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Abstract. The Skitovich-Darmois Theorem of the early 1950°s
establishes the normality of independent X, X,, ..., X, from the in-
dependence of two linear forms in these random variables. Existing
proofs generally rely on the theorems of Marcinkiewicz and Cramér,
which are based on analytic function theory. We present a self-con-
tained real-variable proof of the essence of this theorem viewed as
a generalization of the case n = 2, which is generally called Bernstein's
Theorem, and also adapt an carly little known argument of Kac to
provide a direct simple proof when n=2. A large bibliography is
provided.
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1. INTRODUCTION

The Skitovich-Darmois Theorem asserts that if n > 2 is fixed, X,, ..., X,
are independent, and Y, =" _ a;X; is independent of ¥, =} _ b;X; for

some constants {a;}, {b;} withjaj b; #0, j=1, ..., n, then each X is normally
distributed. This theorem implies Cramér’s Theorem (Cramér [6]) through
a simple application of the case n = 4 (Linnik [25]). On the other hand, proofs
of the Skitovich-Darmois Theorem are not self-contained in that they require

(1) the use of Cramér’s Theorem (at the very least to cover the case where
for some j # k, a;/b; = a,/b,, since both sums then contain a multiple of
b;X;+b, X;), and

(2) the proposition that if a characteristic function ¢ (t) = E(¢"¥), t real,
has the form exp(P(t)), where P(t) is a polynomial, then the degree of the
polynomial is not greater than 2. .

This last is a form of Marcinkiewicz’s Theorem, which is in terms of
a complex variable z instead of ¢. The complex-variable version is easier to
prove directly (e.g., Linnik [26], p. 65); the real variable version is quite long
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and difficult (Lukacs [28], pp. 213-221; Bryc [5], p. 35), although the jump
from real ¢ to complex variable z is sometimes made rather cursorily. As re-
gards (1), the proof of Cramér’s Theorem depends on a deep result from the
theory of entire functions, Hadamard’s factorization theorem, which is stated
but not proved in probability monographs (e.g., Linnik [26]). Thus proofs of
the Skitovich-Darmois Theorem to a large extent depend on external theo-
rems, whereas an essentially self-contained proof, not heavily dependent on
results from entire function theory, for the most part in real variable terms, and
avoiding use of the proposition about polynomial exponents, is desirable from
a didactic viewpoint. _ '

" The essence of the Skitovich-Darmois Theorem is to view it (Darmois
[10], p. 6) as an extension of Bernstein’s Theorem (the case n = 2) by putting
aside the possibility that a;/b; = a,/b, for some j # k. This enables us to pro-
duce, in Section 2, a self-contained proof of the kind desired. Naturally, this
proof borrows and interrelates a number of clever arguments to be found in the
works of authors such as Skitovich, Lancaster, Lukacs and King, and Dugué,
when they address the Skitovich-Darmois setting. There are also novel ele-
ments, such as the proof of Lemma 4, and the switch from characteristic func-
tions to Laplace transforms following Lemma 5, in Section 2.2.

In Section 3, which deals with the case n = 2, we adapt the largely over-
looked real-variable argument of Kac [17] to prove Gnedenko’s [16] generali-
zation of Bernstein’s Theorem [3]. Our overall treatment in both Section 2 and
Section 3 rests heavily on Lemma 2, which is due to Lancaster [22].

The paper includes a large bibliography which, whilst not complete, seeks
to illuminate the early published history on this topic, disrupted as it was by
World War 2 and its aftermath.

2, THE SKITOVICH-DARMOIS THEOREM

We state our result before proceeding (A restricted version was the pur-
pose of Marcinkiewicz [31].)

THEOREM 1. Let n > 2 be fixed, X,, ..., X, be non-degenerate and inde-
pendently distributed random variables, and suppose that

Y=Y X, and Y,=) b,X;
. j=1 j=1

are independently distributed, where the constants {b;} satisfy b; # 0, b; # b,,
j# k. Then each X; is normally distributed.

