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A NON-ERGODIC PHENOMENON
FOR SOME RANDOM DYNAMICAL SYSTEM
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Abstract. In [2] Jajte formulated the following question:

Let ho(x) and hy (x) be homeomorphisms of the interval [0, 1]
onto itself. Is it true that for any xe[0, 1] and almost any te(0, 1)
there exists a limit of a sequence

1 n
-y ho0...0h (x)
ni=y

for n — oo, where t = (0, t; t ...); is a binary representation of ¢, ie.
t=3,.,t27" and t,e{0, 1}?

The answer is negative. We describe the set of condensation
points of the sequence in some special cases.

1991 Mathematics Subject Classification: Primary 60J15; Sec-
ondary 26A18.

1. Introduction and main results. Let i, and %, be homeomorphisms of the
interval [0, 1] onto itself. Fix xe[0, 1] and t€(0, 1). We discuss the sequences

- 1 n
(1 =Y ho...0h, (%),
Ri=1

where t = (0, t, ¢, ...), is a binary representation of ¢, ie. t=3  £27 and
t;€{0, 1}. For t chosen in a random way, one can consider (1) as ergodic means
for an elementary example of a random dynamical system. In [2] Jajte asked if the
sequence (1) converges with n — oo for all xe[0, 1] and almost all (in the sense of
Lebesgue measure) ¢ (0, 1). It emerges that the answer is negative. Moreover, for
a large and easily describable class of pairs hy, h; the limit does not exist for
almost all te(0, 1) and almost all xe[0, 1]. More precisely, we have:

THEOREM 1. There exists T < [0, 1] with A(T) = 1 such that, for any in-
creasing homeomorphism h: [0, 1] — [0, 1] with 0 and 1 as the only fixed
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points and for any x€(0, 1) and any te T, the set {n"* Y 1,0 ... Oh, (x): ne N}
is dense in [0, 1], where ho =h, hy =h™ ', t =% £;27%, ;e{0, 1}, and A()
denotes Lebesgue measure.

Roughly speaking, if one takes ergodic means of superpositions of homeo-
morphisms chosen in a random way, then instead of one limit a dense set of
condensation points is obtained. In some sense, the result is opposite to that
which would be expected by analogy to ergodic theorems and to behaviour of
a simple dynamical system defined by a homeomorphism of the interval [0, 1]
onto itself. An analogical result for an arbitrary increasing homeomorphism
h is described in Section 3.

2. Proofs. Before proving the theorem we fix some notation. Let
R = [0, 1] be a set of numbers with more than one binary representation.
Obviously, A(R) = 0. On the probability space (2 = [0, 11\R, Borel (Q), ) the
Rademacher sequence r; = r; () = 1 —2t; forms a family of independent random
variables with distribution A(r;=1)= A(r;= —1)=1/2. For te[0, 1\R,
xe[0, 1], neN, we put

1 n 1 n
@) =~ 3. 10 ... Oy () =~ WO .. Ol () =
i=1 i=1

| =

Z hr;+...+r1 (x)
i=1

Proof of Theorem 1. The demanded set T can be defined by the
following formula:

(2)

1 i
T = {te[o, 1]\R: VIZE(O,I)VNENHIIEN ;[ # {i = 1, N (H Tk(t) > N} > m}
=1

k

1 i
ﬂ{te[ﬂ, 1]\R: VmE(O‘UVNeNH,,E;v; # {i = 1, veny N Z rk(t) < —N} > 05}.

k=1

. The required properties of the set T are proved in Lemmas 1 and 2. =

LEMMA 1. For any increasing homeomorphism h: [0, 1] — [0, 1] with O and
1 being the only fixed points of h and any te T the set {a, ,(x): ne N} is dense in

" [0, 1] for any xe(0, 1).

Proof. Fix a homeomorphism % and points te T, xe(0, 1). According to
the definition of g, ,(x) we have

Arpr1(x) = A+l (h,..,© ... Oh,, (x)+na,,, (x)1,
na; , (x) na, ,(x)+1
- "'-<~. n < _M,——_’
n+1 at. +1(x) n+1

1—a,,(x) < 1 ,
n+1 n+1

1 < — At n (x)

_‘n+1\ n+1 sat,n+1(x)—at,n(x)S
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and

1

(3) 1n+1 (%) — 8 n (X)] < P 0.

Now we prove that limsup,., , a;,(x) and liminf,_, , a,,(x) are equal to
1 and 0, respectively. The number x is not a fixed point of 4; hence h(x) > x or
h(x) < x. Both cases are analogical, so it is enough to consider the case
h(x) > x. Numbers h"(x) > 0 form an increasing bounded sequence of reals SO
there exists llm,,_.ﬂo n (x) > (. Moreover,
) * (hm h"(x)) = llm h (x),
so lim,_ . h"(x) is a fixed point of h and must be equal to 1.

Consider lim supa, , (x) for n — c0. Let 0 < ¢ < 1 be arbitrarily chosen. Fix
NeN satisfying

V,-ny 1—h"(x) < /2.

