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Abstract. Necessary and sullicient conditions are given for the 
absolute continuity of a causally perturbed product measure with re- 
spect to the non-perturbed measure. When the perturbation i a  linear, 
these conditions involve the convergence of a quadratic form of indepen- 
dent random variables. The convergence of this form is studied when the 
independent random variables are symmetric or strictly stable. 
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1. Introduction. This paper has two goals. Our first goal is to study the 
pairwise absolute continuity of the measures P,, on RJ generated by the discrete 
time stochastic sequence 

Here R stands for the real line, J stands for the non-negative integers, 
X = (X,: ~ E J )  is an infinite sequence of independent real random variables, 
and rd, = (t,hj: j~ 3) is an infinite sequence of Bore1 measurable functions such 
that $ j  maps Rj+l into R. (If t,hj = 0 for all ~ E J ,  then the corresponding 
measure is denoted by Po.) To accomplish our first goal we shall determine 
criteria for Po > P* and for Po w P*, where Po >- PJ, means that PJ, is abso- 
lutely continuous with respect to Po while Po w P* means that Po > P* and 
P,  > Po. 

Given further technical conditions on the distribution of X, we shall prove 
that Po > Pg if and only if 
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(An almost sure probability statement with no measure specified, such as (1.2), 
refers to a basic probability measure P on an underlying probability space 
P sufficiently rich to accommodate all random variables under consideration.) 
The extra conditions on X are that the random variables Xn have non-zero 
density functionsf, with uniformly bounded Fisher information and that there 
exist numbers 19 > 0, p > 0, N > 0 such that 

(1.3) P[JX,J<O]>p for n > N , n € J  

The second goal of this paper is to establish criteria under which (1.2) 
holds -when- the functions ~j are linear. These criteria will provide a simple 
application of our results regarding absolute continuity. We shall also agply 
a dichotomy theorem in Kanter [7] which states that Po > P,, implies Po sz Pg 
if the functions $j are linear and the densities f ,  are non-zero. The causal 
condition that i,bj depends on (X,, . . ., Xi) is not needed either in the dichoto- 
my theorem or in any of the following results regarding (1.2) in the linear case. 

Suppose X = (X,:  neJ) is a sequence of independent symmetrically 
distributed non-trivia1 random variables with values in R .  Let 
B =  (bj,: j, a~ J ,  bJ ,€R)  be a matrix such that the Iimit 

N 

( b j ,  X )  = lim bin X, a.s. 
N - t m  n = 0  

exists for all j in J. (We identify +j(X) with (b j ,  X).) We shall prove that 

(1.5) C (b j ,  X ) 2  < GC a.s. 
jeJ 

if and only if 

where B, = (bin: j E J )  and llBn]l is the norm of B, in E2 (J). An explicit criterion 
for the validity of (1.6) is 

where exp (- Q, (t)) = E (exp (- tX;))  for t  2 0. 
We shall also show that (1.6) holds if and only if (1.4) and (1.5) both do, 

when the hypothesis of symmetry on X is replaced by strict stability of index 
a ~ ( 0 ,  21. In that case (1.7) is rewritten as 

Re la t ion  t o  prev ious  work. Kadota and Shepp P] considered the 
measures P,, in the case when (X,:  n E J) was a sequence of independent stan- 
dard normal random variables and ($j: j~ J) was a general causal sequence of 
functions as in (1.1). They proved the equivalence of (1.2) with the condition 
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that Po > P,, and established various other related results in the Gaussian case. 
The equivalence of (1.8) to (1.4) and (1.5) when (X,: ~ E J )  is a sequence of 
independent, identically distributed, non-trivial random variables with sym- 
metric stable distribution of index a E (0, 21 can be gleaned from Linde [8]. We 
note that most papers concerning the convergence of quadratic functions of 
independent random variables do not stipulate non-negative definiteness as we 
do in (1.5). (For example, there is no such stipuIation in Cambanis et al. [I].) 

Organiza t ion .  The rest of this paper is divided into three sections. In 
Section 2 we wiIl establish the connection between (1.2) and the condition that 
Po > P@.  In Section 3 we-will give criteria for (1.2) when the functions $j are 
linear (not necessarily causal), while the random variables (1,: n E J) are sym- 
metric. In Section 4 we will extend the results in Section 3 to the case when the 
random variables (X,: ~ E J )  are strictly stable, not necessarily symmetric. 

