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Abstract. Let (X (#)),>0 be a stochastically continuous symmetric
Lévy process with values in a complete separable group G. We denote
by (u,);>o the semigroup of one-dimensional distributions of X (t). Sup-
pose that H is a Borel subgroup of G such that u,(H) > 0 for all ¢ > 0.
We obtain a decomposition of the generator of the process X (¢) into
a bounded part concentrated on H® and the generator of a semigroup
concentrated on H. This yields the 0-1 law for such processes. We also
examine the differentiation of transition probability of the induced
Markov process 7(X () on the homogeneous space G/H.

Introduction. The present paper is a continuation of [1]. For a given con-
tinuous symmetric convolution semigroup (&,),» o on a complete separable group
G and a Borel subgroup H we decompose the generator of the above semigroup
into a bounded part, concentrated on H¢, and the generator of a semigroup
concentrated on H. This, in particular, yields the 0-1 law for such semigroups. -

As in the above-mentioned paper, we apply a version of the so-called I}
method and the Perturbation Formula, which establishes a link between the
original semigroup, a bounded part of the generator, and the semigroup corres-
ponding to an unbounded part We do not use in our presentation_the Trotter
Approximation Theorem, as in the papers [2] and [4].

We adopt here the notation and terminology from [1].

Decomposition of semigroups. We first recall one result from [1]. By g we
denote a fixed seminorm generating the topology of G.

ProposITION 1. Let (u4,),>¢ be a symmetric -continuous convolution semi-
group of probability measures on G acting on C,,, with generator N, and let 2 (N)
be the domain of N. There exists a nonnegative measure v, called the Lévy
measure of (U),>q, Such that for every n >0 we have

vig>n} <oo  and lim(1/t) plss>, = v, weakly,
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with v, = V>, whenever v {q = n} = 0. Moreover, for every n > 0 the following
holds:

1) Nf=(T,,—c¢,) f+N"f, feZ(N),

where ¢, = v{q > n} and N" is the generator of a convolution semigroup (xi):>o
such that 2 (N") = 2 (N) and

) ltifﬁ' ox{ga>n=0 ifvig=n}=0.

In this section we assume that (i), > o is a fixed weakly continuous symmet-
ric coﬁw?pluﬁon semigroup of probability measures on G. We further assume
that H is a Borel measurable subgroup of G. We state and prove here the main
result, that is the decomposition of the generator of our given semigroup into
a bounded part concentrated on H® and the generator of a semigroup con-
centrated on H. ,

As mentioned before, we rely here on the so-called I! (u) method for p de-
fined by the formula

p= | e tpdt.
0

We recall (cf. [2]) that (i)~ acts as a strongly continuous semigroup on this
space, with the norm ||T, |1, < €°. Observe that the symmetry of (u,),>o im-
plies that if u, (H) > 0 for a single t,, then y,(H)> 0 for all ¢ > 0.

Now, suppose that H is a Borel subgroup of G such that p(H) > 0. Then,
as a simple consequence of the fact that T,, 1, converges in I () to 1 as ¢ 0,
we obtain p,(H)— 1 at t|0. In particular, u,(H) > 0 for all ¢ > 0.

As in the paper [1], we consider various I! spaces, steming from the
Perturbation Formula.

DECOMPOSITION THEOREM. Let (u,),>o be a symmetric continuous convolu-
tion semigroup of probability measures on G acting on C,, with the Lévy measure

_v and the generator N. Let 9 (N) be the domain of N. Assume that H is a Borel

subgroup of G such that yu,(H) >0 for all t > 0. Then v(H) < o0 and

weakly. The following holds:

) Nf =(Tyg-—c) f+ N7 f, fe2D(N),

where ¢ = v(H°) and N¥ is the generator of a ‘convolution semigroup >0
concentrated on H with 2 (N¥) = 2 (N).

Proof. The proof is divided into three steps.

