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Abstract. The central limit theorem, the invariance principle and 
the Poisson limit theorem for the hierarchy of freeness are studied. We 
show that for given m G N the limit laws can be expressed in terms of 
non-crossing partitions of depth smaller than or equal to m. For 
d = C[x], we solvc the associated moment problems and find ex- 
plicitly the discrete limit measures. 

1. Introduction. The notion of the hierarchy offieenass was introduced in 
[3] in the context of a unification of the main types of non-commutative 
independence (tensor, free, and Boolean, see the axiomatic approach in [7] and 
[S]). The main idea of the construction presented in [3j was to approximate 
the free product of states [ll] through a sequence of products called m-free 
products, mEN, using only tensor independence. In this way one obtains 
a hierarchy of products as well as a hierarchy of non-commutative probability 
spaces, the latter of which was called in [3] the hierarchy of freeness. 

In the hierarchy of m-free products the two extremes are given by the Boolean 
product which corresponds to the first order approximation for m = 1 and the free 
product, obtained for m = cr, . Thus the hierarchy fills the "gap" between the Boolean 
product and the free product. Its another important feature is that it equips the 
combinatorics of non-crossing partitions with a hierarchic structure induced by their 
depths. Recall that the combinatorics of the Boolean product is based-on the 
socalled interval partitions, and that of the free product - on all non-crossing 
partitions. By studying convolution-type limit theorems in this paper, we establish 
a connection between the combinatorics of the m-free product for, rather, of the 
m-free convolution) and non-crossing partitions of depth d (P)  < m. Thus the hierar- 
chy also fills the "gap" between the combinatorics of interval partitions and that of all 
non-crossing partitions. Let us add that the hierarchy of freeness lends itself easily to 
certain generalizations, and in fact was introduced in [3] in the context of the con- 
ditionally free product of states (see [I]). Other generalizations were indicated in [2]. 
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In this work we study the convolution-type central limit theorems, the 
invariance principles and Poisson's limit theorems for m-free products, calling 
those theorems m-free limit theorems. Let us only note that we do not use the 
m-free convolutions in our notation. Nevertheless, all theorems can be phrased 
using m-free convolutions introduced in 131. It is well known that in the central 
limit theorem for free independence [1 l] only non-crossing pair partitions give 
rise to the limit Wigner semicircle law [9 ] .  In our case we show that in the 
m-free central limit theorem only non-crossing pair partitions of depth less than 
or equal to m appear in the cornbinatorial form of the limit law for each m E N .  
For the-special case of the algebra of polynomials in one variable- C [ x ] ,  we 
introauce~a hierarchy of Cauchy transforms of the limit laws, which enables us 
to recover the corresponding hierarchy of discrete measures on the real line 
which approximate the Wigner measure. A similar approach is used for m-free 
Poisson's limit theorems. 

Section 2 is of preliminary character and contains all needed facts on the 
hierarchy of freeness. In Section 3 we prove the central limit theorem for the 
hierarchy of freeness (Theorem 3.5). Note that our approach is based on the 
tensor product construction developed in [3] and as such gives a new (and 
probably the most explicit) proof of the free central limit theorem. In Section 4, 
the corresponding invariance principle is stated (Theorem 4.1) and a hierarchy 
of rn-free Brownian motions is introduced. In Section 5, we restrict ourselves to 
C[x] and study the hierarchy of measures corresponding to the central limit 
laws. We show that they are discrete measures that approximate weakly the 
Wigner measure. Poisson's limit theorem for the hierarchy of freeness is proved 
in Section 6 and the associated moment problems are solved. 

2. The hierarchy of freeness. This section is of preliminary character and 
contains all needed facts on the hierarchy of freeness. For more details, see 131 
and [2]. 

Let (dJ1,, be a family of unital *-algebras and let (#,),,, be the correspon- 
ding family of states. We assume that d, = dc$P@l,, where d: is a *-sub- 
algebra of dl,  and in the free product *,,, A, we identify units. Extend each dl 
to 2, = dl * Cft,), where C(t,) is the unital *-algebra generated by the projec- 
tion t,. Make 2, into a *-algebra in the canonical fashion. Finally, denote by 

the Boolean extensions of (JJ,,, i.e. states on ( d ~ , , ,  given by $,(1,) = 1 
and 

& (t( uf l )  t, . . . t ,  a") t j )  = 4, (a(')) . . . 
for a['), . . ., d:, r, s E (0, 1). For details, see [2]. 

Consider the quantum probability space (9, &), where 

$ 8 = @ d P m ,  6=@(pm, 
1 E I  l€I 

and the tensor products are understood as in [2] with canonical involutions on 
@,,dl and 98. This is the quantum probability space in which one can embed 
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the hierarchy of freeness defined in 131 (see again [2]). Since we have two tensor 
products here (over I, and then over Nfor each 1 E I), we will label tensor sites 
by ( I ,  k), 1 e I, k E N,  and we will refer to 1 and k  as the outer and inner site, 
respectively. 