2. Causally pertarbed product measures. In this section we study the pair- 
wise absolute continuity of causally perturbed product measures. Given 0 > 0 
and X E R ,  let 

THEOREM 2.1. Let X = (X,: n~ 3) be a sequence of independent real ran- 
dom oariables and let (0, p ,  N )  be a triplet ofpositive numbers satisfying (1.3). Let 
$I and P,, be defined as in the Introduction. Then Po > P,, implies (1.2). 

Proof .  For j € J  let Z j  = $j(Xo, ..., Xj) and let Z$ = h,(Zj). Define 
Sj = sign(Zj). (If Z j  = 0 ,  let Sj  = 0.) Write h(x) to stand for he+l (x). It is easy 
to verify that 

(2.1) h(x)Sj < h(x+Z>)Sj< h(x+Zj)Sj 

for x E R and j E J, since k is non-decreasing. It follows from the first inequality 
in (2.1) and the definition of h that 

where A (j) = [max (lXj+ l \ ,  [Xi+, + Zj) < 0 + 11 and I, is the indicator func- 
tion of the set A. 

Now let Fj stand for the g-field generated by (X,, ..., Xj) and let 
= E (h(xj)). It follows from (2.2) that for j 2 N- 1 

since [[Xj+,l < 81 c A 03. Furthermore 

by setting x = Xj+, in the second inequality in (2.1) and remembering 
q+1= X j + l + z j .  
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To prove the theorem, suppose by way of contradiction that Po > P* and 
(1.2) is false. Then C(Z;l2  = co with positive probabiIity. Thus there exist 
c = ( c j :  J E J )  such that C E  12(J), c j  > 0 for jf J, and 

(2.5) P [ C  cjlz;I = 001 > 0. 
~ E J  

Noting that 
var(h(T+,)) < (0+1)2 for j € J ,  

it follows that 

converges a.s. (The partial sums defining U are an I? bounded martingale with 
respect to the a-fields Fj.) 

On the other hand, the map from RJ into itseIf defined by (1.1) is inver- 
tible. Hence there exists a sequence (bj:  j~ J )  of Borel measurable functions 
such that q5j maps R'" into R and 

for j~ J .  Arguing as was done to define U ,  note that 

converges as .  Use the hypothesis Po  > P* to conclude that 

converges as. since S j  = sign ( $ j  (Yo, . . ., 5)). Subtracting U from V it follows 
that 

converges a.s. But this is in contradiction to (2.31, (2.4), and (2.5). B 

Remark  2.1. The key inequality (2.3) is essentially present in Kanter 161, 
which deals with the special case of Theorem 2.1 when $j is a sequence of 
constants. (See also Kanter [5].) 

We now present a partial converse of Theorem 2.1. 

THEOREM 2.2. Let X = (X, :  n EJ) be a sequence of independent real 
random variables such that X ,  has densityf,  (x)  > 0 for all n E J ,  x E R .  Suppose 
also that there exists a finite number i ,  such that the Fisher inrorrnation i , ( f , )  
of fn satisjies 

(2.7) ( i  for ~ E J .  

Then (1.2) implies that Po > P*. 
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Proof.  Refer to (2.6) and note that (1.1) can be rewritten as 

Let pj(zo, . . ., zj) stand for the Radon-Nikodym derivative d ~ $ ' / d P f )  evaluated 
at the point (zo7 ..., z j ) ~ R j + l .  (Here Py) stands for P* restricted to the 
g-algebra generated by the functions (e,, . . ., ej) ,  where en(z) = z, for 
z = (z,, ..., z,, ...) f R J . )  For j g J  and (z,, ..., Z ~ + ~ ) E R ~ + ~ .  let 

It is clear tliat 

(2-8) r j + l  (zO, . . .. ~ j . + i )  = f j + l  ( ~ j + l - $ j ( ~ O ~  . . . r  ~J) / j ; .+1(z j+l)  

We define 

j z o . . . ,  z )  = I -  + l ( z - j ( z o , . . ,  z ~ ) + z ) ) ~ ' ~ ~ z  for ~ E J .  

We can write 

hj(zo. .... 2,) = I 14j+l(s)lZ(l-exp(is~j(zo, ..., zj)))ds, 

where q (x) = dl; (x)jli2 and 

ijj(s) = (24-'I2 J eiSX qj (x) dx 

is the Fourier transform of qj. Since lijj(s)j2 is an even function of s, it follows 
that 

0 4 hj(zo,  --., zj) 6 2 - ' ( J  I ~ q j + l ( ~ ) I ~ d $ ( 6 ~ ( ~ 0 ,  ~ ~ 1 ) ~ -  

As shown in Shepp [9], we may identify i, Cf,) with 4 Is& (s)I2 ds  for n E J .  
Thus 

(2,9) hj(zo, . - - 9  zj) 4 (idg)(#j(zO, ..-, ~ j ) ) ' .  

