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Abstract. The paper deals with some uniqueness and characteri- 
zation theorems for probability measures and generalized convolu- 
tions in terms of negative moments. 

1. Preliminaries and natation. This paper is a continuation of the author's 
earlier works [8], 191 and is organized as follows. Section 1 collects together 
some basic facts and notation concerning generalized convolutions needed in 
the sequel. In Sections 2 and 3 some properties of negative moments are discus- 
sed. Section 4 contains auxiliary results on mappings of measures and dltTeren- 
tiable characteristic functions. In the last section these results are applied to 
some uniqueness and characterization theorems for probability measures and 
generalized convolutions in terms of negative moments. For the terminology 
and notation used here, see [6].  In particular, P will stand for the set of all 
probability measures defined on Bore1 subsets of the half-line [O, a). The set 
P is endowed with the metrizable topology of weak convergence. As usual, we 
let 6, stand for the probability measure concentrated at the point c. Given 
a random variable X we shall denote by distrX its probability distribution. 
Further, for any pair X and Y of independent random variables with distrX 
= p and distr Y = v, respectively, we put pv = distrXY. Two measures p and 
v from P are said to be similar if p = d6,v for a certain positive number c. 

A continuous commutative and associative P-valued binary operation 
o on P is called a generalized convolution if it is distributive with respect to the 
convex combinations of measures and the operations p -t 6,p (c 2 O), 6, is its 
unit element and an analogue of the law of large numbers is fulfilled: 

for a choice of a norming sequence c, of positive numbers. The power SY is 
taken here in the sense of the operation o. 
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Let rn, be the sum of 6 ,  and the Lebesgue measure on [0, 63). It has been 
proved in [6], Theorem 4.1 and Corollary 4.4, that each generalized convolution 
admits a characteristic function, i.e. a one-to-one correspondence p 4 f i  between 
measures p from P and real-valued Borel functions @ from L, (mo) such that 

for all c E [0, 11, a E (0, m) and p, v E P .  The weak convergence p,, + p is equiv- 
alent to the convergence @, -c ,L in L1 (mo)-topology of L, (m,). Moreover, if 
p is absolutely continuous with respect to the measure m,, then the function 
ji is continuous. The characteristic function is uniquely determined up to a 
scale chinge and is an integral transform 

a) 

P ( t )  = j 0 (tx) P (dx)  - 
0 

The kernel Q is a Borel function with Q(0) = 1 and 

(1.2) IQ(t)l < 1 for t~ [O, GO). 

It is easy to check the formula 
m 

(1.3) pv (tj " = j ji (tx) v (dx) 
0 

for p, V E  P. By P+ (0) we shall denote the subset of P consisting of measures 
p with nonnegative characteristic function @. It is clear that the set P, (0) does 
not depend upon the choice of a characteristic function. 

A measure p from P other than 6 ,  is said to be o-stable if the measures 
p,  o p, and p are similar provided the measures p,, p, and p are similar. In the 
sequel the set of all o-stable measures will be denoted by S (0). It was shown in 
[6], Theorem 4.2, that there exists a constant x(o) (0 < x(o) 6 co) with the 
following property: p E S (0) if and only if either 

(1.4) f i  (t) = exp ( - ctP) 

-with c ~ ( 0 ,  CQ) and p ~ ( 0 ,  x (o)] n (0, oo) or x (0) = CQ and p = 6,  for some 
a ~ ( 0 ,  m). The constant p does not depend upon the choice of the characteristic 
function and is called the exponent of p .  Obviously, all o-stable measures with 
the same exponent are similar. The limit measure y from (1.1) is o-stable with 
the exponent x (0). 

Given p, q > 0 we denote by ~ ( p ,  q) the probability measure on the 
half-line [ O ,  a) with the density function pr(q/p)-I x4-I exp (- xP). 

Many examples of generalized convolutions are to be found in various 
branches of probability theory (see [lo]). We shall quote some of them. In all 
examples the random variables X and Y are assumed to be independent. 

EXAMPLE 1.1. The convolutions *, (0 < p < co). These convolutions are 
defined by the formula 

(distr X) *, (distr Y )  = distr (XP + YP)l/p. 
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Here we have x (*,) = p and 1;2 ( t )  = exp(- tP) .  For p = 1 we obtain the or- 
dinary convolution *. 

EXAMPLE 1.2. Max-convolution *,. This convolution is defined by the 
formula 

(distr X) *, (distr Y) = distr (max (X, Y)). 

Here we have x I*,) = o~ and Q(t )  is equal to the indicator of the unit interval 
[0, 11. By Lemma 2.1 in 161, x (0) = co if and only if o = s, . 