Step 1. Assume that lim;,(1/f) T,, 5. = y weakly, where y is a finite mea-
sure. We show that y(H) = 0.
As in [1], we begin with the following decomposition:

(1/8) [T, — 11 = (u,(H)/s) [T, — 1+ (p, (HY/5) [T, — 11,
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where pff and pH° are conditional probabilities with respect to H and HF,
respectively. We rewrite the formula in the following form:

) N,= N¥+N¥,

regarding it as a decomposition of (bounded) generators of the corresponding
convolution semigroups (acting on C,(G)) denoted by (1);>0 and (x7*);>o,
(yE9),. o, respectively. Observe that

(6) Tyt~ T

strongly in C, and also in I! (). Indeed, for bounded Borel measurable func-
tions f on G we have

T fllrgn < €U llzagy

so (i)e> 0 acts as a strongly continuous semigroup on I! (1). We also have the
following estimate (see (4.1) in [1]):

M 1T Allsgo < N lls gty < eXp {£(€—1)/s} | fllesga»

and hence (6) also holds in L' (u).
We write the Perturbation Formula for the decomposition (5):

t
8) i = exp{—tu,(H)s} xi"* +exp {—tu, (HY/s} | 1% (1/5) popue % xi"* du
0

+exp { —tpu (HYs} Y &,
n=2
where
t
vog = 28, v = [ xS % (1/5) e * Yin— 1 du.
0

- Define the measures m; on G x G by the formula

- my(dx, dz) = exp { —p,(H)/s} £ (> 23"2,) (dx) (ol * ) (dz) du.

Observe that, by (7) and (8), for a bounded Borel function h we get
O /9| § Tyme(h) (xym,(dx, d2)

GxG

< [ Jh(xp2)|(1/5) pojue (dy) mg (dx, dz)
G3

1
= i g | (2)] exp { — p (HY/s} (% 1525 % (1/5) prgyare * 2 * 1) (d2z) du

< ‘I; h (2)] 1 * s * p(dz) < exp {(e° —1)/s} (I; |1 {2)| g p(dz)

= exp {(¢’ — 1)/s} [AllL1(usn-
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By (7) and (8) we also obtain
(10) mg(dx, dz)

(u* exp { — (1 —u) p; (H)/s} x12.) (dx) (exp { —up, (H)/s} x&* * p) (dz) du

O'—ﬁ‘-' O‘—'z)-‘ QO Sy

pok py -y (dx) po* i (dz) du

oxp {(£ =) (¢'= 1)/} 1 (@) exp {u (¢ 1)/s} s (dz) du

= oxp {(e— 1)/s} 1 (dx) p (d2).
This yields the following estimate:
(11) | f T, (h,) (x) m (dx, dz)| Ih(xyz)ly(dy)m (dx, dz)

Gx@G

< exp {(e'—1)/s} (L |k (xyz)] #(dx) 7(@y) u(dz) = exp {(€"— 1)/s} |1hllLs uyusy -

We also obtain for feC,(G)
12) | 11/s) Tyme(f)— T, (f) m,(dx, dz)

GxG
<exp{(e—1)/s} [ (1/s) Tume(£)— T, (f)| #(dx) n(d2).
GxG
We now estimate the following expression, where fe C, and g is a bound-
ed Borel measurable function on G:

1(1/5) To,ime (9.) () — T, (9.) ()]
< (1/3) Tume [9. —L1 ) +1(1/8) Tz () () — T, () I+ T, [g.— £ ().

Integrating the above expression with respect to m, and taking into account (9)
applied for h = g—f we estimate the integral of the first term on the right-hand
_side by exp {(¢°—1)/s} |lg —f||L1(uwpy- From (11), applied for h = g—f, we estimate
the integral of the last term on the right by exp {(e°— 1)/s} llg —fllLt(ueyp)-
Note that, by the assumption and (12), the second term on the right-hand
side of the estimated expression tends to zero as s|O0.
Since we can approximate 1, in measures pu* u and u#*y* u by functions
feC,, we thus have proved that

hm f |(1/5) Trpjme (L)) )= T, (L)) ()| mg (dx, dz) =

However, for x, ze H we have (1/s) T,z ((1g),) (x) = 0, while the integration of

T, ((15).) (x) with respect to m, over H x H gives y(H)exp {(— u,(H%)/s} u(H)?,
which converges to y(H)e ‘u (H)2 as s]0. Since u(H) > 0, this implies that

y(H) = 0, which completes the proof of this step.