We can use (2.8) to write 

for Po almost all z in RJ, where E ,  (U ( A) denotes the conditional expectation 
of U given A with respect to Po.  Now (2.10) involves only j + 1 coordinates and 
P(,'3 >. for all j~ J. An easy argument shows that the distribution of the 
random variables 

( l - ~ ~ { ( r , + ~ ) ~ / ~  1 en = z,,? 0 < n < j): ~ E J )  

under P* is the same as the distribution of the random variables (hj(Yo,  . . ., 5): 
~ E J )  on (Q, P).  Recalling (2.61, note that 
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We conclude from (1.2) and (2.9) that the series 

converges for P,, almost all z€RJ. Applying Theorem 4 in Shiryayev [ l o ] ,  
p. 496, it follows that Po > PIL, since P'B) > P$) for all ~ E J .  IM 

Remark 2.2. It is natural to ask if Theorems 2.1 and 2.2 hold in the 
"two-sided" case when J is replaced by L, the set of all integers. In that case 
( 1 . 1 )  is replaced by the equation 

= X + j ( . . . ,  X I )  for  EL, 

where X = (Xj:  EL) is a sequence of independent random variables indexed 
by L. The proofs of Theorems 2.1 and 2.2 no longer go through, because the 
analogue to (2.6) may not hold in the two-sided case. More explicitly, it is not 
known if there exists a sequence ( d j :  jfJ) of Bore1 functions such that 

. X j ) = j ( . . . ,  3) a for  EL. 
(Note that the domains of # j  and $ij in the two-sided case are the sets 
Dj = (x = (x,): x , E R ,  n f L ,  n gj} . )  

We can combine Theorems 2.1 and 2.2, thereby summarizing our results in 
this section. 

COROLLARY 2.1. Let X = ( X , :  n~ J) be a sequence of independent random 
variables satisfying (1.3) for some triplet (8, p, N )  of strict Iy positive numbers. 
Suppose also that X ,  has density f, (x)  > 0 satisfying (2.7). Then Po  > P,, if and 
only if (1.2) holds. 

3. The symmetric linear case. For statistical investigations it is more con- 
venient to know that Po x P,, than P o  >- P*. As an application of the results in 
Section 2 we will start this section by giving conditions for Po x P,, based on 
the assumption that 5 in ( 1 . 1 )  are linearly dependent on X = (X,: ~ E J ) .  We 
will then use these conditions as motivation for studying (1.5). 

LEMMA 3.1. Suppose X = (X, :  ~ E J )  is a sequence of independent random 
variables all with non-zero density functions. Suppose further that there exists 
a matrix B = (b,,: j ,  n E J ,  bj, E R )  such that for j~ Jy $ j ( ~ )  = <bj ,  X )  for Po 
almost all x ,  where ( b j ,  x )  is defined as in (-1.4). Then Po  > P,, implies Po  x P*. 

P r o  of. Given a subgroup D c RJ, refer to the definition of D-ergodic and 
D-smooth measures on RJ in Kanter [7]. Upon examining the example con- 
sidered in the first section of that paper, it can be deduced that there exists 
a collection of countable subgroups D* of RJ, indexed by $ = ($ j :  j E J), such that 
Pg is D@-ergodic and D$-smooth. Now apply Theorem 2.1 in the same paper. ts 

Suppose the functions $ j  are causal as in Theorem 2.1 and linear as in 
Lemma 3.1. Suppose further that the technical conditions (1.3) and (2.7) hold. It 
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follows from Corollary 2.1 and Lemma 3.1 that P, w P, if and only if (1.5) 
holds. It is therefore of interest to study when (1.4) and (1.5) hold in order to 
present a specific application of our previous results. The causal condition that 
@j depends on (xo, . , ., x j )  plays no role in this application and is therefore 
dropped. 

We shall consider this question in the remainder of this section under the 
hypothesis that X is symmetric. This hypothesis allows us to make use of 
a classical theorem due to Kahane [4], pp. 24-25, which involves a sequence 
(U,: n~ J) of independent, symmetric, f 1 valued, random variables and a se- 
quence (h,: -n E J )  of vectors in a Wifbert space H. Kahane's theorem states that 

Unhn converges a.s. in H if and only if C llhnl12 is finite. 