EXAMPLE 1.3. Kingman convolutions *,, (p > 0 ,  q 2 1). The generalized 
convolutioii :,,,- is defined by the formula 

(distrX) *,, (distr Y) = distr (X2p + Y2p + 2Xp YP Uq)lJ2p, 

where the random variable U, is independent of X and Y, distrli, 
= $(6- + 6,) and for q > 1 the probability distribution of U, is concentrated 
on the interval [- 1, 11 and has the density function 

where B is the beta function ([5], Example 1.2). Here we have x (*,,J = 2 p  and 

(1.5) a;2p,q ( t )  = r (q/2) ( 2 / t P ) ( 4 -  2)12 J (, - 2)12 ItP), 

where J ,  is the Bessel function. The probability measure ~ ( 2 p ,  2pq-p) is 
*,,,-stable with exponent 2 p .  

2. Negative moments. Given s > 0 and P E P  we put 
m 

ns(p) = f ~ - ~ c l ( d x ) .  
0 

The set of all measures p from P with finite moment n,(p) will be denoted 
by P,. It is clear that 

(2.2) 7% (luv) = 7% (PI xs (v) . - 

. . for 'all p ,  v E P and - 

whenever 0 < u < s. 
Given s > 0 and a generalized convolution o with the characteristic func- 

tion p  -, $ we denote by E(o) the set of all probability measures p from P for 
which the h i t  

c 

f,@) = lim j @ ( t ) t F 1 d t  
e-+ m 0 

exists. It is evident that the set F,(o) does not depend upon the choice of the 



156 K. Urbanik 

characteristic function. As an immediate consequence of formula (1.4) and 
Example 1.2 we get the following inclusion: 

for a11 generalized convolutions o and s > 0. 

LEMMA 2.1. If p ~ F , ( o )  and ~ € 4 ,  then pv EF,(o) and 

P ~ o o f . ~  For c ->- 0 we have, by (1.31, 

Since YEP,, the measure v has no mass at the origin. Consequently, by the 
bounded convergence theorem, the right-hand side of (2.5) has the limit 
f, (P )  x, (v), which completes the proof. 

LEMMA 2.2. If y E P+ (0) and pv E 4 (01, then p E F, (0) and v E P,. 
Pro of. The condition p E P+ (0) and formula (2.5) yield the inequality 

Since the left-hand side of this inequality has a finite limit as c -+ m, we con- 
dude that v((o))  = 0. Now, by (2.5) and the Fdou  Iemma, we get the 
inequality 

a3 

f, bv) A 2 ., (v) j fi (t) ts- ' dt, 
0 

which, by (2.1), yields 
m 

nS(v)<m and f , ( f i )= j f i ( t ) t " 'd t<m.  
0 

The lemma is thus proved. 
- 

LEMMA 2.3. If PP, n P+ (0) # O ,  then 

P, n P+ (0) c F, (0) c P,. 

Pro of. We note that, by (2.4), F, (0) # 0. Taking p E F, (0) and 
v E P, n P+ (0) we get, by Lemma 2.1, pv E Fs (0). Applying now Lemma 2.2 we 
have j i ~  P, and v~F, (o) ,  which completes the proof. 

As an immediate consequence of the above lemma we get the following 
result: 

COROLLARY 2.1. If Ps n P+ (0) # 0, then P,  n P+ (0) = F ,  (0) n P+ (0). 

LEMMA 2.4. I f p ~ P + ( o ) n F , ( o )  and Y E P ,  then p o v ~ F , ( o ) .  
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Proof ,  It is clear that the function @(t) ts- l is integrable on the half-line 
[O, co). By the inequality I(p o v) 1 = ]ill 101 < fi ,  also the fiulction o v)^ (t) t " - I  

is integrable. This yields the assertion of the lemma. 

THEOREM 2.1. The foll~wing conditions are equivalent: 

0) S(0) c p,, 

(ii) S(O) n P, # 0, 

(iii) P, n P+ (0) Z 0, 
. . 

(iv) - b F d o )  cz p,. 

P r o  of. Since S (0) # 0, the implication (i) - (ii) is evident. The inclusion 
S(o) c P, (0) yields the implication (ii) * (iii). By Lemma 2.3 we have the im- 
plication (iii) *(iv). Finally, inclusion (2.4) yields the implication (iv) * (i), 
which completes the proof. 

In the sequel, I (o) will denote the set of all positive real numbers s fulfilling 
the condition S(o) c P,. The problem whether the set I(o) is non-void for all 
generalized convolutions o is still open, 

EXAMPLE 2.1. From the implication (iii) * (i) of Theorem 2.1 we get the 
equality I(o)  = (0, co) whenever P+ (0) = P. In particular, I(*,) = (0, a) 
(0 < p P a). 

EXAMPLE 2.2. Given p > 0 and q 2 1 we conclude, by Example 1.3, that 
Q (2p, 2pq-p) E S (*,,). It is easy to check that Q (2p, 2pq -p) E P, if and only if 
s < 2pq-p. Consequently, applying Theorem 2.1 (parts (i) and (ii)), we get the 
formula I (*,,,) = (0, 2pq - p). 

