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Abstract. The Skitovich-Darmois Theorem of the early 1950's 
establishes the normality of independent X,, X,, . . ., X, from the in- 
dependence of two linear forms in these random variables. Existing 
proofs generally rely on the theorems of Marcinkiewicz and Cramkr, 
which are based on analytic function theory. We present a self-con- 
tained real-variable proof of the essence of this theorem viewed as 
a generalization of the case n = 2, which is generally called Bernstein's 
Theorem, and also adapt an early little known argument of Kac to 
provide a direct simple proof when n = 2. A large bibliography is 
provided. 
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The Skitovich-Darmois Theorem asserts that if n 2 2 is fixed, XI,  . . ., X, 
are independent, and Y, = x;=, aj  Xj is independent of Y, = x;=, bjXj for 
some constants (aj), (bj) with aj bj # 0, j = 1, . . ., n, then each Xj is normally 
distributed. This theorem implies Cramtr's Theorem (Cramkr [6]) through 
a simple application of the case n = 4 (Linnik [25]). On the other hand, proofs 
of the Skitovich-Damois Theorem are not self-contained in that they require 

(1) the use of Cramir's Theorem (at the very least to cover the case where 
for some j # k, aj/bj = ak/bk, since both sums then contain a multiple of 
b j X j  + b, Xd, and 

(2) the proposition that if a characteristic function 4 (t) = E(eitx), t real, 
has the form exp(~(t)),  where P(t) is a polynomial, then the degree of the 
polynomial is not greater than 2. 

This last is a form of Marcinkiewicz's Theorem, which is in terms of 
a complex variable z instead of t. The complex-variable version is easier to 
prove directly (e.g., Linnik [26], p. 65); the real variable version is quite long 
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and difficult (Lukacs [28], pp, 213-221; Bryc [ 5 ] ,  p. 351, although the jump 
from real t to complex variable z is sometimes made rather cursorily. As re- 
gards (I), the proof of Cramkr's Theorem depends on a deep result from the 
theory of entire functions, Hadamard's factorization theorem, which is stated 
but not proved in probability monographs (e.g., Linnik [26]). Thus proofs of 
the Skitovich-Darmois Theorem to a large extent depend on external theo- 
rems, whereas an essentially self-contained proof, not heavily dependent on 
results from entire function theory, for the most part in real variable terms, and 
avoiding use of the proposition about polynomial exponents, is desirable from 
a didactic viewpoint. 

The essence of the Skitovich-Darmois Theorem is to view it (Darmois 
[lo], p. 6) as an extension of Bernstein's Theorem (the case n = 2) by putting 
aside the possibility that aj/bj = a,/bk for some j # k. This enables us to pro- 
duce, in Section 2, a self-contained proof of the kind desired. Naturally, this 
proof borrows and interrelates a number of clever arguments to be found in the 
works of authors such as Skitovich, Lancaster, Lukacs and King, and Dugu6, 
when they address the Skitovich-Darmois setting. There are also novel ele- 
ments, such as the proof of Lemma 4, and the switch from characteristic func- 
tions to Laplace transforms following Lemma 5, in Section 2.2. 

In Section 3, which deals with the case n = 2, we adapt the largely over- 
looked real-variable argument of Kac [17] to prove Gnedenko's [16] generali- 
zation of Bernstein's Theorem [3]. Our overall treatment in both Section 2 and 
Section 3 rests heavily on Lemma 2, which is due to Lancaster [22]. 

The paper includes a large bibliography which, whilst not complete, seeks 
to illuminate the early published history on this topic, disrupted as it was by 
World War 2 and its aftermath. 

Z THE SWITOVICH-DARMOIS THEOREM 

We state our result before proceeding (A restricted version was the pur- 
pose of Marcinkiewicz [31].) 

THEOREM 1. Let n 2 2 be fixed, XI, . . ., X, be non-degenerate and inde- 
pendently distributed random variables, and suppose that 

n R 

Y'=CXj and & = x b j X j  
. j = l  j= 1 

are independently distributed, where the constants {bj) satisfy bj # 0, bj # b,, 
j # k. Then each Xj is normally distributed. 