T H E O M  3.1. Let X = (X,,: n E J) be a sequence of independent, sym- 
metrically distributed, mn-trivial, real random variables. Let 3 = (bin: 
j ,  n E J ,  bin E R). Then (1.4) and (1.5) hold if and only if (1.6) does. 

Proof. Given any finite subsets S and T of 3, write 

where Bn(S)=(bj,ls('j): ~ E J )  and bj (T)=(b jn1 , (n) :  ~ E J ) .  (Note that 
B,(S)E~~(J) for ~ E J . )  

Suppose first that (1.6) holds. It follows by conditioning on (lX,l: n~ J )  
and using Kahane's theorem that for any integer N E J  the random 
vector 

w,= C XnBn 
n % N  

converges a.s. in E2 (3). Furthermore, ((w,, GN):  N E  J )  is a reverse martingale 
in E 2  (J), where G ,  is the a-field generated by (X , :  n 2 N ) .  Standard arguments 
show that W, converges a.s. to a constant vector W, E l2 ( 5 ) .  On the other 
hand, W, is symmetrically distributed, hence W, = 0. Thus 

We now note that, for fixed the left-hand side of (3.1) is increasing 
with S. Letting S t  J, we get 

for any finite subset Tof 3. It follows from (3.2) and (3.3) that (for fixed j) the 
sequence of random variables <bj (T), X) is Cauchy in probability as T t J. 
This proves (1.4). Furthermore, 

15 - PAMS 19.2 
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by Fatou's lemma, and 

using (3.2) and (3.3). This proves (1.5). 
Suppose now that (1.4) and (1.5) hold. Let T I  J in (3.1) and apply (1.4) 

to get 

Write-Sf-S to stand for the complement of S in S' and use (1.5) to obtain 

= lim sup IICX,B,(S'-S)~~~ = Iim sup C ( b j ,  X)' = O a.s. 
S f J  S ' I S  n f ~  S f 3  S ' Z S  ~ E S ' - s  

It follows that EX, B, (S) is a.s. Cauchy in l 2  (J) as S I J .  Thus 

lim X,, 3, (S) = C Xn B, as. 
stJ EJ REJ 

with 3, E Z2 (J) for n E J as a consequence of Proposition 4.1 in Cambanis er al. 
[I]. We now apply Kahane's theorem to deduce (1.6). EI 

The convergence of (1.6) can be given more explicitly. 

THEOREM 3.2. Let X = (X,: n~ J )  be a sequence of independent random 
variables. Then (1.6) and (1.7) are equivalent conditions on X .  

P r o  of. First note that for any sequence c, of non-negative real numbers 

Letting c, = l l ~ ~ 1 1 ~ ~  it follows immediately that (1.6) implies (1.7). Conversely, if 
(1.7) holds, then clearly the sum in (1.6) converges with positive probability as 
a consequence of (3.5). The Hewitt-Savage 0-1 law now guarantees that a.s. 
convergence holds in (1.6). H 

4. The strictly stable Iinear case. In the previous section we established 
(1.5) as a criterion for Po w P,, in the linear case, and we analyzed this criterion 
in the symmetric case. In this section we drop the hypothesis of symmetry and 
study the same criterion when X is strictly stable. (See Feller [2] for back- 
ground on stable random variables.) We start by stating a known result for 
symmetric stable random variables. 

THEOREM 4.1. Suppose X = (X,:  n~ J )  is a sequence of symmetric, inde- 
pendent, identically distributed, non-trivial real random variables, stable of index 
a ~(0, 21. Let 3 be given as in Theorem 3.1. Then (1.4) and (1.5) hold ifand only 4 
(1.8) does. 
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There are several ways to verify Theorem 4.1. One way is to deduce it from 
Corollary 7.8.3 in Linde [ S ] ,  p. 154. Another way is to apply Theorem 3.1 in 
conjunction with Exercise 1 in Kahane 141, p. 29. 

The most elegant way to verify Theorem 4.1 is to deduce the case OI E (0, 2) 
from the case a =  2. First note that when u = 2, Theorem 4.1 is well known 
and easy to verify. On the other hand, if UE(O,  21, then write X, = F/,l/'Zn for 
R E  J, where 

(i) V = (K: n E J )  and Z = (2,: n E J )  are independent of each other, 
(ii) Z is an i,i.d. sequence of standard normal random variables, 
(iii) V is an i.i.d. sequence of positive random variables, stable of index u/2. 