In the definition of these embeddings the following notation wd be used. 
For IEI ,   EN, let 

ikl): .a, + np 
be the linear mapping given by 

- .ijf)(a)= ~ ~ ~ " - ~ ) @ a @ I f ' "  for U E ~ , .  

For the not2tional convenience we put #(a)  = 0. Further, we denote by 

a projection in J@"O which is built from projections t, at all sites 2 k ,  k 2 1, 
and we put t# = 0 for convenience. 

We define the linear mappings 

yf' : dp -+ a, yf' (a) = it) (a) @I @ tg), 
r # l  

$I): at? + &?, Ijc) (a) = i f )  (a) @I @I 
r # l  

where  EN, E E  I. Note that since ig)(t) = 0, we have y^y)(a) = 0. In other words, 
#(a) puts a ~ d ?  at site (I, k)  and projections t, at sites (r, s) for all r # 1 and 
s 2 k. In turn, $)(a) puts a at site (1, k)  and projections t, at sites (r, s) for all 
r # l  and s$k-1. 

It was shown in 121 that the mappings 

where IEI ,  m E N, are *-homomorphisms. Using them, we can define for each 
m E N the *-homomorphism 

jcm): * dl + a 
!€I - 

as the linear extension of j'") (I) = I?" and 

where ai E d;, li E I, i = 1, . . . , n. 

DEFINITION 2.1.The sequence of quantum probability spaces ( d m ) ,  @["I),,, 
where d(") = j(m)(*l,I d,) and @(") is the restriction of 6 to d("), is called the 
hierarchy of $-eeness. The state 6(") is called the m-free product state and 
j(")(a), a E df , are called the m-free random variables. 

Remark. Note that 6oj'") defines a state on *l,,dl. 
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The GNS representation of the hierarchy of freeness [2] will also be useful 
here. Thus, let (S1, n,, Q,) be the GNS triple associated with the pair (dl, 43, 
i.e. & is a pre-Hilbert space, TC, is a *-representation of 4, and 52, is a cyclic 
vector such that 4, ( x )  = {D,, n, (x) for any x E 4. We start with the infinite 
tensor product pre-Hilbert space 

with respect to the vector SZ = @,,,9~" and denote by 

- r d + 9 ( Ff): &It; + Y (sf@) 
4 

the *-homomorphisms corresponding to y f ) ,  ŷ f! i.e. 

rf) (a) = if) (n, (a)) 0 @I Pff , (a) = if) (x, (a)) @ 69 Pfi)- 1 
j # I  j # l  

for a E d:, where Pii) = Id@(k- l )@(P( j ) )@m,  P(j) is the projection .onto the 
vacuum Qj in Xj, and PI, = 0. Then the GNS representation xBm of 

d l ,  @ ~ j ( ~ ) )  is given by 

( I )  = @ I and n B m  = * xf'" on * d:, 
1EI ,€I QI 

where 
m 

@ (a) = C (rf) (a) - f f )  (a)) for a E d:. 
k =  1 

For each  EN the cyclic vector is D and the carrier space of TC@" is 

We need to take a closer look at the correlations 

7 '  ( 1 )  - j )  a )  = C &(.hi ,ml (all  - . . jlnsmn (an)) 
1 C m l ,  ..., m,Cm 

-for any tuple ( l , ,  . . ., I,), a,€&:, i = 1, . . ., n. Equivalently, we can write 

6 (fjy) (a1)  . . . j!:) (an)) = 6 0 j ( ~ )  ( a l ,  . . . , a,). 

Before we derive some results which are specific to the central limit theorem 
and use the assumption on the zero mean, we prove a "pyramid formula" 
(slightly more general than the one in [3]), which always allows us to reduce 
the summation in the above sum to a "pyramid". We also give a new proof, 
using the GNS representation. 

PROPOSITION 2.2. The following formula holds: 

where Yz = {(p ~ , . . . , P A I  1 < p k , p n - k < k r \ m , l  < k < n / 2 )  and k ~ m  
= min ( k ,  m ) .  



Limit theorems for the hierarchy of freeness 27 

Proof. Using the GNS representation, we obtain 

and thus, in order to prove the proposition, it is enough to show that if 
(ml , . . ., m,) 4 Y:, then 

(1) {a, (rg:) (a,) - Pg) (a1)) . . . (rk) (a,,) - Pk) (a,)) Q) = 0. 

Introduce the filtration 

: . gg r: 2: c ... c 2'; c ... 
of subs~jacesbof X @  given by JP~, = Ci2 and 

Note that if k > 1, then r f l ( a )  agrees with f i l )(a) on Xk-21. Moreover, 

(GI) (a) - Tif) (a)) Sf- c &'$ 
for any k 2 1. These two facts imply that 

(Fkj (al)  - fgl (al)) . . . (rkl (an) - fkl (a,,)) = 0 

if (ml, . .., rnJ$O:, where 

8:: = ((P ..., p,,) I 1 <pi  < (n-i+1) A m). 

