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MATHEMATICAL STATlSTiCS 

DECOMPOSITHCPN OF CONVOLUTION SEMIGROWS 
ON GROUPS ANID THE 0-1 LAW 

Abstract. Let (X (t))a,o be a stochastically continuous symmetric 
Levy process with values in a complete separable group G. We denote 
by h),,,, the semigroup of one-dimensional distributions of X(t). Sup- 
pose that N is a Borel subgroup of G such that h(H) > 0 for all t > 0. 
We obtain a decomposition of the generator of the process X ( t )  into 
a bounded part concentrated on H' and the generator of a semigroup 
concentrated on H. This yields the 0-1 law for such processes. We also 
examine the differentiation of transition probability of the induced 
Markov process x ( ~ ( t ) )  on the homogeneous space GJH. 

Introduction. The present paper is a continuation of [I]. For a given con- 
tinuous symmetric convolution semigroup (&. , on a complete separable group 
G and a Borel subgroup H we decompose the generator of the above semigroup 
into a bounded part, concentrated on He, and the generator of a semigroup 
concentrated on H. This, in particular, yields the 0-1 law for such semigroups. 

As in the above-mentioned paper, we apply a version of the so-called L? 
method and the Perturbation Formula, which establishes a link between the 
original semigroup, a bounded part of the generator, and the semigroup corres- 
ponding to an unbounded part. We do not use in our presentation-the Trotter 
App.roximation Theorem, as in the papers [2] and [4]. 

We adopt here the notation and terminology from [I]. 

Decomposition of semigroups. We first recall one result from [I]. By q we 
denote a fixed seminorm generating the topology of G. 

PROPOSITION 1. h t  (jLJr>O be a symmetric .continuous convohtion semi- 
group of probability measures on G acting on C,, with generator N ,  and let 9 ( N )  
be the domain of N .  There exists a nonnegative measure v, called the f i v y  
masure of (p,b,,, such that for every g > 0 we have 

v ( q  > q )  < co and lim (llt) p,l,,, = v, weakly, 
t i 0  
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with v4  = vIq>,,, wheneuer v ( q  = q )  = 0. Moreover, for every q > 0 the following 
holds: 

(1) Nf = (T,,,-c,J)f+NVf, f E ~ ( N ,  
where c, = v {q  > v )  and N V s  the generator of a cconvolution semigroup (x:)~> 
such that 9 (Nq) = 9 (N) and 

lim ( l / t ) g { q  > q )  = 0 ~ { q  = q )  = 0. 
2 3 0  . . 

In this section we assume that (pJt,, is a fixed weakly continuous symmet- 
ric conlvplution semigroup of probability measures on G. We further assume 
that N is a Borel measurable subgroup of G .  We state and prove here the main 
result, that is the decomposition of the generator of our given semigroup into 
a bounded part concentrated on Hc and the generator of a semigroup con- 
centrated on H. 

As mentioned before, we rely here on the so-called L1 (p) method for p de- 
fined by the formula 

m 

p = e-'p,dt. 
0 

We recall (cf. [2 ] )  that (&,, acts as a strongly continuous semigroup on this 
space, with the norm IITfiJILlol, < 2. Observe that the symmetry of im- 
plies that if p, (H)  > 0 for a single to ,  then (H) > 0 for all t > 0. 

Now, suppose that H is a Borel subgroup of G such that p(H) > 0. Then, 
as a simple consequence of the fact that T,,1, converges in 2 (p) to 1, as t JO, 
we obtain p, (H) + 1 at t 40. In particular, p, ( H )  > 0 for all t > 0. 

As in the paper [ I ] ,  we consider various L? spaces, steming from the 
Perturbation Formula. 

DECOMPOSITION THEOREM. Let (pJt  > be a symmetric continuous convolu- 
tion semigroup ofprobability measures on G acting on C,, with the L6vy measure 
. v and the generator N. Let 9 ( N )  be the domain of N .  Assume that H is a Bore1 
subgroup of G such that p,(H) > 0 for all t > 0. Then v (Hc) < co and 

lim ( l / t )  p t [p  = V ~ E  
t l 0  4 

weakly. The following holds: 

where c = v ( H 9  and N R  is the generator of a convolution semigroup (xJ t ro  
concentrated on H with 9 (NH) = ( N ) .  