2.1. Real variable arguments. As a first step to a proof of Theofem 1 we
follow Skitovich [37] by symmetrizing. Let (X4, ..., X;) be an independent
replica of (X, ..., X,) and define

Y=Y X, and Y=Y bX,
j=1 =

ji=1
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Then X, = X,—Xj, j=1,..., n, are independent and
.3 n
=Y -Y=3&-X), %=Y,-Y%=Y bX,~X)
£ F
are also independent. The characteristic functions of the symmetrized variables
are of course real-valued, but the independence of the linear forms gives more:

LEMMA 1. Define
¢;(t) =Eexp(itX), —ow<t<ow,j=1,..,n
Then 0 < ¢ (®) <1 for all real t.

Proof (based on SkltOV]Ch [37]). The independence properties can be ex-
pressed as L(u,v)=R(u,v) for —0o <u< 00, —o0 <v < o0, where

.1 L(u,v) = ﬁ $j(u+ij),
22) R, o) = f[1$j(u)- H1 8,0,

If the lemma is false, then, by continuity and since L(0, 0) = R(0, 0) = 1, there
exists a number w such that

2.3) R(u,v) >0 for ju| < [w| and [v| < |w|, and R(w,w)=

This entails either @, (w) = 0 for some k or ¢, (b, w) = 0 for some k. In the first
case, letu, = (1 —b,/c)wand v, = w/c, where cis chosen so that |c| > max (1, |b,])
and b,/c > 0. Then we have u,+b,v; =w and

L(uy, v)) =[] $j(u1 +bj”1)'$k(“1+bkv1) =0

j*k

so R(u,, v,) = 0. This contradicts (2.3), since |#,| < |w| and |v,] < [w]. On the
other hand, if rﬂ (b,w) =0 for some k, then taking u, =bZw/c and
v, = (1—b,/c)w, with c chosen such that |c|] > max (1, bf)and b,/c > 0, we arrive
at the same contradiction. m ’

Lemma 1 implies' that for j=1,..., n the second characteristic func-
tion !{1 )= logd) (t) is uniquely deﬁned as a real-valued function for
— o0 < t < 0. The following lemma guarantees that we can differentiate y/; (8
any number of times (see, e.g., Feller [13], XV.4, Lemma 2).

Lemma 2. For j=1,...,n, E|\Xf < for any r> 1.

Proof (after Lancaster [22]). Let a = min;|b;,| and B = max;|b;|. Take
0 <e< 1 and choose A so that

P(X,)>A)<e fori=1,2,...,n
Put y = (2n—1)B/e = 2n—1 (= 3 since n = 2). Then
(24) (1—e ' P(X;| > yA) < P(X;| > A, |X;| < A for all i #j)
P(Y,| = nA, |Y,| = nAp),

N N
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since |X;| <|Yil+},,,I1X;| gives
|Y;| = |Xj|— Z |X;|>yA—(n—1)A > nAd
itj

a’nd lb]XJ| < l‘Y2|+Zl¢J]lei' gives
|Yal = 16, X;|— Y b, X;| > ayA—p(n—1) A > fnA.

i#j
Now

(2.5_) , . P(Y,|>nd)=P( Z X,| > n4)

<P(Y IX;| > nd)

i=1

<P(O {IX;] > A}) < ne

i=1

by Boole’s inequality, and

2.6)  P(Y>nAp) =P Z b;X,| > nAp)

P(Z": b, X | > nAp)

< (U {Ib;X;| > AB}) < P(| {IX;| > 4}) < ne.
i=1 j=1
It follows from (2.4)(2.6) and the independence of Y, and Y, that, for
ji=1,2,.

n? g2

(2.7 P(X;}>y4) < d—ept

Writing the right-hand side of (2.7) as & we have shown that, for y as defined
above,

P(X;] > A) < ¢ implies P(X;| > y4) <¢.