i
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Step 2. By a method similar to that in the proof of Proposition 1 in [1]
we prove that (3) and (4) hold for a finite measure y instead of v;g.. To do this
we replace the set {g > n} by H® and {g <5} by H and proceed as in this proof.
By Step 1 we obtain y(H) =0. This and the same arguments as those used in
the proof of Proposition 1 in [1] to show (2) yield

(13) 1ilng(1/t) %(H) =0

Observe that the application of Proposition 2 from [1] (more precisely:
the Differentiation Lemmia) implies, in view of (13), that the semigroup (x,);> o is
concentrated’ on H. However, we provide here an alternative argument, based
again on the Perturbation Formula.

First, we observe that y,(H) > O for all ¢t > 0. Indeed, assume the contrary.
By symmetry, this means that y,(Hx) = 0 for all xe G and all ¢ > 0. But then
we have

t

T
Ve (H) = § Zemu*y* Vs (H) du = (I) § xe—a(HY (@ * Vupe-1) (@y)du = 0
0 G
for k =1, ..., where y,, are the corresponding measures from the Perturbation
Formula written for the decomposition (4) with y instead of v|z.. This, however,
gives y,(H) =0 for all ¢t > 0, which contradicts our assumption and justifies
our claim.
As a consequence, writing (8) for y, instead of y,, we get

(14)  xi(H) = exp {—ty,(H)/s} [ (H) + Z ik (H)] > exp {—tx (HYs},

where ¥, #° and §7%* are the corresponding measures in the considered
Perturbatlon Formula. The last inequality follows from the fact that the mea-
sures 75 are concentrated on H. Applying (6) for x{ and y, we infer that, as
s —-0, the left-hand side of (14) converges to y,(H), while the right-hand side
converges to 1 because of (13). This completes the proof of this step.

Step 3. Assume that 4, (H) >0 for all ¢t > 0. By the proof of Theorem 1
in [1], for all # > 0 we obtain

lim (1/1) [uqm-x?,ac] = Vig>nnHe

weakly, where y7 are as in Proposition 1. If v {g = 11} 0, we further obtain by
Proposition 1:

ltlg)l(l/t) Hilg>nope = lgllr(l;l(l/t) [ﬂrlq>ﬂnH=_x;’|q>nnH°] = V|g>nnHe-

By Step 2, the left-hand side converges to y,-,, Whenever y {g = n} = 0. Thus,
we have

Vig>n = Vig>nnHe
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if only v{g =#n} =vy{q =5} =0. Letting #]0, we obtain

'y = V|Hc.
This completes the proof of the theorem.

Remark. By the Perturbation Formula it is not difficult to see that if the
semigroup (4,),> o has the generator as in (4) with v(H®) < co and with exp (tN¥)
concentrated on H, then u,(H) > 0 for all ¢ > 0.

As an application of the Decomposition Theorem we obtaiﬁ '

COROLLARY Let (11),> o be a symmetric convolution semigroup of probabili-
ty measures on groups with the Lévy measure v and let H be a Borel subgroup
of G. Then v(H) = oo yields p,(H)=0 for all t >0, while v(H®) =0 gives

w(H)=0 for all t>0 or uy(H)=1 for all t>0. If u(H)>0 and
0 <v(HY < o0, then u,(H%) >0 for all t > 0.

Proof By the Decomposition Theorem we infer that v(H®) = oo yields
u,(H) =0 for all t > 0. Assume now that p,(H) >0forallt > 0. If v(H)=0
then u, = y, for all ¢ > 0. Since the measures y, are concentrated on H, this
concludes the proof of the first part.

Let now p,(H) > 0 for all £ > 0 and assume that 0 < v(H) < oo. Let g, be
as in the Decomposition Theorem. Since y, are concentrated on H, by the
Perturbation Formula applied to (4) we obtain

u(HY) = j Kem “*vmc*xu(H")du = tv(H°) > 0,

which shows that the 0-1 law does not hold in this case.