THEOREM 2.2. Given s E I (0) and a characteristic function p -+ fi  there exists 
a positive constant c, such that 

P r o  of. Let p E F, (0). Taking a o-stable measure 1 we have, by Theo- 
rem 2.1, I E P,. Applying Lemma 2.1 we get the formula 

(2.6) LOLA)" =f,(fi)z,t4. 
- 

Moreover, by Theorem 2.1 (iv), p E P, and, by (2.4), l E F, (0). Now, applying 
Lemma 2.1, we get the formula 

L ( P ~ ) ^  =L(J)R,(P)Y 

which together with (2.6) yields the assertion of the theorem with the constant 

c, = 7% (4iL (4. 
Changing the scale ji(t) = ji(c,lis t) we get a new characteristic function 

p -P p for which the constant appearing in Theorem 2.2 is equal to 1. Tbis 
characteristic function will be called s-normed. 
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3. Semigroups associated with generalized convolutions. Given s > 0 and 
a generalized convolution o we denote by Q,(o) the set of all probability 
measures p fulfilling the condition p o n ~ P ,  for all positive integers n. 

THEOREM 3.1. Q,(o) # 0 if and only $ SEI(O). 

Proof.  Suppose that p E Q, (0). Then p o p E P, n P+ (o), which, by Theo- 
rem 2.1 (iii), yields s E l(o). Conversely, suppose that s E I(o). Let JI E S (0). The 
power AO" being similar to A also belongs to S (0). Consequently, Ron E Ps 
(n = 1, 2, . . .) or, in other words, R E  Q, (o), which completes the proof. 

. TK? foildwing -result will play a crucial role in our consid&rations. 

THEOREM 3.2. A measure p belongs to Q,(o) if and only if both measures 
p and ~ o p  belong to P,. 

P r o  of. The necessity of our conditions is evident. To prove the sufficien- 
cy let us assume that p and p o p  belong to P,. Since p o p  E P+ (01, we have, by 
Theorem 2.1 (implication (iii) - (iv)), the inclusion 

Moreover, by Corollary 2.1, p o p~ F,(o) n P+ (0). Applying Lemma 2.4, we 
infer that ~ O " E  F,(o) for n 2 2, which, by (3.1), shows that p~ Q,(o). The theo- 
rem is thus proved. 

THEOREM 3.3. For every s > 0 and every generalized convolution o the in- 
ciusion P, n P+ (0) c Q, (0) is true. 

P r o  of. The case P, n P+ (0) = t3 is evident. In the opposite case we have, 
by Theorem 2.1 (iii), s ~ l ( o ) .  Let P E P ,  n P +  (0). Then, by Corollary 2.1, 
p E F, (o), which, by Lemma 2.4, yields p o p E F, (0). Consequently, by Theorem 
2.1 (iv), POPEP,, which, by Theorem 3.2, shows that p E QS(o). 

THEOREM 3.4. Let s E I(o). The set Q, (0) is a semigroup under operation o. 
- P r o  of. Let p, v E QS(o). Since po2", v~~~ E P, n P +  (o), we have, by Corol- 
lary 2.1, the relation po2", vo2" E F,(o) (n = I ,  2, . . .). Consequently, the func- 
tions 0'" (t) ts-l, $'" (t) t" are integrable on the half-line [o: a). - By the in- 
equality 

I(p 0 v (t) ")"I = I@ (t)l" lv" @)In < + (p2" (t) + $2n (t)) 

the functions ( p  o v (t)")" t" (n = 1, 2, . . .) are also integrable. Thus 
@ o v) On E F, (0) (n = 1 ,  2, . . .). Now, applying Theorem 2.1 (iv), we get 
p o v E Q, (0), which completes the proof. 

THEOREM 3.5. Let s E l (0). If p E Q, (0) and v E P,, then pv E Q, (0). 

Proof.  By (2.2), pv E Ps and, by (1.3), 
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Since (po p) v E P, n P +  (01, we infer, by Corollary 2.1, that (p o p) v E F, (0) and, 
consequently, the function ((p o p) v)" (t) ts-I is integrable on the half-line [0, m). 
InequaIity (3.2) shows that also the function ((pv) o (pv)) " ( t )  t9-I is integrable. Thus 
kv) o (pv) E F ,  (01, which, by Theorem 2.1 (iv), yields the relation (pv) o (pv) E P,, 
Applying Theorem 3.2 we get pv~Q,(o), which completes the proof. 

THEOREM 3.6. Qs(o) = P, if and only if d l ~ d l ~ P , .  

P r o  of. The necessity of the condition 6 i 0  6, E Ps follows from the rela- 
tion 6 ,  E P, and Theorem 3.4. Conversely, by Theorem 3.2, the relations 6, E P, 
and 6,06, EP, yield 6, E Q,(o). Now, applying Theorem 3.5, we conclude that 
p = 6 ,  p s  Qs(o)  for every p~ P,, which completes the proof. 