We can repeat this argument for the adjoints and obtain a mirror reflection 
of this condition ((m,,, ..., m , ) 4 8 ~ ) ,  which finally leads to (1) if 
(m1, - * - ,  m34 rr. 

PROPOSI~ON 2.3. If 4 = d, rj1 = 4, I E  I ,  then the correlations of rn-fiee 
random variables are invariant under permutations n: of N, i.e. 

&(A?/l) (al) . . . A$,,)(a,,)) = $(jl?)(al) . . . ji:)Ian)). 

Moreover, if {El, . . ., l,) n { l , ,  ,, . . ., 2,) = O,  then 

$Qjy)(al) -. jIr)(an)) = $(.j!?)(al) -. - jir)(ar)) 6(j!r: (ar+ 11 - - .  jj:)(an)). 

Proof. From the properties of the tensor product and the fact that 
4, = 4 for all EEI, we obtain 

6 (yir(ll)) (al) . . . y i r ( f n ) )  (aJ) = 6 (y;!ll) (al) , . . yE;ln)(a,)) 

for any 1 < k,, . . ., k, < rn, where y$o(a) = y$)(a), y^fl(a). From this we get the 
first part of the proposition. The second part is obvious. rn 

3. A central limit theorem. In this section we prove the central limit theo- 
rem for the sums of m-free independent random variables. We show that in the 
limit only the non-crossing pair partitions P of depth d(P)  < m give 
a non-vanishing contribution. 
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DEFINITION 3.1. A pair partition P = { P I ,  . . ., P,} , where P j  = {a (j), j? (i)} , 
j = 1, . . ., k, of the set (1, . . . , 2k) is crossing if there exist 1 4 p, q 5 k such 
that a (p) < or (q) < p (p) < j? (9) .  If P is not a crossing partition, then it is called 
non-crossing. If P is non-crossing, then by d ( P )  we denote its depth, i.e. the 
maximum of all integers d for which there exist 1 < s,, . . ., s, < k such that 
a(s l )  < . . . < a(sd)  and P(s,) > .., > /3(sd), We will denote the set of all 
non-crossing pair partitions P of depth d ( P )  < m of the set (1, . . ., n} by 
NC,P"" (m). 

Remar=k. If we-link each a (I) with /I (I) in a pair-partition P by "bridges", 
then a &ir-partition is non-crossing if and only if it is possible to draw these 
bridges without intersections. The depth d(P) of P is then the maximal number 
of bridges that pass over the same "gap". 

Note that with each tuple ( E l ,  . . ., I,), l , ,  . . ., E , E  I, we can associate 
a partition P of {I, . . ., n}. This can be done as follows. Let K = 

= {k,, . .., k,) = (l,, ..., in) with k ,  < k, < ... < k, and put 

Pi = {p I k, = i}. 

Then we will say that the partition P is associated with the tuple (I,, . .., En). 

LEMMA 3.2. Assume that the partition P associated with the tuple 
(El, . . ., En), where n = 2k, is a non-crossing pair-partition of depth d ( P )  > m. If 
$(ai) = 0 for i = 1, ..., n, then 

P r o  of. First of all note that each site can be occupied by at most two 
elements since P is a pair-partition. Assume that d ( P )  > m. Each jyl(a,), 
1 Q r d n, is a sum of rn terms in which a, appears at m different sites, namely 
(f , ,  u), 1 < u d rn. Since P  is a pair-partition, and thus a given a, has only one 
"partner", say as at site (I,, w) with 1, = 1, = I ,  the only way to avoid "single- 
.tonsm (first-order moments) is for each pair to occupy the same inner site, i.e. 
u = W .  NOW, we have at least d(P) pairs to occupy at most m different inner 
sites. Since d ( P )  > m, at least one inner site, say u, must be occupied by two 
pairs, say (a,, a,) and (a,, a,), 1, = I, = I, I ,  = I, = 1'. Now, since P is 
non-crossing, we must have r < p < q < s or p < r < s < q .  In the first case, at 
site (1, u) we obtain 

. . . a, t . . . ta, . . . 

since j,,,u(ap) and j,,,,(a,) put a projection t at all sites (b ,  c), b $ E' 
and c 2 u. Thus a, and a, are separated by t which produces first moments, 
therefore gives zero by our zero mean assumption. The second case is analo- 
gous. B4 

LEMMA 3.3. Assume that the partition P associated with the tuple 
( l , ,  . . ., ln), where n = 2k, is a rzon-crossing pair-partition of depth d ( P )  < m. If 
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q5(ai)=0 for i =  1, ..., n, then 
l' 

(A:' (a 1, . - . A:' (a,)) = n 4 lap,), 
i =  1 

where a, = Hi,, a, for any J c 11, . . ., n), with the product taken in the natural order. 
Proof.  The proof will proceed by induction. Clearly, the case rn = 1 boils 

down to considering interval pair-partitions (only they can be of depth 
d ( P )  < 11, i.e. take 

P ={{it, iz}, (i2k-1,iZk))- 
Then - . - 

6(ji:'(al) . .. ~!::(QZ~)) = &(al a,) . . . 4 (atk-1 a2k). 