If we take &€ < n™3, then it follows from Bernoulli’s inequality ((1+x)* = 1+ax
for x> —1 and a=1,2,..) that n(l—g" '>1 for n>2. Thus
¢ <n?e? <n~3. Then, if we put g, =¢, e, =n>e2_;, s > 1, we have proved
that, with ¢, <n™2 and k>0, '

P(X;| > y*4) < g = n"3(n?go)** = cg*™*

-3

on putting ¢ =n"3 and g =n?¢,, so 0 <g < 1. Finally,

E(l);’;lr) TP(lX "> A"x)dx < 2 P(X;| > A"
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<1+Y 3 P(XI>74)

k=0 yrkS/r<yk+l

oo o0
< 1+ Z ,yr(k+1)P(|X_| >'))kA) < 1+ 2 ,yr(k+1)cgzk'
k=0
Since the ratio of the (k+1) st to k-th terms in this sum is " g
D’Alembert’s test shows that the sum is finite. &

-1
-0,

LemMa 3. For j =1, ..., n there exists a polynomial FJ- (t) with real coeffi-
cients and of degree at most n, such that

¥,0)=P,(1), —wo<t<om.
Proof (ideas similar to Lukacs and King [29], pp. 391-392; see also Bryc
[5], pp. 76-78). The equality of (2.1) and (2.2) gives

2.8) ilnﬁj(wb,-v) = Z )+ il ¥;(b;0).
j= i=1 i=

It follows from Lemma 2 that each ; has at least n derivatives. Differentiating
(2.8) r times, 1 <r < n, with respect to v and setting v =0 gives

29 Y, b @) = ZHW@=2MWW

j=1 i=1
where &;, = (—iy ¥ (0) is the r—th cumujant of X; (Laha and Rohatgi [21],
p. 223). If we integrate (2.9) with respect to u, we get

i b}lﬁ}"“l)(u) Z bk u+ Z b"lﬁ(’ ()
j=1

n
=Y Wi, u+ Z Al
j=1 j=1
Integrating a further »—1 times with respect to u, at each stage using the
identity ¥ (0) = i &;,, we obtain

2.10) ) B, () = Z b, Z 3 ("")

If we denote the right-hand side of (2.10) by d,(u), it follows that d,(u) is
a polynomial of degree r in u, with real coefficients on account of the present
symmetric case with q/7 () = |// (—u) in which &j, = 0 for odd integers s. Thus
in the matrix form (2 10) becomes

(2.11) By (u) = d(u),
where (u) = (F, @), ..., ¥, ), dw) = (d, @), ..., d,() and
by b, b,
L |m e e
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Since the b;’s are all unequal, B must be non-singular, so it follows from (2.11) that
(2.12) Vuw)=B'dw. =

Lemma 4. For j=1,..,n X, ~ 40, 26%).

Proof. Taking r =2 in (2.10) we obtain

(2.13) z b2, = —ct?,
i=1

where ¢ = ) b} 67, 0 being the variance of X;. It follows from (2.13) and
Lemma 1 that for-each j

(2.14) 0< —¥;(t) <ct?b}, —o0<t< .

In order that (2.14) be consistent with Lemma 3, it is necessary that the degree
of the polynomials P;(t) be at most 2 and normality of the X,'s follows. &

The normality of the X;’s themselves could now be deduced from Cramér’s
Theorem, as is done at this point by Kac [17] and Skitovich [37]. Of course, if
it were known that the X;’s had symmetric distributions, then the arguments of
Section 2.1 could by applied directly to the X;'s themselves. We now show how
to establish the normality of the X;'s themselves from Lemma 4, without direct
use of Cramér’s Theorem.

2.2. Laplace transforms. Lemma 2 is clearly true in terms of the original
X;’s, and since X;—X~ A"(0, 207) from Lemma 4, where X; and X are
independently and identically distributed with characteristic function ¢; satis-
fying ¢;(z) ¢,(—1t) = exp(—o7} t?), it follows that ¢;(z) # O for any real ¢, and
@;(¢) has at least n derivatives. We put ¥, (t) = log ¢;(t), where log refers to the
principal branch (since ¢;(f) may be complex valued even though ¢ is real), so
¥;(0) = 0. The following lemma implies that the X;’s have at most n non-zero
cumulants:

LemMA 5. For j=1,2,..., n there exists a polynomial P;(t) of degree at
most n, such that
V() = P;(t), —o0o<t<oo,
“where PP (0) = Kk, the r-th cumulant of X,.