2.1. Real variable arguments. As a first step to a proof of Theorem 1 we 
follow Skitovich [37] by symmetrizing. Let (X;, . . ., Xb) be an independent 
replica of (XI, . .., X,) and define 

n 

Y;= EXj and Y;= i b j ~ > .  
j= 1 j= 1 
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Then yj = Xj-Xi, j = 1, . . ., n, are independent and 
n n 

are also independent. The characteristic functions of the symmetrized variables 
are of course real-valued, but the independence of the linear forms gives more: 

Then 0 < Jj (t)  < 1 for all real t. - - 

proof  (based on Skitovich 1371). The independence properties can be ex- 
pressed as L(u, u)=R(u, v) for -m<  u < a, -a < v < a, where 

" 

If the lemma is false, then, by continuity and since L (0, 0) = R (0, 0) = 1, there 
exists a number w such that 

(2.3) R(u, v)  > 0 for lul < Iw1 and Ivl < Iwl, and R ( w ,  w )  = 0. 

This entails either & (w) = 0 for some k or Jk (b, w) = 0 for some k. In the first 
case, let u, = (1 - bk/c) w and v, = w/c,  where c is chosen so that IcI > max(1, Ibkl) 
and b,/c > 0. Then we have u, + bkvl = w and 

L(ul, ~ 1 )  = n $j(ul+bjvl)'6k(ulf bkvl) = O, 
j#k 

so R(ul, vl) = 0. This contradicts (2.3), since lull < Iwl and Ivl] < Iwl. On the 
other hand, if Jk(bk w) = 0 for some k, then taking U, = bi W/C and 
v, = (1 - b,/c) w, with c chosen such that Icl > max (1, bz) and bk/c > 0, we arrive 
at the same contradiction. 

Lemma I implies that for j = 1, . . ., n the second characteristic func- 
tion Gj(t) = logJj(t) is uniquely defined as a real-valued function for 
- co < t < ca . The following lemma guarantees that we can differentiate gj(t) 
any number of times (see, e.g., Feller [13], XV.4, Lemma 2). 

LEMMA 2. FOP j = 1, ..., n, E ~ z ~ l '  < co for any r 2 1 .  

Proof  (after Lancaster [22]). Let a = mini lb, 1 and /? = maxi Ibi 1 .  Take 
0 < E < 1 and choose A so that 

P(IX,I>A)<c for i = 1 , 2  ,..., n. 

Put y = (2n--l)jj/ol> 2n-1 (2 3 since n 2 2). Then 

(2.4) ( l -~)"- lP(lX~l  > yA) < P(IXjI > yA, lXil < A for all i # j )  
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since lXjl < I YII +xi, lXi 1 gives 

and Ib,Xjl d [Y,l +zi , j (biX,(  gives 

Now 

by Boole's inequality, and 

It follows from (2.4H2.6) and the independence of Y, and Y, that, for 
j = 1, 2, ..., n ,  

Writing the right-hand side of (2.7) as E' we have shown that, for y as defined 
above, 

P((Xj( > A) < E implies P (IXj( > y A) < E'. 

If we take E < n-3, then it follows from Bernoulli's inequality ((1 +x)" 2 1  +ax 
for x >  - 1  and a = 1 , 2 ,  ...) that n ( l - ~ ) " - l > l  for n 2 2 .  Thus 
E' < n3 cZ < Then, if we put 6,  = E, E, = n3 s 2 1 ,  we have proved 
that, with E,, < n - 3  and k 2 0, 

on putting c = n - 3  and g = n3eO, so 0 < g < 1. Finally, 
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Since the ratio of the ( k +  1)-st to k-th terms in this sum is yrg2k-i 0, 
D'AlembertYs test shows that the sum is finite. 

LEMMA 3. For j = 1 ,  . . ., n there exists a polynomial Fj( t )  with real coeffi- 
cients and of degree at must n ,  such t h ~ t  

t,&j(t)=Fj(t), - m < t < c o .  