I 

. I (See Fel.ler-[2j, p. 596.) If we condition by Vand apply Theorem 4.1 in the case 
a: = 2, then we see that (1.4) and (1.5) hold if and only if 

(4.1) C C b;, /A cc a . ~ .  
j n 

Now use the strict stability of V to see that (4.1) is equivalent to (1.8). 

THEOREM 4.2. Let (X, :  ngJ) be a sequence of independent, identically dis- 
tributed, real, non-triuial random variables, strictly stable of index a ~ ( 0 ,  21. Let 
B be given as in Theorem 3.1. Then (1.4) and (1.5) hold if and only if(1.8) does. 

Proof .  Suppose first that (1.4) and (1.5) hold. It follows that the functions 
N 

BjN(x)= bin& for ~ E J  
n = O  

converge for Po almost all x in RJ as N + co. We let Aj stand for the linear set 
of x in RJ such that lim,+m BjN (x)  exists. Given x € R J ,  define 

( b j ,  x )  = {IimN 
+ B (x)  for x E Aj,  

+a for x $ A j .  

Let B ( 2 ) ( ~ )  = (x ( b j ,  x ) ~ ) ' ~ ~ .  It is easy to see that B(2) is a convex function from 
RJ into the extended non-negative real numbers [0, a]. Furthermore, 
BIZ)(x) < O C ~  for Po almost all x in RJ as a consequence of (1.4) and (1.5). 

It is clear that B(') satisfies the triangle inequality 

(4.2) B ( ~ ) ( x ~ ~ ) G B ~ ~ ) ( x ) + B ( ~ ) ( ~ )  for x , y € R J .  

(Note B(') is homogeneous of order 1 and satisfies &')(-x) = B(') (x)  for 
x E RJ.) Now let I?, = X, - X', for n E J, where X' = (Xtn: n E J) is an indepen- 
dent copy of X. Let Fo stand for the probability measure induced on RJ by the 
process 3 = (Tn: ~ E J ) .  It follows from (4.2) that B(2)($ < co for Fo almost all 
2 in RJ. We may thus conclude that (1.8) holds as a consequence of Theorem 
4.1 applied to the symmetric process 3. 

Conversely, if (1.8) holds, then so do (1.4) and (1.5) with 2 substituted for 
X, by virtue of Theorem 4.1. It follows that B(2)(Z) < co for PO almost all 2 
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in RJ. Fubini's theorem establishes the existence of x'ER' such that 
B") (X -x') < ca a.s, Furthermore B(2)(X'-x3 < oo a.s., since X' is distributed 
like X. Apply (4.2) to write 

B(2) (X + X' - 2 x f )  < B ( ~ )  (X - XI) + B(') (X' -xl). 

Using the homogeneity of B(2), it follows that 

Now let 6 = 1-a-l. Note that 2-'/"(X+X') is distributed like X by 
hypothesis, .hence B("~X - 2d x') < a.s. Use (4.2) again to write 

Now 1-2' # 0 if a # 1; hence Bt2)(X) < co (a.s.) in that case. (Note that 

and both terms on the right-hand side have already been shown to be a.s. 
finite.) This proves (1.4) and (1.5) for u # 1 .  

If ct = 1, then by strict stability there exists c E R such that X, = I.', +c  for 
all ~ E J ,  where Y = (Y,: n~ J )  is a sequence of independent, identically dis- 
tributed, symmetric Cauchy random variables. (See Feller [Z], equation (3.19), 
p. 570). Let C in RJ be defined by in = c for all n in J and note that 

B(') (Y + 8- x') = B(2) (X -x') < co as. 

It follows that B") (- Y+ t -x') < 00 a.s. since Y is symmetric. Furthermore, 

Hence B(2)(Y) < co as. since 

Now, note that if (1.8) holds with cl = 1, then 

by the triangle inequality for I I - l [ .  It follows immediately that B " ) ( E )  < co. 
Thus 

This proves (1.4) and (1.5) for a = 1. H 

Remark 4.1. If X and B are as in Theorem 4.2, then (1.4) holds if and 
only if bj€  P ( J )  for all ~ E J .  

Acknowledgments. My thanks to Jack Feldman for a helpful conver- 
sation regarding ergodic theory, which led to Remark 2.2. 
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