Proof.  The proof is divided into three steps. 
S t ep  1. Assume that lirnfl0 ( l / t )  TPtIH. = y weakly, where y is a finite mea- 

sure. We show that y (H) = 0. 
As in [I], we begin with the following decomposition: 
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where p: and p F  are conditional probabilities with respect to H and Hc, 
respectively. We rewrite the formula in the following form: 

regarding it as a decomposition of (bounded) generators of the corresponding 
convolution semigroups (acting on C, (G)) denoted by (hq,,, , and (xF>yt ,, ,, 
(YB~S)~,~, respectively. Observe that 

strongly in C', and also in C (p). Indeed, for bounded Borel measurable func- I 

I 

tions f on G we have 

SO (p,),,o acts as a strongIy continuous semigroup on fi (p). We also have the 
following estimate (see (4.1) in [I]): 

(7) IITp;f l l ~ ~ c ~ ,  G I l f  llLq,.,n ~ X P  - lI/s} I l f  ll~lm- 

and hence (6) also holds in I? @I. 
We write the Perturbation Formula for the decomposition (5): 

t 

(8) p:' = exp { - tp, (Hc)/s} X? + exp { - tps (Hc)/s} j x:", * (11s) PSIHE * xfsS du 
0 

where 
t  

$6' = xFms, yf;' = j x'", * (l/s) pSIHc * YE:- du. 
0 

- Define the measures ms on G x G by the formula 

Observe that, by (7) and (8), for a bounded Borel function h we get 

A 

= J J lh (z)l exp { - 1-1, (H?/s) (P * x?-1". * (l/s) PSIHE * xfpS * P) 
G 0 
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By (7) and (8) we also obtain 

= j (p * exp ( - (1 - u) y, L,tHC)/s) ZI-S,) (dx) (exp { - u~ (Hc)/sl X? * Vz) du 
0 

0 

1 

6 J exp (( P - u) (eS -- 1)/s) (dx)  exp ( u  ($ - 1 )IS) p (dz) du 
0 

= exp {(es - l ) /s)  p (dx) p (dz). 

This yields the following estimate: 

6 exp {(e" 1)/s) j Ih ( X Y Z ) ~  p (dx) y (dy) y (dz) = ~ X P  ((as- Ills) Ilhl I ~ g ( p r * # ) -  

G3 

We also obtain for f E C, (G) 

< exp {(e" -)is) j I(lis) q S I ~ C  El- UZ)I P W X )  P ( ~ z ) -  
G X G  

We now estimate the following expression, where f E C, and g is a bound- 
ed Bore1 measurable function on G: 

Integrating the above expression with respect to rns and taking into account (9) 
applied for h = g - f we estimate the integral of the first term on the right-hand 
side by exp ((e" l ) / s )  llg - f 11,1(,,, . From ( 1  I ) ,  applied for h = g - f, we estimate 
the integral of the last term on the right by exp ((es- l ) / s )  IIg - f l l L ~ c p * v r p ) .  

Note that, by the assumption and (12), the second term on the right-hand 
side of the estimated expression tends to zero as sJ0. 

Since we can approximate 1, in measures p * p and y * y * y by functions 
f E C,, we thus have proved that 

lim S I(l/s) Tsl~c ((ldz) (4 - T, ((I,),) (41 m, (dx,  dz) = 0 .  
sJ0 6 2  

However, for x ,  z E H we have ( l / s )  LIHC ((IdZ) (x) = 0 ,  while the integration of 
T, ((l,),)(x) with respect to m, over H x H gives y (H) exp {(- p, (Hc)/s} y 
which converges to y (H) e-'p (H)' as sJO. Since p (H) > 0 ,  this implies that 
y (H) = 0, which completes the proof of this step. 