EXAMPLE 3.1. As an immediate consequence of Theorem 3.3 we get the 
formula Q, (o) = P, for all s > 0 provided P +  (0) = P. In particular, we have 
Q,(+,) = P, for all s > 0 and 0 < p < co. 

EXAMPLE 3.2. Kingman convolutions. According to Example 1.3 we have 
the formula 

Consequently, 
1 

x,(61*p,q81)=B(1/2, q/2)-' J ( 2 + 2 ~ ) - ~ ' ~ ~ ( 1 - ~ ~ ) ( ~ ~ ~ ~ d ~ .  
- 1 

Hence it follows that 6, *,,, 61 E Ps if and only if 0 < s < pq-p .  Taking into 
account Theorems 2.1 and 3.5 and Example 2.2 we get 

4. Auxiliary results. In this section we gather some auxiliary results on 
mappings of measures and differentiable characteristic functions needed in the 
sequel. Given a positive number s we denote by rn, the measure on the half-line 
[0, co) with the density function x"'. As usual, the set of all real-valued Borel 
square ms-integrable functions on [0, co) will be denoted by C(rnS) .  Given 
f ~L2(naJ we put 

for Borel subsets E of [0, a). 
The proof of the following lemma is based on an idea due to Braverman et 

al. ([3], Theorem 2.1). 

LEMMA 4.1. Let g E L? (m,) and x ,  ~ ( 0 ,  a). Suppose that g (x , )  > 0 and the 
derivative of g at x, exists and is equal to  0. Then for every positive number c and 
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suflciently small positive number h the inequality 

(gm,) (Cs Cxo) - 7 g (x,) + hl)  2- ch 
is true. 

P r o  of. Setting for y E (0, W) 

a(,?) = sup (Ig(x,)-g(x)l/lx,-xl: x 2 0, 0 < 1x0-xl G Y )  

we have aly) 0  as y + 0. Consequently, for every b > 0 there exists a positive 
number h (b) such that the inequalities bh < x, and a (bh) b d 1 are fulfilled for 
0 <. h r h (b). ' Observe that the inequalities 0  < h < min ( g  (x,), h (b)) and 
Ix, - xl k bh imply 

Hence we get the inclusion 

[xo - bh, xo + bh] c {x: Ig (xo) -g (41 G h) g-' (CQ Cxo)-h, g (xo)+hl). 

Consequently, 

= s-'(x,+bh)s-~-~ (x,-bh)' 2 ch, 

where c = x", b and 0 < h < min (s (x,), h (b)), which completes the proof. 

THEOREM 4.1. Let f, g E L2 (m,). Suppose that both functions are continuous 
on [O, a )  and diferentiable on (0, a). Further, suppose that the derivatiue of g is 
negative on (0, m) and 

Then the equality 

(4.2) fm, = sms 
on (-a, O)u(O, m) yields f = g. 

Proof .  By the assumption the function f is decreasing on [0, co). Since 
f~ L2 (m,), it converges to 0 at oo. Thus f is positive on [0, a ) ,  which shows, by 
(4.1) and (4.2), that both measures fm, and gm, are concentrated on the interval 
[0, f (011. Hence it follows that the function g is nonnegative. Denote by rp the 
inverse function for f mapping the interval (0, f (O)] into LO, a ) .  Of course, 
rp is decreasing and differentiable on (0, f (0)). Suppose that x, > 0  and 
g(xo) > 0. Then, by (4.1), the function cp is differentiable at the point g(xo). 
Moreover, by (4.2), 

whenever 0 < h < g (x,). This shows that the left-hand side of the above equali- 
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ty is less than ah for some constant a. Applying Lemma 4.1 we conclude that 
the derivative of the function g at x, does not vanish. In particular, the function 
g has no local extremum at the points x, ~ ( 0 ,  CO) with g (xD)  > 0. Hence and 
from the assumption g E L2 (rn,) it follows that the equality g ( x , )  = 0 for x ,  > 0 
yields g (x )  = 0 for x 3 x,. In this case we have, by (4.21, the contradiction 

=ms(CO, x,)) < 00, 
which shows that g (x) > 0 for all x E (0, m) and, consequently, the derivative of 
g does no f  ?ankh on (6, m). By inequality (4.1) this derivative is negative, 
which shows that the function g is decreasing on (0, a). Thus 

(4.3) (sm,) ([s (XI, Q (011) = s - xS (X > 0). 

By (4.1) we have the formula rp (g  (0)) = q Cf (0)) = 0 ,  Consequently, 

Vm3 (Cs 3 s (011) = s - ' Ep (Y (x))", 

which, by (4.2) and (4.31, yields cp(g(x)) = x for x > 0. Thus f = g, which com- 
pletes the proof. 

