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Abstract. Recently K. Sato constructed an infinitely divisible
probability distribution u on R? such that p is not selfdecomposable but
every projection of u to a lower dimensional space is selfdecomposable.
Let L (R%), 1 £ m < o, be the Urbanik—Sato type nested subclasses of
the class Ly(R") of all selfdecomposable distributions on R”. In this
paper, for each 1 < m < oo, a probability distribution u with the fol-
lowing properties is constructed: y belongs to L,,—; (RY) N (L,, (R%)", but
every projection of u to a lower k-dimensional space belongs to L,, (RY).
It is also shown that Sato’s example is not only “non-selfdecomposable”
but also “non-semi-selfdecomposable.”

1. Introduction. Let I (R?) and S (R? be the classes of all infinitely divisible
distributions and all stable distributions on R? respectively. Urbanik [9], [10]
and Sato [4] studied the nested classes L, (R%, m=0,1,2,..., o, between
I(R% and S (R%, which are defined in the following way. For each 0 < m < oo,
a distribution u on R is said to belong to the class L, (R% if ueI(R% and for
any ac(0, 1) there exists g, Lm-1(R? such that

(1.1) ((2) = fi(a2)4,(z), VzeRd,

with the convention L-1(R?% = I(R?), where /i is the characteristic function of
pt- The class L (R% is defined as (,,5 ¢ L., (R%). (They actually defined L, (R?)
as a class of limit distributions of independent random variables, and showed
that (1.1) is a necessary and sufficient condition.) Then it was shown that

(1.2) I(R) > Ly(RY)> L,(RY > ... > L_(RY) > S(RY.

A distribution u in L, (R is called selfdecomposable.

For a k xd real matrix 4 and a measure (or a signed measure) u on R?,
define Ay by (Au)(B) = u(A~'(B)), Be #(R"). If a d xd symmetric matrix A
satisfies 42 = A, and the dimension of the linear subspace {Ax: xeR%} is
k (€d-1), A is called a k-dimensional projector.
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It is well known that, for a distribution u on R?, if Ay is Gaussian for any
1-dimensional projector A, then p is Gaussian. For non-Gaussian stability, this
fact does not necessarily remain true, but several conditions for its validity are
known (see, e.g., [3]). Among those, if u is infinitely divisible, then the stability
of u follows from the fact that Au are stable for all 1-dimensional projectors A.

On the other hand, it is also known that even if Ay are infinitely divisible
for all k-dimensional projectors A with 1 < k <d—1, u is not necessarily in-
finitely divisible. (As to the references on this fact, see [5]) An example by
Shanbhag and Sreehari [7] gives us a multivariate distribution such that it is
infinitely divisible and not selfdecomposable, but every linear combination of
its components is selfdecomposable.

Recently Sato [5] has also given another example of uel(R?) such that
péLo(RY, but Afie Ly(R*) for any k x d matrix 4 with 1 <k <d—1, as
follows.

|x| denotes the Euclidean norm of xeR% Let 0 < §

<
D, ={xeR*: 1<x|<2}, D,={xeR*" |x|<d},
Ao (dx) = (1p, (x)—&lp, (x)) dx,

1,0<e<1,

and define
(1.3) vo(B) = [ Ao(dx) [ 15(e™*x)dx, Be%,(RY,
R 0

where B, (R is the class of all Borel sets B in R? such that B < {|x| > &} for
some ¢ > 0, and 1,() is the indicator function of B. Then Sato [5] showed the
following

THEOREM A. The measure v, in (1.3) is the Lévy measure of a distribution
to€I(R%. Further, uy¢ Ly (RY) but Auye Ly (RY for any kxd matrix A with
1<k<d-1.

The first purpose of this paper is to study the same problem for the nested
classes L, (R%, 1 <m < o0, in (1.2). Namely, we show

THEOREM 1. For each 1 < m < o0, there exists a distribution u,, such that

 p,€Lm_ 1 (RY, p,¢L,(RY, but Ap,eL, (R% for any kxd matrix A with

I1<k<d-1.