Assume now that 
k 

&bI;-"(a,) - .  (a2k)) = 4 lapi> 
i = L  

for d (P) d m- 1 and any k. We will show that the same property holds for j'") 
and non-crossing partitions of depth d ( P )  < m. 

The proof of that fact will be carried out by induction with respect to k. If 
k = 1, then we clearly have 

&(jf?) (al)jllrl (a,)) = q5 (a ,  a,). 
Assume that 

for any tuple (I,, . . ., I,,-,), where S is the partition associated with it and 
d(S) < m. Now, when considering &(jiy)(a,) . .. jf~;(a,~)), it is enough to con- 
sider the case when 1, = E,, since otherwise P would separate into subpartitions 
and the correlation would factorize by Proposition 2.3, thus we could apply the 
inductive assumption with respect to k. By Proposition 2.2, 

&(I?' (a11 . ..I%: ( a d )  = C @(jr,,ml (a,) . . . jr2k,nrz, (a,,)). 
( m ~ ,  ...>m~k)€k)~Y?k 

Keeping in mind that jlt,,z(ai) = yjt;j)(a)- jg)(a), 1 < i S 2k, we can-see that the 
only way to avoid a separation of a, from a,, (which would produce two 
singletons and thus give zero contribution) is to take into account in the above 
sum only those tuples (m,, ..., r n , , ) ~  Tyk for which m,, . . ., m,,-, # 1 (i.e., in 
particular, m, = mzk-l = 2), and, moreover, assume that the products start 
with gP)(a,) and end with y':2k-1)(a2k-1). Then, at site (I,, 1) we get a, a,, and 
at (I,, I), p~ (2,  . . ., k), we get either the projection t or the unit 1, and 4 sends 
them to 1. Therefore, we obtain 
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by the inductive assumption with respect to rn, where 
{ P I  . P}, P ' = ( P  ,,..., P,] and P1={1,2k).  I 

LEMMA 3.4. Assume that the partition P associated with the tuple 
( E l ,  . . ., En), where n = 2k, is a crossing pair-partition. If &(ai) = 0 for 
i = 1, ..., n, then 

& (jly) (a ,) . . . (a,)) = 0. 
Proof,  We will show that the correlation which corresponds to a crossing 

pair-partition P of (1, . . ., 2k}  produces a singleton, and thus vanishes by the 
mean i%:o assumption. 

There exist 1 < p c q < I. < s < 2k such that 1, = I, = I, I, = I, = 1 ' .  It is 
enough to consider those terms from the "pyramid in which rn, = m, = u and 
m, = m, = w since otherwise we obtain at least one singleton which makes the 
contribution vanish. Suppose now that u G w. Then j,,,(a,) and j,,,(a,) put 
a projection t at site (l', w )  since they put a t at all sites (b, c), where b # I and 
c 3 u. Thus, at site ( l ' ,  w) we obtain 

... t . . . a  ,... t . . . a  ,..., 
and thus t separates a, and a,. If u > w ,  then a similar thing happens to a, and 
a, at site ( E ,  u). This makes the contribution of all terms vanish. rn 

Assume now that A?, = sf, 1 E N .  We will derive the central Iimit theorem 
for the sums of m-free "independent" variables (in other words, the central limit 
theorem for m-free convolutions) 

1 
Sf?) (a) = - jhm) (a), where a E sf0= 

,,hi ,'=I 

THEOREM 3.5. Let m E N ,  a,, . . . , a, E d ,  and let 4 be a state on d for 
which #(ai) = 0, i = 1, ..., n. Then 

lim 6 (SF) (a,) . . . Si;") (a,)) = 
N-m 

C 4 (ah] . * . 4 (upk] 
{PI, . ..,P~)ENCP(~) 

if n = 2k. If n is odd, then the above limit vanishes. . . 

Proof.  Using Proposition 2.2 and typical central limit arguments (see, for 
instance, the limit theorem for correlations which are invariant under 
order-preserving injections in [4] or [lo]) we know that only pair-partitions 
may give a non-vanishing contribution as N -, m. Now use Lemmas 3.2-3.4 
to see that out of these only the non-crossing pair-partitions of depth < m 
really give a non-vanishing contribution. The second part of the theorem is 
again standard and follows from the assumption on the zero mean. rn 

COROLLARY 3.6. In particular, ifd = C[x], x* = n, and & (x2) = I ,  then 

M:'") = l i d  ((sP) (x))") = INCY (m)l for n even. 
N - r  m 

The odd limit moments vanish. 