To state the next result we introduce some notation. Given a generalized 
convolution o we denote by DIo) the set of all probability measures p from 
P whose characteristic functions fi  are continuous on [0, oo), differentiable on 
( 0 ,  a) and fultil the inequality fi(t) < 1 for t ~ ( 0 ,  oo). It is clear that this defini- 
tion does not depend upon the choice of a characteristic function. 

The subset of D (0) consisting of measures p for which the derivative of f i  is 
negative on (0, a) will be denoted by A(o ) .  

THEOREM 4.2. For every generalized convolution o the inclusion A(o) 
c P+ (0) is true. 

Proof.  It is clear that for p~ A(o)  the limit 

(4.4) lim f i  ( t )  = c 
I+ m 

exists and 

(4.5) 
- 

P(t) > c for t 2 0 .  

Let 1, be a o-stable measure with finite exponent p and the characteristic func- 
tion fi(t) = exp (- tP) .  Put v = p11. By (1.3), 

m 

v" ( t )  = j exp ( - tP xP) p (dx)  , 
0 

which yields 

lim P (t) = p (10)). 
t + m  

On the other hand, v^ (t) = S," @(tx )  11 (dx) .  Since, by Lemma 2.2 in [ 6 j ,  the mea- 

L 1  - PAMS 19.1 
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sure R has no atom at the origin, the last equality and (4.4) yield 

lim P ( t )  = c .  
t-r m 

Comparing this with (4.6) we get the inequality c 2 0 ,  which, by (4.S), shows 
that p E P+ (0). The theorem is thus proved. 

Given an absolutely continuous measure p from P with the probability 
density function g we denote by T ( p )  the total variation of the function xg(x) 
on the half-line [U, a). Denote by P* the set of probability measures ,u with 
finite total - variation.. T (p) .  

L ~ A  4.2. If p E P*, v E P and v ((0)) = 0, then pv E P*. 

Pro of. Observe that the probability density function of-pv is given by the 
expression g (x /y )  y-' v (dy) ,  where g is the density function of p. It is easy to 
check the inequality T(pv) < T(p), which yields the assertion of the lemma. 

We define the family of transformations & (p > 0) of P by setting 
Vp (distrx) = distrXlip. 

LEMMA 4.3. The set P* is invariant under transfornations % ',(p > 0). 

Proof.  Let p E P*. Observe that the transformed measure Vp p has the 
density function pg (xP) xP-I ,  where g denotes the density function of p. Hence 
the equality T(T$p) = pT(p) follows, which completes the proof. 

A probability measure 1 on the real-line ( -  co, m )  is said to be unirnodal if 
for some c the function x + A((- co , x)) is convex on (- co , c) and concave on 
(c ,  co). The point c is called a mode of 1. The mode of a unimodal probability 
measure is not necessarily unique, but the mode of a probability measure from 
P concentrated on [0, a) is nonnegative. 

LEMMA 4.4. Let p be a unimodal measurefrom P with the probability den- 
sity function g a d  the mode c. If  the function cg is bounded on [0, m ) ,  then 
y E P*. 

Proof.  First observe that the measure p* 6- ,  regarded on the whole 
line ( - a ,  co) is unimodal with the mode 0 and the density function 
g, (x )  = g (x  + c)  for x E (- C, CO) and g, (x) = 0 otherwise. By the Khintchine 
theorem ([4], Chapter 6) the function 

X 

is non-decreasing and bounded on (- co , a). Hence it follows that the function 
X 

J s ( u ) d u - ( x - c ) g ( x )  
0 

is non-decreasing and bounded on [0,  a). Now it is easy to verify that the 
total variation T h )  is finite provided the function cg is bounded on [O, a). 
The lemma is thus proved. 
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Denote by S*(o) the subset of S(o) consisting of o-stable measures with 
exponent less than x ( o ) .  

THEOREM 4.3. For every generalized convoIution o the inclusion S* (0) r P* 
is true. 

Proof. First consider an ordinary convolution *. It is well known that 
the measures from S* (*) are absolutely continuous with bounded density func- 
tion. Moreover, by the Yamazato theorem [Ill ,  they are unimodal. Conse- 
quently, by Lemma 4.4, we have the inclusion 

; . .- . . ~ 

(4.7) . - S' (*) c P*. 

By Lemma 2.5 and Proposition 4.4 in [dl, each measure p from S* (0) is of the 
form p = (V, V I A ,  where p > 0, YES* (*) and A E S (0). By   em ma 2.2 in [6], the 
measure R has no atom at the origin. The relation P E P *  is a consequence of 
(4.7) and Lemmas 4.2 and 4.3, which completes the proof. 

THEOREM 4.4. For every generalized conuolution o other than the max-con- 
volutic~n the inclusion P* c D(o)  is true. 