P r o  of [ideas similar to Lukacs and King [29], pp. 391-392; see also Bryc 
[ 5 ] ,  pp. 76-78). The equality of (2.1) and (2.2) gives 

It follows from Lemma 2 that each GJ has at least n derivatives. Differentiating 
(2.8) r times, 1 < r < n, with respect to u and setting v = 0 gives 

M 

where rZj ,  = ( - iyII,pl (0) is the r-th cumujant of gj (Laha and Rohatgi [21], 
p. 223). If we integrate (2.9) with respect to u, we get 

Integrating a further r -  1 times with respect to u, at each stage using the 
identity @(0) = i'fc, we obtain 

If we denote the right-hand side of (2.10) by d,(u), it follows that dr(u) is 
a polynomial of degree r in u, with real coefficients on account of the present 
symmetric case with gj(u)  = Gj(-u) in which fjs = 0 for odd integers s. Thus 
in the matrix form (2.10) becomes 

where $(u) = (GI (u), . . ., gn(u)): d(u) = (dl (u), . . ., d, (4' and 

b; b",.. 
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Since the bj's are all unequal, B must be non-singular, so it follows from (2.1 1) that 

LEMMA 4. For j = 1, . . . , n ,  gj - JV (0, 2~:). 

Proof. Taking r = 2 in (2.10) we obtain 

(2.13) bfgj(t)=-ct2, . 
j= 1 

where c = xbj2 D;, 03 being the variance of Xj. It follows from (2.13) and 
Lemma 1 that for -each j 

In order that (2.14) be consistent with Lemma 3, it is necessary that the degree 
of the polynomials pj(t) be at most 2 and normality of the zj's follows. r 

The normality of the Xis themselves could now be deduced from Crarnkr's 
Theorem, as is done at this point by Kac [17] and Skitovich [37]. Of course, if 
it were known that the X,'s had symmetric distributions, then the arguments of 
Section 2.1 could by applied directly to the Xi's themselves. We now show how 
to establish the normality of the Xj's themselves from Lemma 4, without direct 
use of Crarnkr's Theorem, 

2.2. kaplrmce transforms. Lemma 2 is clearly true in terms of the original 
Xis, and since Xj-Xi - N(0 ,  2 4 )  from Lemma 4, where Xj and Xi are 
independently and identicaIly distributed with characteristic function $j satis- 
fying t$j(t) 4j ( - t) = exp (--a; t2), it follows that 4j (t) # 0 for any real t, and 
dj(t) has at least n derivatives. We put IClj(t) = log 4j(t), where log refers to the 
principaI branch (since #j(t) may be complex valued even though t is real), so 
$j(0) = 0. The following lemma implies that the Xi's have at most n non-zero 
cumulants: 

LEMMA 5. For j = 1, 2, . . ., n there exists a poZynornia2 Pj(t) of degree at 
m s t  n, such that 

j ( t = P j ( t ) ,  - c o < t < o o ,  

where q)(O) = rcj,, the r-th cumulant of Xj. 
Proof. We need only mimic the proof of Lemma 3, replacing Gj (t) by 

Ifij(t), with minor adjustments for non-symmetry. ta 

The remainder of our derivation is in terms of the Laplace transform 

which the next lemma shows is finite. 

LEMMA 6. For j = 1, . . ., n, 
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P r o  of. According to Lemma 4, X j -  Xi - JV ( 0 , 203 .  Clearly, we can 
assume without loss of generality that Xj has zero median, that is, 
P ( X j  < 0) $ < P ( X j  < 0 ) .  Then the distribution function F j  of Xj satisfies 

6 + P ( X j  < x)+ P(X, -X i  < x).  

Writing 
1 " 

@(x)  =- j exp(-u2/2)du,  f i  - m  

we obtain 

As x + CQ , f - F j  (x)  is similarly bounded. This means we can integrate by parts in 

to get 
0 m 

-m < A j ( v ) =  1 e - V x d F j ( x ) + [ e - u X d ( ~ j ( x ) - l )  < CQ. 