Decomposition of semigroups 10 1 

Step  2. By a method similar to that in the proof of Proposition I in [I] 
we prove that (3) and (4) hold for a finite measure y instead of v,,. To do this 
we replace the set ( q  > rl} by Hc and {q < q )  by H and proceed as in this proof. 
By Step 1 we obtain y ( H )  = 0. This and the same arguments as those used in 
the proof of Proposition 1 in [I] to show (2) yield 

Observe that the application of Proposition 2 from [I] (more precisely: 
the Differentiation Lemma) implies, in view of (13), that the semigroup (x,),, is 
concentrated" on H. However, we provide here an alternative argument, based 
again on the Perturbation Formula. 

First, we observe that ; I , (H)  > O for all t > 0. Indeed, assume the contrary. 
By symmetry, this means that x,(Hx) = 0 for all x E G and all t > 0. But then 
we have 

for k = 1, . . ., where y,,, are the corresponding measures from the Perturbation 
Formula written for the decomposition (4) with y instead of VIHC. This, however, 
gives y,(H) = 0 for all t > 0, which contradicts our assumption and justifies 
our claim. 

As a consequence, writing (8) for X, instead of p,, we get 
m 

(14) x;(H) = exp { - tx, (H')/s) [fFs (H) + r"Yk (H)]  2 exP { - tXS (Hc)/s} , 
k =  1 

where x;, f F 3 k d  y " F S v k  are the corresponding measures in the considered 
Perturbation Formula. The last inequality follows from the fact that the mea- 
sures fB1s are concentrated on H. Applying (6) for X: and ;c, we infer that, as 
s +0, the left-hand side of (14) converges to ;c,(H),  while the right-hand side 
converges to 1 because of (13). This completes the proof of this step. 

S t e p  3. Assume that pt(H) > 0 for all t > 0. By the proof of Theorem 1 
- 

in [I], for all q > 0 we obtain 

weakly, where XB are as in Proposition 1. If v ( q  = q )  = 0, we further obtain by 
Proposition 1 : 

By Step 2, the left-hand side converges to yl,,,, whenever y  ( q  = q )  = 0. Thus, 
we have 
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if only v ( q  = q}  = y {q = y) = 0. Letting qJ0, we obtain 

This completes the proof of the theorem. 

Remark.  By the Perturbation Formula it is not difficult to see that if the 
semigroup (ptIt > o  has the generator as in (4) with v (HC) < GO and with exp ( tNH) 
concentrated on H ,  then p,(W > 0 for all t  > 0. 

As an application of the Decomposition Theorem we obtain 

.C.CTROLLARY. ~ e t  (p*), , be a symmetric convoEution semigroup if probabi~i- 
t y  masu;es on groups with the Ldvy measure v and let H be a Bore1 subgroup 
of G. Then v (Hc) = m yields k (H) = 0 for all t  > 0, while v (HC) = 0 giws 
p,(H)=O for all t > O  or p , ( H ) = l  for all t > O .  If k(H)>O and 
0 < v (He) < ao, then (He)  > 0 for all t > 0 .  

Proof.  By the Decomposition Theorem we infer that v (Hc) = co yields 
= 0 for all t > 0. Assume now that k(H) > 0 for all E > 0. Ifv(H3 = 0, 

then k = X ,  for all t > 0. Since the measures X, are concentrated on H ,  this 
concludes the proof of the first part. 

Let now p,(H) > 0 for all t > 0 and assume that 0 < v (H') < oo . Let X, be 
as in the Decomposition Theorem. Since X,  are concentrated on H, by the 
Perturbation Formula applied to (4) we obtain 

t 

pt(HC) 2 ~ ~ - ~ * v ~ ~ ~ * ~ ~ ( H e ) d u  = tv(Hc) > 0, 
0 

which shows that the 0-1 law does not hold in this case. 

Differentiation of transition probabilities. In this section we obtain some 
results on differentiability of transition probabilities induced by (pJ , ,  , on the 
homogeneous space G/H. We indicate some basic results, using semigroups 
technique. Results of this kind for general Markov chains were obtained by 
different methods by Doblin (see [3]). 