Proof. Let P E P .  The continuity of ji on [O,  m) is an immediate con- 
sequence of the absolute continuity of p.  Further, by Lemma 2.2 in [7], we 
have the inequality P( t )  < 1 for t > 0. To prove the differentiability of F, on 
(0, co) we introduce a signed bounded measure rn by setting 

m (dx) = p (dx) - d (xg (x))  = - x dg (x ) ,  

where g is the probability density function of p .  By (1.2) the integral transform 
m 

f i  ( t )  = j i2 ( tx)  rn (dx) 
0 

is bounded and for t > 0 

Observe that, by (1.2), 
- 

X 

I l ~ ( t y ) d y l < x  ( ~ 2 0 ) .  
0 

Since the total variation T ( p )  is finite, the function xg (x)  has the limits as x + 0 
and x -, a. These limits are equal to 0 because of the integrability of g.  Using 
this fact and integrating by parts the right-hand side of (4.8) we get the formula 

which shows that the function ji is Werentiable on (0, a). The theorem is thus 
proved. 
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As an application of Lemma 4.2 and Theorem 4.4 we deduce the following 
result: 

COROLLARY 4.1. Let o be a generalized convolution other than the 
max-convolution. If p EP* n A (o) and v E P with v ((0)) = 0, then pv G A (0). 

We conclude this section by some examples. 

EXAMPLE 4.1. Taking into account Example 1.1 we get the equality 

(4-9) A (*,) = P 

whenever 0 < p < <: Moreover, by Example 1.2, we have A (+,I # P. 
b 

EXAMPLE 4.2. It  is easy to verify, by Example 1.2, that Q (p, q) E A (*,) and 
4 (p, q) E P* for all p, q > 0. Applying Theorem 4.4 we get the relation 

for all p ,  q > 0 and all generalized convolutions o. 

Before we go further we establish some results for Kingman convolutions. 

LEMMA 4.5. If 1 < q < r ~ n d  p > 0, then the inclusions 

(4.1 1 )  P+ (*p,q) c P+ (*p,r) 
and 

(4.12) P* n. A (*p,,) (*,,I 
are true. 

P r o  of. Given a, b, c > 0 we denote by A (a ,  b, c) the probability measure 
concentrated on the interval [0, 11 with the density function 

From the Sonine integral (see 121, 7.7 (5)) and (1.5) we get the formula 

Consequently, denoting by p + f i  and ,u -+ ji the characteristic functions for the 
Kingman convolutions *,, and *,,,, respectively, and taking into account (1.3), 
we get the equality 

1 

(4.131 P(t)  = S P ( ~ X ) ~ ( P ,  4 -1 /2 ,  r -q) (dx)  = (pA(p, q-112, r-q))" ( t) ,  

which yields inclusion (4.11). Suppose now that p~ P* n A (*,,,). Then, by Co- 
rollary 4.1, pR (p, q - 1/2, r - q) E A (*,,,). Comparing this with (4.13) we get 
inclusion (4.121, which completes the proof. 

EXAMPLE 4.3. Let p ,  q > 0. n e n  
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and 

Proof .  Given p > 0 and r 2 1 we denote by ,u 4 ji the characteristic func- 
tion for the Kingman convolution *,,,. From the Hankel integral (see [2], 
7.3 (16)) for every q > 0 we get the formula 

(4.16) d (p, q)  ( t )  = (1 + t2p)pq/2p 2F1 (q/2p, ( r p - p  -q)/2p; r /2 ;  tZp/(l + t2P)), 

where ,F, denotes the hypergeometric function. 
First consider the case q 3 p. Then setting r = q / p  we have, by (4.16) and 

formula 2.8'(4) in [I], 

6 (p, q) (t) = (1 + t2p)-'*+ g)I2p, 

which shows that Q ( p ,  q) E A (*,,,,). Since g (p, q) E P*, using Lemma 4.5 (in- 
clusion (4.12)) we get relation (4.14) for q > p. 

Suppose now that q < p and put r = 1 into (4.16). Then, by [I], 2.8 (111, 

6 ( p ,  4) ( t )  = (I + t2p)-d2p cos 4 (arc sin ( t p / J P ) ) ,  
P 

which, by a standard calculation, shows that g Cp, q ) ~  d (*,,I. Arguing as be- 
fore we get relation (4.14) for q < p. 

Now assume that q > p and max (1, q/p - 2) < s < q/p. Then 

Setting r = s into (4.16) we have, by formula 2.8 (46) in [I], 

~ohsequently, Q (p, q) 4 P+ (*,,), which, by Lemma 4.5 (inclusion (4.1 I)), yields 
relation (4.15). This completes the proof. 

5. Characterization theorems. We start by the definition of an equivalence 
relation. Given s > 0 by 10, p], we denote the pair consisting of a generalized 
convolution o and a probability measure p from Q,(o). Two pairs [o, p], and 
[O,  v ls  are said to be equivalent, in symbols [o, p], - [O ,  v],, if 
n, ()On) = n, (vnn) (n = 1, 2, . . .). 

