5.2) and (5.4).

The following result plays a crucial role in our considerations:

THEOREM 5.2. Let p — fi and v — V be s-normed characteristic functions for
generalized convolutions o and [, respectively. If [o, ul, ~ [0, v],, then

(5.7 fim, = Vm,
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on the set [—1,0)0 (0, 1]. If in addition ue A(c) and veD (), then

(5.8) f@y=7%@) for te[0, o).
Proof. Since peQ,(oc), we have, by Corollary 2.1 and Lemma 24,
uC"e F (o) for n = 2. Consequently, by Theorem 2.2,

w0 1
(WO =f,(i" = [ @@t tdt = | x"(im)(dx) for n>2.
Thus ° o

o0

I X2 e (m)(dx) = Y m, (1) 2nl,

n=0
which shows that the equivalence relation [o, u], ~ [, v], y1e1ds the equality
of the Laplace transforms of the measures x? (fim,) (dx) and x*(¥m,)(dx). This
implies equality (5.7).
Finally, suppose that ue 4(c) and ve D ([J). Then equality (5.8) is an im-
mediate consequence of Theorem 4.1. This completes the proof.

We are now in a position to prove the following characterization theorem:

THEOREM 5.3. Let peAd(o)nQ,(c) and veD(o). Then the equalities
T, (") =n,(v°") (n=1,2,...) yield p=v.

Proof. The conditions of the theorem can be written in the form
[o, ], ~ [0, v],. Applying Theorem 5.2 we get (i = ¥ and, consequently, yt =
which completes the proof.

In the sequel the following lemma will be used:

LEMMA 5.1. Let u — ji and v — ¥ be characteristic functions for generalized
convolutions o and [, respectively. If ji(t) = fi(t) for all te[0, o) and a certain
ue P, with sel(o)nI(), then o =[].

Proof. We can find two probability measures 5 and ¢ fulfilling the con-
ditions neS(0), ceS(0) and #(t) = é(t) = exp(—1tF) for some p > 0. Of
course, 7, o€ P, and, by (1.3),

J exp (=182 (uo) @) = (uon) ()= | A -

- Z () (om) (dx) = (uom)™ (¢) = °§° exp (— 17 x?) (un) (d),

which, by the uniqueness theorem for the Laplace transformation, yields the
equality un = po. Consequently, by (2.2), =, (w) %, (1) = =, (W) 7, (0) for 0 < r < 5.
Taking into account (2.1) we conclude that =, () = =,(0) for 0 < r < s, which,
by the uniqueness theorem for the Mellin transformation, yields the equality
n = a. Thus #(t) = #(¢) = exp(—t*¥). Given an arbitrary measure A from P, we
have

8

j A(tx)n(dx) = T i (tx) A (dx) = j (tx) A(dx) = j A(tx) n (dx).
0

(=]
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Applying Lemma 2.2 of [5] we conclude that £ = 1. Thus for every pair A, ve P
we have (Aov)" ==y =(A0Ov)" =(A0Ov)", which yields the equality
Aov=Av. This completes the proof.

THEOREM 5.4. Let o and [] be a pair of generalized convolutions. Suppose
that pe A(0) n Q. (o), ve D([J) and the measures yu and v are similar. Then the
equalities n (u°") =, (V2" (n=1, 2,...) yield o = .

Proof. Denoting by A — / and 41— 1 s-normed characteristic functions
for the convolutlons o and [, respectively, we have, by Theorem 5.2, the
equality, /L(t) = ¥(t) for all te[0, o). By the assumption we obtain v = & . 1 for
some ¢ > 0. We define a new characteristic function A — 1 for the convolutlon
[ by setting £ = (5,4)~. Then fi(t) = fi(t) for te [0, o), which, by Lemma 5.1,
yields the assertion of the theorem.

We shall now illustrate the above theorems by some examples.

ExaAMPLE 5.2. Let o be a generalized convolution, se I (o) and 0 < p < % (0).
If neD(o) and m (u°") =bn™? (n=1, 2, ...) for a certain constant b, then
neS*(o).

Proof. Let v be a o-stable measure with exponent p and the characteristic
function of the form (1.4). Then, by Theorem 2.2,

() =¢, | exp(—ent?) £ dt =c" P, T (n™" (n=1,2,..).
0

Taking the constant c satisfying the condition ¢ ™7 ¢, I (s) = b we have m,(u°")
(n=1,2,...), which, by Theorem 5.3, yields p = v. This completes the proof.

ExampLE 5.3. Let o and [ be a pair of generalized convolutions. Suppose
that sel(o), u is a o-stable measure with exponent p <x(0), and
n,(ut™) =bn"? (n=1,2,..) for a certain constant b. Then o = [].

Proof. Arguing as before we can find a measure v similar to g such that
n, (") =bn"¥? (n=1, 2, ...). Now our assertion is an immediate consequence

_of Theorem 54.

ExaMPLE 5.4. Let p > 0and 0 < s < q. If a generalized convolutzon o fulfils
the condition m (o (p, 9°") = bI' ((ng—s)/p)/T (ng/p) (n =1, 2, ...) for a certain

constant b, then o = *,.

Proof. Itis easy to check the formula ¢ (p, g)*,¢(p, r) = ¢(p, g+7). Con-
sequently, by (5.4),

(e (@, 9*") =T (ng—s)/p)[ (ng/p) (n=1,2,..).

Observe that, by (4.9) and (4.10), ¢ (p, q)€ 4 (*,) © D (o). Now our assertion is an
immediate consequence of Theorem 5.4.
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EXAMPLE 5.5. Let p > 0 and 0 < s < q. If a generalized convolution o fulfils
the condition (¢ (p, q)°") = bI'((ng—s)/2p)/T" (ng/2p) (n = 1, 2, ...) for a certain
constant b, then o = *p 1 1 q/p.

Proof. Denoting by u— /i the characteristic function for the Kingman
convolution #,;4,, and setting r = 1+¢/p into (4.16) we get the formula

é(p, q)(t) = (1 +37)9/%2,
Thus, by an integral representation of the beta function (see [1], 1.5 (2)), we get

£.60, @)= | (L +r2n) e gt = % B(s/2p, (ng—3)/2p),
0

which yields, by Theorem 2.2,

ns (Q (ps q)*p,1+q/p”) = ns ((5(:Q (p: q))On) (n = 1: 23 .. )
for a certain constant ¢. Observe that, by (4.10), (4.14) and (5.5),

2P, 9)eD(0) N A(*p,1+4/p) N Qs (*p.1 +4/0)-

Now our assertion is an immediate consequence of Theorem 5.4.
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