Limit theorems for the hierarchy of freeness 3 1 

The corollary follows immediately from Theorem 3.5. 

Remark. Knowing that m-freeness approximates freeness, we automat- 
ically obtain the central limit theorem for free random variables (as well as 
conditionally free random variables or their possible generalizations as discus- 
sed in [23). For that purpose and for given n = 2k it is enough to take the 
k-free product state. 

In Section 5 we will solve the moment problem for the limit moments 
given by Corollary 3.6 for each m. 

4. An invariance principle and m-free Brownian motions. In this section we 
state an'invariance principle for the hierarchy of freeness. We also define a cor- 
responding hierarchy of Brownian motions and show that, under some addi- 
tional assumptions on the state #, the limit distributions obtained from the 
invariance principle are the distributions of the hierarchy of Brownian motions. 

Let us begin with the invariance principle. Let a E do and instead of the 
sums SI;-")(a) consider now sample sums 

1 " 
S& (a) = - C jim) (a) f i  k = l  k -  1 

indexed not only by N and m, but also by f G (It+), where LZ, (R , )  stands for 
the square integrable real-valued functions with compact support on R. 

THEOREM 4.1. Let f, ,  ..., L E G @ + ) ,  a , ,  ..., an€&', m, N E N .  Then 

Iim 6 (fig), (a,) . . . s$& (a,)) 
N+ca 

if n = 2k, where Pi = {a  ti), ( i ) ) ,  i = 1 ,  . . ., k. If n is odd, then the above limit 
vanishes. 

Proof.  This is a special case of the invariance principle for correlations 
invariant under order-preserving injections proved in [lo]. BI - 

-Under certain additional assumptions one can realize the limit distribu- 
tion in terms of creation and annihilation operators on a suitable Fock space. 
Note that the only difference between our invariance principle and the in- 
variance principle for free independence is that in the case of m-freeness only 
non-crossing partitions of depth < rn survive in the limit. 

To take that into account it is enough to define the m-free Fock space 

with the vacuum vector L?, = 1 @ 0 @ . . . @ 0 and the canonical scalar prod- 
uct (., . ) F ( m ) .  
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Next, we define the m--ee creation operators 

with a(")*(f)l2,,, = f and the m-fee annihilation operators 

if 1 < n < m and a(") (f) Dm = 0. Note that a(")* (f), dm)Cf) E B (S(m)). 
We are ready to find a realization of the invariance principle limit in terms 

of the m-free creation and annihilation operators under standard assumptions. 
For simplicity we assume that d is the *-algebra generated by one element 
a and we write d = C(a, a*). 

THEOREM 4.2. Let 4 be a state on C {a ,  a*) such that #(a) = I$ (a*) 
= #(aa) = $(a*a) = #(a*a*) = 0, #(aa*) = 1. Then 

for all  EN, aEa,  ..., a E n ~ { a ,  a*), f,, ..., L E G @ + ) .  

P r o  of. I t  is enough to notice that the m-truncated creation and annihila- 
tion operators are defined in such a way that there can be no contribution from 
pair-partitions of depth greater than m since the latter would require a tensor 
product of order greater than m. rn 

For each  EN denote by %(") the C*-algebra generated by a(")* lf), 
a(")Gf), f ~ l ? ( R + ) ,  and let cp, be the vacuum expectation state in the rn-free 
Fock space. Then the pair (%["), q,) can be viewed as the m-free Brownian 
-motion and the collection (%("), y,,JmEN as the hierarchy of m-jree Brownian 
motions. 
- 5. The hierarchy of limit measures. In this section we solve the moment 
problem for the m-free central limit laws obtained in Section 3 in the case when 
d = C [ x ] ,  where x = x*. We obtain a sequence (pJmGN of discrete measures 
that approximate the Wigner measure. 

For that purpose, let us introduce the hierarchy of Cauchy transforms 
(Gm(z)),, for the sequence of limit laws given by Corollary 3.6: 

where M;") = I N C P  (m)l, rn, n E N, and, in addition, MLm) = 1, m E N .  We also 
adopt the convention that Mp) = dnS0 ,  which gives Go = l/z. For the use of 
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Cauchy transforms in the case of freeness (conditional freeness), see [12] and 
[ 5 ]  (cf. also [I]). 

The moments Mjm) grow less rapidly as N + cc than the moments M ,  of 
the Wigner measure. Therefore it is clear that for each m there exists a unique 
measure p[m) of which G, is the Cauchy transform. In particular, p(O1 = 6,. We 
will find the explicit form of ,dm) for each rn E N. 