THEOREM 5.1. Let p + ,4 and v 4 v" be characteristic functions for general- 
ized convolutions o a d  0 ,  respectively. Suppose that 

~ ~ F , ( o ) n Q s ( o ) ,  v ~ E ( U ) n Q s ( 0 )  
and 

(5- 1) f,(F")=bf,(fn) ( n = 1 , 2  ,...) 
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for a certain constant b > 0. Then [o, p], - [a, 6,v],, where 

(5.2) a = (~,(v)/n,Ol))'is. 
Proof. From (5.1) and Theorem 2.2 we obtain the equalities 

?I, bO") = c7rs (vUn) (n = 1 2 , . .) 
for a certain constant c. Setting n = 1 and taking the constant a defined by (5.2) 
we have c = a-". Consequently, by (2.2), 

which cmpletes the proof. 

As an application of Theorem 5.1 we get the following result: 

EXAMPLE 5.1. Suppose that 0 < p d q and 0 < s < q. fien 

(5.3) C*,,dPy e C p l  dl,  - Pp,2 +glp, 8. e by P+ 411, - L*zp3 Sb e (2p1 P+ qll,, 

where a = (1 -s /~) ' /"  and 

b = r ((p + q - ~ ) / 2 ~ ) ' / ~  r (q/p) lls r ((p + 4)/2p) ' j S  r ((4 - ~ ] / p ) -  le. 

Proof. By a standard calculation we get the formula 

By (4.14) and Theorem 4.2 we have the relation 

e b, 4) E P+ (*p,r) for r 2 q/p, 

which, by Corollary 2.1 and Theorem 3.3, yields 

(5.5) @b, 4)EFs(*p.r) n QS(%) for r 2 q/p and 0 < s < q. 

A similar reasoning leads to the relation 

(5.6) e b , q ) ~ F ~ ( * ~ ) n Q , ( * ~ )  for r>O and O < s < q .  

Denote by p -, f i ,  p -+ ,G and p + fi  the characteristic functions for the general- 
ized convolutions *p,qjp, 8p,2 +qip and %,, respectively. Setting r = q/p into (4.1 6) 
we obtain d ( p y  q). Similarly, setting r = 1 +q/p into (4.16) and replscing q by 
i + q  we get Q(p,  p+q). Further, by a standard calculation, we get @(2p, p+q). 
This yields the equality 

d tP, 4)(t)  = Q(P,  ~ + 4 ) ( t )  = @@P, p+q)(t) = (1 +t2p)-@+q)J25 

which, by ( 5 4 ,  (5.6) and Theorem 5.1, proves relations (5.3). The constants 
a and b can be calculated by means of formulae (5.2) and (5.4). 

The following result plays a crucial role in our considerations: 

THEOREM 5.2. Let p + fl  and v -, 4 be s-normed characteristic functions for 
generalized convolutions o and 0, respectively. If [o, pIs - to, v],, then 
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on the set [- 1, 0) u (0, 11. I f  in addition p E A (0) and v E D  (D), then 

(5.8) j i ( t )=f ( t )  for ~ E [ O ,  m). 
Proof. Since p~ Q,(o), we have, by Corollary 2.1 and Lemma 2.4, 

pM E F, (0) for n 2 2. Consequently, by Theorem 2.2, 
m 1 

~ , ( p * ~ ) = f s @ ~ ) = J  jP(t)ts-ldt= I xn@m,)(dx) for n 2 2 .  

Thus 

= j x2.e"(flm$(dx) = C n,(pO("+ ')) zn/n !, 
- 1 n= 0 

h 

which shows that the equivalence relation [o ,  ,uIul, - [O, v], yields the equality 
of the Laplace transforms of the measures x2 (pm,) (dx) and x2 ( fmJ  (dx). This 
implies equality (5.7). 

Finally, suppose that p E A (0) and v E D (0). Then equality (5.8) is an im- 
mediate consequence d Theorem 4.1. This completes the proof. 

We are now in a position to prove the following characterization theorem: 

THEOREM 5.3. Let p E A (0) n Q,(o) and v E D (0). 7hen the equalities 
n,(pm) = z,(von) (n = 1 ,  2 ,  . . .) yield p = v.  

Proof. The conditions of the theorem can be written in the form 
[o, pJs - [o ,  v],. Applying Theorem 5.2 we get P = $ and, consequently, p = v, 
which completes the proof. 

In the sequel the following lemma will be used: 

LEMMA 5.1. Let p + @ and v + v" be characteristic functions for generalized 
convolutions o and q , respectively. If f i  (t) = D(t) for all t E [0, oo) and a certain 
PEP, with s ~ l ( o ) n l ( O ) ,  then o = 0.  