Assume that (p,),,, is a fixed weakly continuous symmetric convolution 
semigroup of probability measures on G. By ( X ( t ) ) t > o  we denote a homo- 
geneous process on G with right independent increments and one-dimensional 
distributions p,, i.e. such that for every 0 < t ,  < t ,  < . . . < t ,  the increments 

are independent G-valued random variables with distributions given by 
hl, h 2 - t l ,  . . ., ptk- tk - l .  Assume that H is a Borel subgroup of G. Let 
n: G -+ G/H be the canonical mapping onto the right cosets space with the 
a-field generated by n from the Borel a-algebra on G. It is not difficult to see 
that n(X(t)),,,, is a Markov process on G / H .  For a measurable subset 
D E G/H and a coset Hx we obtain 
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P,(Hx, D )  = P ( H X ( ~ + U ) E D  I HX(t) = H X )  

= ~ ( ~ x ( t ) ( x ( t f - ' X ( ~ + U ) ) E D  I H X ( ~ )  = H X )  

= P ( H X X ( U ) E D )  = p,(y; H x ~ E D ) .  

When D = Hz we obtain 

= qu lHZ (x )  = qU I H z  (Hx)  = p,, ( X  HZ). 
-- 

Observe- tGat P,(Hx, Hz) > 0 for some u > 0 yields, by symmetry, 
pt(z-' Hz) > 0 and p,{x- 'Hx) > 0 for all t > 0. Now, we state and prove one 
result concerning differentiability of the above transition probabilities on the 
homogeneous space G / H .  

PROWSITION 2. Let ( P , ) , , ~  and H be as above. Define as above transition 
probabilities P, ( H x ,  Hz)  on the space of right cusets G / H .  There exists n subset 
Go G G such that HGo = Go and the transition probabilities P,(Hx, Hz) are 
continuous on Go,  while for x or z from G*e obtain P,(Hx, Hz) = 0 for all 
u > 0. Then for every x ,  z E G ,  x # Z, there exist 

lim (lit) [I- Pt ( H x ,  Hx)] = q (x), lim ( l i t )  P, ( H x ,  Hz) = q ( x ,  z) < m , 
tJ0 t1o 

and q ( x )  = cc , whenever x E Gt,  while q ( x )  < co for x E Go; $either x or z are in 
G",, then q ( x ,  z) = 0. 

Proof.  Define 

Go= ( x E G ;  pCl,(x- 'Hx)>O for some t > 0 ) .  

Let us note that if Z E G ~ ,  then Hz G Go. Moreover, if P,(Hx, Hz)  
= p, (x-' Hz)  > 0, then we have p,, (x-' Hx)  > 0 and p,, (2-' Hz) > 0 ,  so 
x, z-EG,. Thus, we have obtained P,(Hx, Hz)  = 0 if either z or x is in G& 

On the other hand, if X ~ E  GO, then by the I! (p)  method, applied for 
- 

xo H x ,  instead of H ,  we obtain p, ( x i  ' Hx,) -, 0 as t J 0. This yields that p, is 
uniformly continuous on bounded measurable functions on Go/H. Indeed, for 
a bounded measurable function g which is constant on right cosets of H and 
xO E Go we obtain: 

IT,, g (Hxo) - g  (Hx,)l = I j g (Hx ,  Y )  Pi ( d ~ )  - Q ( ~ x , ) l  
G 
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This means that the semigroup T,, is uniformly continuous on bounded measu- 
rable functions on G,/H.  Hence the generator of the semigroup is bounded and 
defined on the whole space. This completes the proof of the proposition. 

As an application we obtain the following resuIt, playing an essential role 
in fl] and [4] (with different proofs therein): 

DIFFERENTIATION LEMMA. Let (p,),, , be a symmetric convolution semigroup 
on G and H a Borel subgroup of G. I f  p,(H) > 0 for aII t > 0, then 

. . limrLo (lit) p, (H? exists and is finite. 
- .  .- . - 

b 
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