In [2], the class of semi-selfdecomposable distributions L, (b, RY),
0 < b < 1, has been introduced. We say that, for each be(0, 1), u belongs to
L, (b, R% if for some gel (RY), fi(z) = /i(bz) 8 (z) for all ze R?. Tt is easy to see that

Lo, R)cI(RY) and Lo(RY= () Lo(b, RY).

0<h<1

Therefore, for every be(0, 1),
I(RY) > Ly (b, R%) o Ly(R.
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The second purpose of this paper is to show that the example constructed
by Sato (u, in Theorem A) is not only “non-selfdecomposable,” but also
“non-semi-selfdecomposable.” Namely, we show

THEOREM 2. Let p, be the one in Theorem A. Then uy¢ Ly (b, RY) for any
be(0, 1).

Similarly to the nested classes L, (R%, 1 < m < oo, mentioned above,
Maejima and Naito [2] have defined the nested classes L, (b, RY), 1 <m < o0,
of Ly (b, R% as follows. Let 0 < b < 1. For each 1 < m < oo, p is said to belong
to the class L, (b, RY) if peI(R% and there exists g€ L, (b, R% such that

A@) = ab2)¢(z), VzeR'.

It is easy to see that for each be(0, 1), L, (b, RY) o L, (RY) and L, (R%

ﬂ o<p<1Lm(Ds RY). Related to Theorem 2 above, a natural question arises:
For each 1 < m < o0, does y,, in Theorem 1 belong to L, (b, R?) or not? The
answer is the following

THEOREM 3. Let 1 < m < oo, and let u, be the one in Theorem 1. Then
tn# Lo (b, RY for any be(, 1).

2. Preliminary lemmas. To prove Theorem 1, the following characteriza-
tion for ueL,(R% is our starting point. This is a reformulatlon by Sato and
Yamazato [6] of a result of Urbanik [8].

THEOREM B. pe L, (R if and only if ueI(R%) and its Lévy measure v is
either zero or represented as

2.1) vB) = [ A@x) | 15e*x)ds, BeB,(R),
Rd o

where A is a measure on R satisfying
22 A({0h)=0
2.3) [ Ix?A(dx) < o,

) x| <2
and
2.4 { logl|x| A(dx) < .

|x|>2

This A is uniquely determined by v.

Since v and A are uniquely determined by pel(R%, when we want to
emphasize the correspondence between those, we may write v=v,and 1 = 4,.

In the following, we state two results by Jurek [1] on characterization for
pe L, (RY, 1 < m < oo, which will be used in the proof of Theorem 1. We say
that an R’valued stochastic process {Y (t), ¢ = 0} is a Lévy process if it has
independent and stationary increments, it is right continuous, it has left limits
and Y (0) = 0 a.s. The distribution of a random variable X is denoted by .# (X).
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For ¢ > 0 and B < R’, write ¢B = {cx: xeB}. For ae(0, 1) and a measure
& on R4 define

4,8(B) = £ (aB)—<(B),
when ¢(B) and £(aB) are finite, and for n > 2 and ay, ..., a,€(0, 1), define
. (Aan...au &)(B) = 4,, (Aaﬂ_1...a1 &) (B)
successively.

LemmMa 1 ([1], Corollary 2.6). Let 0 < m < . u belongs to L, (R% if and
only if ,ueI(R") and its Lévy measure v, satisfies

25 (4a,...qq ,‘)(B)>0 Va,, ..., 4,e(0, 1), VBe%,(R%
for any I=1,...,m+1.

LeMMA 2 ([1] Theorem 2.3). Let 1 < m < 0. p belongs to L, (R% if and
only if there exists a Lévy process {Y (t)} such that

= E(Te"dY(t))

and & (Y (1)) € Ly, — 1 (R%) O I1pg (RY), where Lo, (R%) is the set of all &e1(R?) satis-
Sying [log(1+|x[)&(dx) < oo.
For our purpose, we state Lemma 2 in terms of 4, as follows.