For teT
B - # fi= 1, Zr>N} -
"N - A . 1—g/2°
For such n we have
n ) . n hr1+...+r1x + hr1+...+ri X
' Z prit et (x) izl (x) i§1 ()
1 > at'"(x) = i=1 " — ri+...+r>N n'1+'“+ri\N
_Z (1—¢/2)
> rt ot ro N > (1—¢/2) #{i=1,..,nr+..+r>N}
n
> (1‘8/2)—/3 —1-s.
Hence
(4) V8>03neN lat,n(x)—ll < &.

It is easy to prove in the same way that
(5) V£>03REN|aI,H (X)—Ol <e.

Relations (3), (4) and (5) imply that {a,,(x): neN} is dense in [0, 1]. =
LeEMMA 2. The Lebesgue measure of the set T defined by (2) is equal to 1.
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To prove this lemma we need the following generalization of the classical
arcsin law for a symmetric random walk. (For more details about arcsin law

see [1])

- LemMa 3. For any NeZ and any 0 <a <1 we have
1 i
A({te[o, 11\R: ;# fi=1,...,m Y n(@®>N}> a})—»f(oc) for n— 0,
' ' k=1

where f (@ =1-2n"1arcsin ﬁ. _
Proof of Lemma 2. For any NeN and 0 <a <1 let us put

1 i
Te = {te[O, IN\R: 3,n " #{i=1,..,n Y n()>N}> oc}.
- k=1
Acéording to the definition (2), the set T is an intersection of two sets. Denote
them by T; and T,, respectively. We have
(6) Ti=() N T
N=1aeQn(0,1)

We will show that A(Ty,) = 1. For a given NeN and 0 < a < 1, fix
a < B < 1. Define by induction a sequence of sets 4, = [0, 1]\R and sequences
of numbers n,, N;eN, as follows:

Assume that 4;, N;, n; have already been defined for all j < . (! = 1 means

that no 4;, N;, n; have been defined so far.) To define A4,, N;, n; observe that
there exists N, large enough to satisfy

Vs n, (""‘ Y n)<

i<l
and then

f(%(n+ ) m-)) > 1.

j<i
By Lemma 3 the Lebesgue measure of the set
1
te[0, INR: —#{i=1,...,m Z Tetz,am(® >N+ n} > — (N,+ Y n)
n j<i N i<l

tends to f (ocN,'l(N,+Zj<,nj)) > f(f) when n tends to infinity, and hence
there exists n; > N, satisfying

i<l

l({te[o, 1\R: nl# {i=1,.. Z Ttz am () > N+Y nj}
1

> it Z )} ) > 0

j<1
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Let A, be the latter set considered.

A, are independent in (@ = [0, 1]\R, Borel (%), 1) because r, are inde-
pendent and 4(A4;) = f(B) > 0. Consequently, by the Borel-Cantelli theorem,
A(limsup,., , A;) = 1. According to the definitions of Ty, and A4, it is easy to
verify that A; c Ty, for all [e N. This implies A(Ty,,) = 1. By (6), T; is a count-
able intersection of sets Ty, and A(T;) = 1. Similarly it can be proved that
A(Ty) = 1. A measure of the set T= TynT, is also equal to 1. =

Proof of Lemma 3. Let B; = {te[0, 11\R: ¥, _ r.(t) = N holds for
j=1 and does not hold for j <[} and

.An,u,;‘f: {IE[Os I\R: %# fi=1,...,m zl: () > N} > a}.
k=1

We have to prove that, for any fixed Ne Z and (0, 1), A(A4, 4, y) tends to f (a)
as n tends to oo. It is easy to see that for any £ >0

llm Sup A (An,a,N | Bl)

I+i

1
< lim A({te[O, INR: —#{i=1,...,n: Y n()>0}> a—s}),
L n k=1+1
which is equal to f(x—e¢) (due to the classical arcsin law).
The same argument gives us the inequality
LminfA(A4,.x|B) = f (a+¢).

Since f is a continuous function and ¢ is arbitrary, lim,_, ., 4(4, . x| B;) exists and
is equal to f (a), which together with Z:‘; , 4(By) = 1 gives us the conclusion. =

3. Other generalizations. Now we formulate a simple generalization of
Theorem 1.

THEOREM 2. There exists T < [0, 1] with A(T) = 1 such that, for any in-
creasing homeomorphism h: [0, 1] — [0, 1], for any x€[0, 1] and any te T, we
have

cl{% Y h,0...0h, (x): neN} = [m,, M,],
i=1

where m,; is the maximal fixed point of h not greater than x, M is the minimal
fixed point of h not less than x. As before hg =h,hy =h Y and t =0, t1t, ...),
is a binary representation of t.

Proof. The set T is the same as in the proof of Theorem 1 and is defined
by (2). To check that it satisfies the conclusion of the theorem we consider two

cases:
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If x is a fixed point of k, then
1 n
M,=m,=x and cl{; Y. h,0...0h, (x): neN} =cl{x} = [m,, M,].
i=1

If x is not a fixed point, then consider a restriction h’ = k|, Of the
function h. The function A’ is an increasing homeomorphism of the interval
[m,., M,] onto itself with m, and M, as the only two fixed points. It is easy to
see that, as in Theorem 1, {n™'Y_ h,0...OH, (x): neN} is dense in
[m,, M,], and this implies the conclusion. m
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