Differentiation of transition probabilities. In this section we obtain some
results on differentiability of transition probabilities induced by (4,),>0 on the
homogeneous space G/H. We indicate some basic results, using semigroups
technique. Results of this kind for general Markov chains were obtained by
different methods by Doblin (see [3]). 3

Assume that (g,);>, is a fixed weakly continuous symmetric convolution
‘semigroup of probability measures on G. By (X (#)),>o we denote a homo-
geneous process on G with right independent increments and one-dimensional
distributions y,, i.e. such that for every 0 <t, <t, < ... <t the increments

X(t), X)X (ts), s X (te-1) ' X (&)

are independent G-valued random variables with distributions given by
Hiys Baz—tys - o> Bip—ne_,- Assume that H is a Borel subgroup of G. Let
n: G— G/H be the canonical mapping onto the right cosets space with the
o-field generated by 7 from the Borel g-algebra on G. It is not difficult to see
that #(X (2))>0 is a Markov process on G/H. For a measurable subset
D = G/H and a coset Hx we obtain
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P,(Hx, D)= P(HX (t+u)eD | HX () = Hx)
=P(HX®(X(®) !X (t+u)eD | HX () = Hx)
= P(Hx X (wye D) = p,{y; HxyeD}.

When D = Hz we obtain

Pu(Hx9 HZ) = j lﬂz(xy)“u(dy)
= Ty 1 () = T, Lare (HX) = i, (x ™ Ho).

Observe: that P,(Hx, Hz)>0 for some u>0 yields, by symmetry,
i, (z"t Hz) > 0 and p,(x~! Hx) > O for all t > 0. Now, we state and prove one
result concerning differentiability of the above transition probabilities on the
homogeneous space G/H.

PROPOSITION 2. Let (u,);>0 and H be as above. Define as above transition
probabilities P,(Hx, Hz) on the space of right cosets G/H . There exists a subset
G, S G such that HG, = G, and the transition probabilities P,(Hx, Hz) are
continuous on G, while for x or z from G we obtain P,(Hx, Hz) = 0 for all
u>0. Then for every x,zeG, x # z, there exist

lif? (1/6)[1—P,(Hx, Hx)] = q(x), lillgl(l/t)Pt(Hx, Hz) = q(x, z) < o0,

and q(x) = oo, whenever x € G, while q(x) < oo for x€ G; if either x or z are in
G, then q(x,z)=0.

Proof. Define
G, = {x€G; p,(x ' Hx) > 0 for some t > 0}.

Let us note that if zeG,, then Hz < G,. Moreover, if P,(Hx, Hz)
= p,(x"*Hz) > 0, then we have p,,(x ' Hx)>0 and p,,(z""Hz) >0, so
x, ze€G,. Thus, we have obtained P,(Hx, Hz) = 0 if either z or x is in Gj.

On the other hand, if x,&G,, then by the I'(x) method, applied for
xg ! Hx, instead of H, we obtain y,(xq ' Hx,) — 0 as ¢t} 0. This yields that y, is
uniformly continuous on bounded measurable functions on G,/H. Indeed, for
a bounded measurable function g which is constant on right cosets of H and
X, € G, we obtain:

|7;z,g(on)_g(on)| = ” g(on)’)ﬂ:(d)’)_g(on)|
G

<| | gHxen)w@)—gHx)+ [ g(Hxey) p(dy)

xg Hxo (xg 1 Hxo)®

< g(Hxo) p, (0 * Hxo))+ | g(Hxoy) 1, (dy)

(x5 Hxo)®

< 2lgllo p ((x0 * Hxo)) = 0.
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This means that the semigroup T, is uniformly continuous on bounded measu-
rable functions on G,/H. Hence the generator of the semigroup is bounded and
defined on the whole space. This completes the proof of the proposition.

As an application we obtain the following result, playing an essential role
in [1] and [4] (with different proofs therein):

DIFFERENTIATION LEMMA. Let (1,),> o be a symmetric convolution semigroup
on G and H a Borel subgroup of G. If pu,(H)>0 for all t>0 then
lim, ;o (1/2) u,(H‘) exists and is finite.

L]
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