LEMMA 5.1. The hierarchy of Cauchy transforms satisfies the recurrence 
relation 1 , . 

where III  EN,^ with GO (z) = 1/z if 121 > 2. 

Proof.  Let us assume that we know the number of non-crossing 
pair-partitions of depth less than or equal to m of the set (1, . . ., 2k) for any 
k < n. To get a non-crossing pair-partition of depth less than or equal to m of 
the set (1, . . . , 2n +2), we have to choose a number k E (2, . . ., 2n + 2) that will 
form a pair with 1, then choose a non-crossing pair-partition of depth less than 
or equal to m- 1 for the numbers between 1 and k,  i.e. of the set (2, . . ., k -  I), 
and a non-crossing pair-partition of depth less than or equal to m for the 
numbers from k + l  to 2a+2, i.e. of the set ( k + l ,  ..., 2nf2) .  

Therefore, there are exactly INC!e2 (m- 1)I I N C ~ ~ E k 2  (m)l such pair-par- 
titions in which 1 is paired with k. For the total number of non-crossing 
pair-partitions of depth less than or equal to rn of the set (1, . . . , 2n + 2) we get 

The terms with odd k give zero since there can be no pair-partition of a set with 
an odd number of elements. Hence 

The recurrence relation for the moments leads easily to the desired recurrence 
relation for the Cauchy transforms if lzl > 2 since - 

and therefore 

which completes the proof. rn 

3 - PAMS 19.1 



34 U. Franz and R. Lenczewski 

Remark  1. Note that the series given by G ,  (z )  converges absolutely for 
lzl > 2 and all m E N since 

INCgr(m)l < INCFJ, 
where 

denotes the number of all non-crossing partitions of the set {I , . . ,, 2k). 
Clearly, 

- INC,P""I = INC,psir(m)l = 0 if n is odd. 
b 

Re mark  2. The Cauchy transforms G ,  (2) are rational functions of the 
complex variable z .  In particular, . 

We will show below that G, has m + 1 simple poles in the interval (-2, 2) 
(and none anywhere else). For that purpose we use the Chebyshev polynomials 
of the second kind 

sin [(m + 1) arc cos(x)] 
Urn(x) = sin [arc cos (x)] 

for x E (- 1 ,  I), rn€ N u  (0). They satisfy the recurrence relation 

u m + l  (x )  = 2x um(x)- urn- I (x) 

with U, (x) = 1. Denote by Urn (z)  the analytic extension of U ,  (x). Note that 
U,(z)  has exactly m simple zeros 

and that the zeros of Urn (z)  differ from those of Urn+ ( z ) .  This enabIes us to 
define the meromorphic function 

with m+ 1 simple poles on the real line given by 

We show below that Wrn(z) coincides with G,(z). 

LEMMA 5.2. Let m ~ N u  (0). The Cauchy transform Gm(z)  agrees with 
wmtz)  for z$(z , , ,  I 1 $ k < m + l ) .  
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P r o  of. Clearly, W, (z) = Go (z) = l / z  since U, (z) = 1 and U, (2) = 22. Let 
us show that the functions W,(z) satisfy the recurrence relation given by 
Lemma 5.1. If rn 2 1, then the recurrence relation for the Chebyshev polyno- 
mials of the second kind gives 

for all 2 4 (Ym,k 1 1 < k < m+ 1). Therefore, Gm (z) must agree with W, (2) also 
for m 2 1 on the intersection of their domains, which completes the proof, a 

THE~REM 5.3. The measures p(") take the form 

where 

for m ~ N u ( 0 }  and k = 1, ..., m + l .  

P r o  of. We have to invert the Cauchy transforms. By Lemma 5.2, Gm (z) is 
a rational function with the degree of the denominator exceeding that of the 
numerator and with simple poles at z,,~, 1 < k < m+ 1. Thus its decomposi- 
tion into partial fractions takes the form 

This shows that G,(z) is the Cauchy transform of a discrete measure with point 
masses at zmgk, 1 < k < m+ 1. The calculation of the residues gives the masses 

sin [(m + 1) arc cos (z/2)] . - 
brn,A = lim .+,,,, (d/dz) sia [(m + 2) arc cos (21211 

which completes the proof. H 

EXAMPLE. The measures p(O), y('), p('' are given by 

Since the moment problems are determined for all rn E N,  i.e. the measures P("' 
are uniquely determined, p(") converges weakly to the Wigner measure p,. 
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6. Poisson's limit theorem. In this section we study Poisson's limit theo- 
rem for the hierarchy of freeness and solve the moment problems for the 
associated limit laws called ~n-fiee Poisson laws. By INC,(b, m)l we denote the 
number of non-crossing partitions of (1, .. ., n )  with b blocks and depth less 
than or equal to m. 