-m 0 

It is readily seen that Aj(v) has continuous derivatives of all orders r 2 I ,  
with 

m 

bAj(v) /dvr  = (- l y  j ~ ' e - ~ ~ d F ~ ( x ) .  
- m 

By Lemma 5, the cumulant generating function g j ( v )  = logAj(v) exists for all 
v  since Aj(v) # 0, and thus has continuous derivatives of all orders. It is clear 
that 9'f) (0) = ( - 1)' ujr, where K ~ ,  is the r-th cumulant of X j .  

We are now in a position to prove Theorem 1. Recall for the sequel that 
q, = EXj and ~ c ~ ,  = VarXj = a;. It follows from Lemma 5 and the mean 
value theorem of order n + 1 that 

(2.15) 

The fact that 

(2.16) 9 7  (v) 2 0 

follows for instance by noting that 9 y ( v )  is the variance of the conjugate 
distribution 

e-'' dFj ( x )  
dGj(x)  = 

S- cO e-ux ~ F ~ ( X ) '  
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(This is suggested by an argument of Dugub [11], p. 56; see also Linnik [26], 
p. 62.) 

Lemma 4 implies 
2 2 2 Y j ( v ) + P j ( - v )  = -.j v 

from which it follows by taking derivatives at v = 0 that all even cumulants 
higher than the second are zero, so that (2.15) reduces to 

From- this 'and (2.16) we obtain for n 2 3 

The right-hand side of (2.17) is an odd function of v, and hence will be large and 
negative, for either large positive v or large negative u, if xjq2,,,+ is non-zero for 
any m = 1, . . ., [(n- 1)/2]. But this would contradict the lower bound in (2.17). 
I t  follows from Lemma 5 that 

Kj2 z 
glrj(t) = iujl t - -  t , that is, Xj - N(lcjl, xj2). ra 2 

3. ON FORMS OF BERNSTEIN'S THEOREM 

In conclusion we indicate a simple direct proof of 

THEOREM 2. Let X1 and X ,  be non-degenerate and independently distribu- 
ted random variables and suppose that 

Yl = pXl + qX2 and I.; = ax,  - bX, 

are independently distributed, where p,  q ,  a and b are all real and non-zero. Then 
XI and X, are each normally distributed. 

The reader will recognize this as the case n = 2 of Theorem 1. The case 
p = q = a = b = 1 is known as the celebrated Bernstein's Theorem (after Bern- 
stein [3], who assumed also that X, and X, had finite, equal variances and 
positive densities). Bernstein's Theorem was generalized by Gnedenko [16], 
who proved Theorem 2 in full generality, taking (without loss of generality) 
p = q = a = 1, b # 0, - 1. For a modern proof, see Quine [34], Theorem 1. 
Our proof, in which passage to logarithms is unnecessary, borrows a little from 
this, but shows that the Bernstein case is rather special and requires extended 
treatment. However, such treatment is shown to have already been available, in 
elegant and simple real variable terms, in Kac [17]. 

Kac's paper precedes even Bernstein's. From its received date, shortly after 
his arrival just before World War 2 at Johns Hopkins University on a Pol- 
ish-Jewish (Parnas Foundation) Fellowship to the U.S., the paper was written 
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by Kac largely in Lwbw (then in Poland, now L'viv, in Ukraine; Russian name: 
L'vov); see Kac [IS]. It  is possibly due to ongoing disruptions in scientific 
communications caused by the war, and partly due to its own apparent restric- 
tiveness, that Kac's paper has not received its due within the very large litera- 
ture emanating from Bernstein's Theorem. There is no mention of it in the 
Russian papers, or the French sources (Frkchet [14] ;  Darmois [7]-[lo]; Du- 
gut [Ill, [12]) which deal with the topic in terms of characteristic functions. 