- LEMMA 3. Letr 1 < m < 00. p belongs to L, (R if and only if ue Ly (R and
A=A, in the representation (2.1) satisfies

(2.6) (4410, 2)(B) 20, Vay,...,q¢c(0,1), VBeRB,(R%
for any I=1,...,m

Proof. Let ueL,(R. Note that the Lévy measure of £ (Y (1)) in Lemma
2 is A, in our notation (see [6], p. 91). Then combining Lemmas 1 and 2, and
noticing that A,eI,,,(R%) by (2.4), we conclude Lemma 3.

3. Proof of Theorem 1. For our construction of desired distributions in
Theorem 1, we fully use the example by Sato [5] mentioned in Theorem A. We
- first show that the measure v, in (1.3) satisfies (2.2), (2.3) and that

(3.1) vo (x| >2)=0

Since v, is the Lévy measure as shown in Theorem A, (2.2) and (2.3) are
automatically satisfied. As to (3.1), we have

vo(lx| >2)= | io(dy)jl(le“yl >2dt= [ A,(dy)|1(e”yl>2)dt=0
R4 ly|>2 0
because Ay(|y| > 2) =
Suppose for 0 < m < o0 we are given a measure v,, on R" satisfying (2.2),
(2.3) and such that v, (x| > 2) = 0. v,, also satisfies (2. 4) trivially. Thus we can
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define the Lévy measure

(3.2) Vm+1(B) = [ v (dx) | 1p(e™" x)dt

R4 V]
by taking A =v,, in (2.1). If v, (x| > 2) = 0, then v, (x| > 2} = 0 as above.
Thus v, ; also satisfies (2.2)2.4). Therefore starting with v, in (1.3), we can
construct a sequence of Lévy measures v,, 0 <m < oo, and denote by
U €1 (R% the distribution whose Lévy measure is v,. Note that

(33 Voo = Apras

in our notatjon. We will show that, for 1 < m < o0, u,, is the desired distri-
bution satisfying the rcqulrements in Theorem 1.

By Theorem A, p, is such that u,el(R%), py¢L, (R% and Apge Ly (RY
for any kxd matrix 4 with 1 <k <d—1. We show the assertion of the
theorem by induction on m.

Suppose, for some m, > 0, the distribution p,,, satisfies pp, € Ly,—1 (R%),
tmo & Limo (RY) and Apiy, € L, (R*) for any kxd matrix 4 with 1 <k<d—1.
Since  ppo ¢ L, (RY), we see from Lemma 1 that A4, , vm,(B)<0
for some I=1,...,my+1, a,,...,q,(0,1), Be#,(RY). Thus, by (3.3),
(Aa...a1 Aymy 1) (B) < O for such , ay, ..., a, and B, implying pmg+1 ¢ Lmp+1 (RY
by Lemma 2.

Next note that Lemma 1 remains true for m = —1, and that Lemma 2 also
remains true for m = 0. Since piy, € Lo, —; (R?), we see from Lemma 1 (includ-
ing the case for m = —1) that

(4ay..a; Vm) (B) =0,  Vay, ..., q,€(0, 1), VBe %, (R")
for any /=1, ..., m,. Thus, by (3.3),
7 )(B)=0, Va,,...,ae(,1), VBeB,(R%

a...4a1 .umo+ 1

foranyl =1, ..., my, implying j,, + € Ly, (R%) by Lemma 2 (including the case
for m =0).