THEOREM 6.1. Let 4 = d = C [ x ] ,   EN, x* = x ,  and assume that 
N B N O  -+ A,   EN, 1 > 0. Let S.,, = ~ ~ = = , j ~ m l ( r )  and denote by @mnn)  the 
m-fpee product state corresponding to # N .  Then 

n 
7 .  

-- . 
lim &(m.N) 

b (S:,,) = JW4 INC, (q, m)l = Mkm) (I). 
N+ m q =  1 

Proof.  We have 

where P, denotes partitions of (1, . . . , n) , rn ( P )  = 6(m,N' Qkl (x) . . . jkn (x)) for any 
tuple (k,, ..., k,) associated with the partition P ,  b(P) denotes the number of 
blocks of P and (N) ,  = N ( N - 1 )  ... (N-r+l).  

Now we apply the usual Poisson's limit arguments. The only partitions 
P which survive in the limit N + cc are those for which the expression for m (P) 
contains a term of type Ah(P1 (i.e, the number of blocks of P is equal to the 
number of moments in the given term). If P is a crossing partition, then m(P)  
ccfactorizes" into more than b moments, and thus gives no contribution to the 
limit. If P is non-crossing, then we have two cases: (i) d(P) > m and 
(ii) d(P) < rn. In the case (i) the contribution is zero even before taking the limit 
by the GNS representation. In the case (ii) the contribution is Ib('), which 
completes the proof. H 

In order to solve the associated moment problem, we want to find the 
generating functions for INC,(b, m)[. Thus, let 

m 

H(")(L,z) = C INCn(b,m)lAbz-"-' 
n , b = O  - 

for m 2 1 and HfO)(L, z) = l/z, where we adopt the conventions that 

INC, (b, 011 = 6,0 &c, and INC, (0, m)l = 6,o. 

Clearly, INCn(b, rn)l = 0 for b > n > 0, so the summation over b is finite for 
fixed n. 

Note that If(") (z), rn >, 0, converge absolutely for JzJ suEciently large, say 
lzl > RtA) = (&+ l)2. Moreover, they go to zero as lzl goes to infinity (since 
there is no constant term in the series). Thus IH(")(Ib, z)l < 1 for fzl > R'(A) 
for some sufficiently large Kf( ; l )  (it depends on 1 but not on rn by comparison 
with the free Poisson Iaw, i.e. INCn(b, m)l < lNCn(b)l, and therefore 
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IH'"'(2, z)l 6 H (IAl, lzl), where INCn(b)l denotes the number of non-crossing 
partitions of (1, . . ., n} of b blocks and H (1, z) is the generating function for 
the free Poisson law). 

LEMMA 6.2. The hierarchy of generating functions (H(m)),,,30 satisfies the 
recurrence relation 

for m =  1, 2, ..,and Izl > R'(I1). 
-- 

P r.o o-f. TO= get a non-crossing partition of (1, . . . , n) (n 5 1) we 
pick the elements that will be put in the same block as the first element; 
denote tbis block by (1, l+k l ,  l+kl+k,,  ..., l + k l +  ... +kr-,I, and then 
choose non-crossing partitions for the remaining intervals (2, ..., k,), 
(kl+2, ..., k,+k,), ..., {kl+ ... + k , - z + 2 ,  ..., k l +  ... + k t - , ) ,  (kl+ . - .  +S-1 

+ 2, . . ., n). We will denote the number of elements of the last interval by k,. If 
we want the resulting partition to have depth g rn, then the partitions chosen 
for {2, . . ., k,), . . ., {k, + . . . + kr-2 +2, . . ., k1 + . . . + k,- must have depth 
6 rn - 1, and those chosen for ( k ,  + . . . + k ,  - + 2, . . . , n) must have depth 
< m, Let b, be the number of blocks of the partition of the k-th interval; then 
the number of blocks of the whole partition is b ,  + . . . + b,+ 1.  Therefore the 
number of non-crossing partitions of (1,  . . ., n) with b blocks and depth < m 
can be calculated recursively by the formula 

for n 2 1, if we use the conventions INCn(b, O)I = 6n0Sb0 and INC,(O, m)l 
= 6,,. By these conventions we have H(O) (A, z) = l/z. 

Let now m 2 1 and lzl> R'. Then we have 
m 

- - 1 AHcm) (A, z) 
i+z(l - H ( m - l )  (2, 4)' 
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where the summations can be interchanged since all sums converge absolutely 
(remember that IH'"-l)(A, z)/ < 1 for lzl > Rf(A)) ,  and therefore 

1 - j p - 1 )  
H'"' (A ,  z) = 

(A ,  z) . El z - z ~ ( m - l )  ( A , z ]  - A  

We will now give an explicit expression for the solution of this recurrence 
relation. To this end we will again use the Chebyshev polynomials of the 
second kind. 