Oatline of proof for 'Ileorem 2. Using our Lemma 2 (which does not 
require symmetry of the Xi's) we obtain EIXjlr < GO, r 2 1. Then, assuming 
without loss of generality E X j  = 0, we obtain, as in Lemma 2 of Quine [34], 
the equality 

Further, since Y, and Y, are independent, 0 = Cov (Yl, Y,) = pa at - bq &, 
where CT; = Var Xj > 0, and since 

z = pb + aq # 0 (otherwise Yl would be a multiple of Y2). Inverting the matrix 
in (3.2) gives 

z X l = b Y l + q Y 2  and zX2=aYl-pYz.  

Taking characteristic functions, we obtain 

Without loss of generality, let us put p  = q = a = 1, so z = b f 1 ,  where 
b = a?/a; > 0. Hence from (3.3) we get 

The continuity of #j ( s )  together with 1$~(0) = 1 implies the existence of E > 0 
such that ($j(s)(  > 0 for - E  < s < E ,  j = 1, 2. Hence from (3.4) we obtain 
$j ( s )  # 0 for any s, -a < s  < a, j =  1 ,  2. 

Returning to the general formulation, from (3.1) we infer that 

d ( 4 ~ ~ ~  (sP)) = (,, - -  
'is 4Yq (sq) 

which leads to 
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If we now write 

&=(-b)X2+aX1 and Yl=qX,-(-PIX, 

and apply (3.5) mutatis mutandis, we obtain 

#2 ( t )  = #bJ'I(lrq) 1 (-tLZlb) 

from which and ( 3 3 ,  putting y = bp/(aq), we get 

13-61 #5(t) = &(-t /IJ) .  
Thus, if y2 > 1, we have 

which is the characteristic function of N ( 0 ,  at). If 0 < y2 < 1, put 6 = l / y  in 
(3.6) to obtain 

#i2 ( - t/S) = $2 

and proceed as for y2 > 1. 
When y2 = 1, the case y = - 1 has already been dismissed since it corre- 

sponds to z = pb + aq = 0. The case y = 1 corresponds to Bernstein's formula- 
tion, and (3.6) (and the analogous equation for #, (t)) gives 

that is, the distributions of X1 and X, are symmetric about 0, with real charac- 
teristic functions 4, (t) and 4, (t). Now, Kac [I71 initially assumes that X, and 
X, are independent and symmetrically distributed about 0, and that 

Yl = (COS 8) X1 + (sin 8) X2 and Y,  = (sin j?) X1 - (cos 8) X, 
are independent for every j?, and deduces that XI and X2 are identically nor- 
mally distributed, as was to be, later, Bernstein's conclusion. In fact, his proof 
uses the independence assumption only at 8 = n/4 and /? = 3 4 4  to show that 
X, and X2 have the same (real) characteristic function # which satisfies 

Using the continuity of 4,  I# (5)1 < 1 and # (0) = 1 ,  and the Cauchy method used 
to deal with the f d i a r  functional equation IC, ( 2 4  = t,b2 (x), - cc < x < cc , Kac 
deduces 0 < 4 (t) < 1, and then # (5) = exp (kt2) for some k < 0. 

We remark that the cases /3 = n/4 and jl = 371/4 are not in fact different, 
since both assert the independence of X, +X2 and X, - X,, and hence to treat 
our special case y = 1, one may 'tap in' directly to Kac's brief argument, con- 
densing it a Iittle more. m 

Another early paper (Lukacs [27]) also relates to Bernstein's Theorem, 
although it is concerned with the characterization of the normal distribution 
function from the independence of the sample mean R = zl=, Xi/n ,  and sam- 
ple variance SZ = z:=, (Xi -B)'/(n - I), where Xi, i = 1, 2, . . . , n, are inde- 
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pendently and identically distributed with finite variance. This characterization 
was established under more stringent moment conditions by Geary [IS]. 
Quine [34] showed that the present Lemma 2 can be combined with Lukacs' 
approach to prove the characterization with no moment assumptions what- 
soever. In the case n = 2, if we write as with Bernstein, Yl = XI +X, and 
Y, = X, -X,, we see however that S = Y,/2 and S2 = Y2'/2, SO that in this 
case the characterization amounts to Bernstein's Theorem under the restrictive 

, initial-condition that X, and X, are identically distributed. 
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