Proof. We can find two probability measures q and a fulfilling the con- 
ditions q E S(o), a~ S (0) and (t) = 3( t )  = exp (- tP) for some p > 0. Of 
course, q ,  ~ E P ,  and, by (1.3), 

OD m 

1 exp ( - tP xP) (dx) = bad " ( t)  = 1 ii ( tx)  (oq) (dx) 
0 0 - 

m 00 

= 1 li (tx)(a?) (dx )  = (Po?)- It) = J exp ( - t p x p )  (PI) ( d ~ ) ,  
0 0 

which, by the uniqueness theorem for the Laplace transformation, yields the 
equality pq = pa. Consequently, by (2.2), nr (p) xr (q) = .n, (p)  xr (a) for 0 < r 6 s. 
Taking. into account (2.1) we conclude that z, (g) = nr (a) for 0 < r < S ,  which, 
by the uniqueness theorem for the Mellin transformation, yields the equality 
q = a .  Thus vj(t) = f ( t )  = exp(- tP). Given an arbitrary measure 1 from P, we 
have 

m CO m m 

1 fi(tx) q (dx) = j 4 ( t x ) l  (dx) = j {( tx)  l (dx) = j X(tx) q (dx). 
0 0 0 0 
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Applying Lemma 2.2 of [5J we conclude that 1 = 1. Thus for every pair 1 ,  v E P 
we have (A o v)" = & = ZT = (L q v)- = (A v)" , which yields the equality 
Aov = l v. This completes the proof. 

THEOREM 5.4. Let o and be a pair of generalized convoEutions. Suppose 
that p~ A (o) n Q,(o), v E D (0) and the measures p and v are similar. nett the 
equalities x, (pO") = x, (vnn) (n  = 1, 2 ,  . . .) yield o = . 

P r o  of. Denoting by 1 + 1 and 1 + X s-normed characteristic functions 
for the convolutions o and 0, respectively, we have, by Theorem 5.2, the 
equalitF$ (t) = f (t)  f;;r all t E [O, a). By the assumption we obtain i = S, p for 
some c > 0. We define a new characteristic function 1, + Xfor the convolution 

by setting X = (6, A)". Then P ( t)  = &(t) for t E [O ,  m), which, by Lemma 5.1, 
yields the assertion of the theorem. 

We shall now illustrate the above theorems by some examples. 

EXAMPLE 5.2. Let o be a generalized convolution, s E I (a) and 0 < p < x (0). 
If p E D (o) and ns (p03 = bn-"I"n = 1 ,  2, . . .) for a certain constant b, then 
PELS* (0). 

Proof .  Let v be a o-stable measure with exponent p and the characteristic 
function of the form (1.4). Then, by Theorem 2.2, 

Taking the constant c satisfying the condition c-"IP c, r (s) = b we have n, 
(n  = 1 ,  2, . . .), which, by Theorem 5.3, yields p = v. This completes the proof. 

EXAMPLE 5.3. Let o and be a pair of generalized convolutions. Suppose 
that s ~ I ( o ) ,  ,u is a o-stable measure with exponent p c x(o) ,  and 
ns (pun) = bn-slp (n = 1,2, . . .) for a certain constant 6. Then o = . 
- P r o  of. Arguing as before we can find a measure v similar to p such that 
ns(vO") = bn-"P (n  = 1, 2 ,  . . .). Now our assertion is an immediate consequence 
of Theorem 5-4. - 

EXAMPLE 5.4. Let p > 0 and 0 < s c q. If a generalized conuolution o fuEfiEs 
the condition R,(Q (p, q)O") = br((nq -s)/p)/r (nqlp) (n  = 1, 2, . . .) for a certain 
constant b ,  then o = ? e p .  

Proof.  It is easy to check the formulaelp, q ) s , ~ ( p ,  r) = g(p, q+r). Con- 
sequently, by (5.4), 

Observe that, by (4.9) and (4.10), g ( p ,  q) E A (*,) n D (0). Now our assertion is an 
immediate consequence of Theorem 5.4. 
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EXAMPLE 5.5. Let p > 0 and 0 < s < q .  If a generalized convolertion o fulfils 
the condition n,(@ ( p ,  q)on) = b r  ((nq - s)/2p)/r (nq/2p) (n = 1,  2, . . .)for a certain 
constant b, then o = *,,I ,,/,. 

Pro  of. Denoting by fi + /I the characteristic function for the Kingman 
convoIution *,,l+,,p and setting r = 1 + q / p  into (4.16) we get the formula 

@(PI q)(t)  = (1 +t23-4'2P. 

Thus, by an integral representation of the beta function (see [I], 1.5 (2)), we get 

which yields, by Theorem 2.2, 

for a certain constant c. Observe that, by (4.10, (4.14) and (5.51, 

Now our assertion is an immediate consequence of Theorem 5.4. 
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