PROWSITION - 6.3.. Let A > 0, rn E N u  (0). The meromorphic functions 
' 

(Z -1) urn ((z -1 - 1)/(2&))- $urn+ 1 ((z- A- 1)/(2&1) 
Fiml (z )  = 

zum ((z- A - l)/('&)) 

solve the recurrence relation 

1 -Fim-"(z) F P )  ( z )  = 
1 

for m 3 1 ,  FYI (2) = -, 
Z - Z F ~ ~ ~ ~ ~ ( Z ) - A  z 

and therefore we haue H("')(;E, z)  = FYI (2)  for I z I  > R' (A) .  
Furthermore, FLm) (z )  has the partial fraction decomposition 

m 

Fim) (z )  = C am,k (4 
h=O ~ - ~ r n , k ( ~ ) '  

where 

ym,o(J) = 0, 

urn + 1 ((1 + 1)/(2&)) 
(a) = f i  um ( ( A  + 1),(2$)) 

-2, 

21 sin2 [kn/(m + I ) ]  
am,h (4 = k = 1, ..., m, 

(m+ 1) [2,/~cos[krr/(m+l)] +A+ 11' 
- 

for m~ N. 

Proof.  Fix A and let Fiml (2) = P(T) (z)/Q(n") (z) ,  where 

From the recurrence relation for the Chebyshev polynomials of the 
second kind it follows that PJrn)(z) and QLm)(z) satisfy the coupled recurrence 
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relations 
pirn) (z)  = ~ 1 ~ -  (2) - pirn - l) (z) ,  

for rn 3 1,  and Pko)(z) = 1, Q ~ ( z )  = z. 
For rn = 0 we have F! (2) = PY) (z)/Q\')(z) = l/z, and for m 2 1 ,  

Pirn' (2) FLm) (z) = - - 
Q Y - ~ ) ( Z ) -  P ~ ~ - ~ ) ( Z )  

QIm' (z)  - (z  - 12) Qim - (z) - zPj;PL- (z) 

It is easy to deduce from the recurrence relation that pirn)(z) has degree 
< m. From the definition of Qirn)(z) we immediately see that it has m+ 1 
distinct simple roots, J J , ~ ~ ( A )  = 0, and 

Therefore Fim)(z) has the form stated in the proposition. The calculation of the 
residues gives - 

4 , 0  (2) = lirn ZFP) (z)  = ,,h urn + 1 ((1 + 1 )/(&h) 
- 1 2 7  

Z+O urn ((1 + 1)/(2$)) 

%.k = lim ( z - ~ r n , k )  F$m' (z)  
Z+Yrn,k 

- 21 sin [(m + 2) arc cos (x)] 
- lim 

2& cos [kn/(m + I ) ]  + 1 + 1 x - x m ,  (d/dx) sin [(m + 1) arc cos (XI] 

- - 212 sin2 (kx/(m + 1)) 
for r n >  k >  1, 

(m + 1) [2JX cos (kx/(m + 1)) + 12 + 11 

where x ~ , ~  = cos (k n/(m + 1)). ei . - 

'-THEOREM 6.4. Let  EN, A > 0. The moments (MLrn) determine a 
unique measure on the real line of the form 

Proof.  The moments (Mkm)(3L))ndV. grow less rapidly as n + co than the 
moments of the free Poisson limit measure, therefore it is clear that the moment 
problem has a unique solution pim). Denote its Cauchy transform by 

1 
Gim) (z)  = 1 - dpIm1 (x) . 

R z-X 
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By Lemma 6.2 we know that H1m)(A, z) = Ern n = O  M$") (A)z-"- converges 
absolutely for jzl 2 R(A), therefore it coincides with the Cauchy transform of 
pirn) for 121 3 R (4. By Proposition 6.3 we now have Gim)(z) = FYI (2) for lzl > R' (A), 
and then also for all z E C\R, since both functions are analytic on C\R. 

It now follows immediately from the partial fraction decomposition af 
Proposition 6.3 that pirn) has the form stated in the theorem. rn 

EXAMPLE. We get - 

1 A 
jJ$') = SO, pI.1) =-do+-61+A, 1+a l e l  

Remark  2. Let X be a quantum random variable (in some quantum 
probability space) whose distribution is the 2m-free central limit raw (correspon- 
ding to the measure ,d2")). Then XZ has the m-free Poisson Iirnit law Correspon- 
ding to the measure as can easily be seen from the respective Cauchy 
transform. This is the m-free version of a more general observation in the free case, 
namely that the product XPX, where X and P are free, X has the Wigner law, and 
P is a projection, has the free Poisson law (with parameter rp(P)); cf. [6] .  

Remark  1. A realization of a quantum random variable with the rn-free 
Poisson law (corresponding to the measure p\m)) on the quantum probability 
space (Mm + , (0. cp) ,  where cp (-1 = {a, . a) ,  is given by the (rn + 1) x (m + 1)- 
-matrix 
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