Finally, we suppose that A is any kxd matrix with 1<k<d—1.
In general, if ueI(R?), then AueI(RY and its Lévy measure v 4, is [Av,]gx0)-
If

v,(B) = [ A,(dx) | 15(e™" x)dt,
R¢ 0
then for Be %, (R

VA"(B) = V“(A_l(B)) = j Aﬂ(dX)of IA—1(B)(e_‘x)dt
R4 V]

— [ (AL @) | 15l ) dr.
R4 o
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By induction hypothesis and Lemma 1, we see that
(da...a; (AVi))(B) 2 0, Vay, ..., 4,€(0, 1), VBeZ,(R"
for any =1, ..., my+1. On the other hand,

auny11(B) = [ (A9 @) T 1" x)d.

Hence, by Lemma 2, A;.t,,,uﬂ € Ly, + 1 (R¥), which concludes that our p,,+, hav-
ing its Lévy measure v, ; in (3.2) is an example of the desired distribution. ThlS
completes the proof of Theorem 1.

4. Proof of Theorem 2. By Lemma 4.1 in [2], ue L, (b, R%) if and only
if v,(bB) > v,(B) for any Be 4%, (R%. Thus, for a given be(0, 1), if we could
show

vo(bry < x| < bry) <vy(r, <ix| <r,) for some 0 <r; <r,,

then Theorem 2 would be concluded. Here we use the calculation done by Sato
[5]. He showed that if 0 <r, <r, <1, then

1
I(ry,ry) = - Vol(ry <Ix| <71y)
4

=—j'r" 1log dr log—jr" Ldr+log zj'r" Ldr,
ry 1 ra
where ¢, is the surface measure of the unit spherc in R% Thus

bra
I(bry, bry) = — j ri- llog b dr—-log = I ri- 1d;-+10g ) j’rd gy,
bry L
and we have

I=1I(ry,r,)—1(bry, bry)

= —jr" 1log—dr logr j'r" Ldr
rg 1r;
. bra
+ f llogb dr+log 2 jr“ Lar

bry rl bra

l)jr" 1log—dr+log T2 jr" Ldr

ry 1 bra
> Liog D21 — 1) —rd)+(1—b) ) = — L log 2 =1t > 0.
d " r d °r

This completes the proof.

5. Proof of Theorem 3. We need two lemmas corresponding to Lemmas
1 and 3.
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LemMma 4[2]. Let 0 <b < 1and 0 < m < 0. u belongs to L, (b, R? if and
only if peI(R% and its Lévy measure v, satisfies

(4yv,)(B) =0, VBe%,(RY)
for any 1=1,...,m+1, where 4, = 4, _,.
LEMMA 5. Let 0<b<1 and 1 <m < . Suppose peLy(R%). Then p
belongs to L, (b, R") if and only if A = A, in the representation (1.3) satisfies
: (444)(B)=0, VBe%,(R)
for any 1=1, ..., m.
This lemma can be proved in exactly the same way as Lemma 3 with the
replacement of Lemma 1 by Lemma 4.

Proof of Theorem 3. Since u,¢L,(b, RY), by Lemma 4 we have
4,v,,(B) <0 for some Be%,(R%. As before

Ay A, (B) = 4, v,,(B) <O.

Hence, by Lemma 4, u, ¢ L, (b, R%. Repeating this argument, we conclude that
Un¢ L, (b, R%) for each 1 < m < .

6. Conciuding remarks.
(i) We have the following two relations:

L (RY)<L,_(R) and L, (RY)cL,(b,RY.

One might ask what the relationship between L,_,(R% and L, (b, R%) is.
@ L, (®, R A (Ly-1(RY) 5 B. This can be shown by taking non-self-
decomposable semi-stable distribution, the existence of which is well known.
(1) Lp-1(RY (L, (b, RY)' # @. Our p,, constructed in Theorem 1 as-
sures this non-emptiness.

(ii) It is known that if Aue S(R") for any 1 x d matrix A4 for some peI(RY),
then pe S (R (see, e.g., [3]). In Theorems A and 1, we have seen that this type
of property does not hold for the classes L_(R%), 0 < m < co0. The same ques-
tion about L_(R% seems interesting, but it is still open.
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