Proof. We need only mimic the proof of Lemma 3, replacing |l7j (t) by
¥;(¥), with minor adjustments for non-symmetry. =

The remainder of our derivation is in terms of the Laplace transform
A;(t) = E(exp(—1vX)), —o0<v< 00,
which the next lemma shows is finite.
LemMmA 6. For j=1,...,n,

0<;(r) <00, —0<v<o00.
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Proof. According to Lemma 4, X;,— X ~ A (0, 207). Clearly, we can
assume without loss of generality that X; has zero median, that is,
P(X;<0) < 3 < P(X;<0). Then the distribution function F; of X; satisfies

F,(x)=P(X,<x) =P(X;<x, X;<0)+P(X; < x, X >0)

< P(X, < %) P(X} < 0)+P(X,— X} < x, X} > 0)
<EP(X, < )+ P(X,—X; < %),
Writing
. - 1 x
. d(x) = [ exp(—u?/2)du,
) -\/275 —m
we obtain
F;(x) <2P(X;— X} < ( ) O (exp(—x*/(4s})) as x> —o0.
“jf

As x— 0,1 —F;(x)is similarly bounded. This means we can integrate by partsin

1+v j)-e"”‘Fj(x)dx—vOj?e'”"(l—Fj(x))dx
— 0
to get
—0 < A;(v) = j e " dF. (x)+j'e_”"d(F x)—1)<c0. m

— o0
It is readily seen that A;(v) has continuous derivatives of all orders r > 1,
with

d' A;(v)/dv" = (= 1) Oj? x"e” " dF;(x).

By Lemma 5, the cumulant generating function Z;(v) = log 4;(v) exists for all
v since 4,(v) # 0, and thus has continuous derlvatlves of all orders It is clear
that Z('{(O) = (—1) k., where k; is the r-th cumulant of X;.

We are now in a position to prove Theorem 1. Recall for the sequel that
k;; = EX; and k;, = VarX; = ¢}. It follows from Lemma 5 and the mean
value theorem of order n+1 that

2.15) £,0) = ;%(—u)'.
The fact that "~
(2.16) ‘ L0 >

follows for instance by noting that %7 (v) is the variance of the conjugate
distribution :
e” " dF;(x)

dG;(x) = —————ﬁw e dFj(x)'
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(This is suggested by an argument of Dugué [11], p. 56; see also Linnik [26],
p. 62)
Lemma 4 implies
L)+ Z;(—v) = —a;v?
from which it follows by taking derivatives at v = O that all even cumulants
higher than the second are zero, so that (2.15) reduces to

Zy =2 N K
j 21 = (2m+1)!

From- this 'and (2.16) we obtain for n > 3

' " 22 Kjam+1  om—1
e s L g
The right-hand side of (2.17) is an odd function of v, and hence will be large and
negative, for either large positive v or large negative v, if k; 5,41 is non-zero for
anym=1, ..., [(n—1)/2]. But this would contradict the lower bound in (2.17).
It follows from Lemma 5 that

K; . '
¥;() = iKnt—%th, that is, X;~ A '(k;1, k). ®

3. ON FORMS OF BERNSTEIN'S THEOREM

In conclusion we indicate a simple direct proof of

THEOREM 2. Let X, and X, be non-degenerate and independently distribu-
ted random variables and suppose that

Y=pX,+qX, and Y,=aX,-bX,

are independently distributed, where p, q, a and b are all real and non-zero. Then

X, and X, are each normally distributed.

The reader will recognize this as the case n = 2 of Theorem 1. The case
p =g =a=>b=11is known as the celebrated Bernstein’s Theorem (after Bern-
stein [3], who assumed also that X, and X, had finite, equal variances and
positive densities). Bernstein’s Theorem was generalized by Gnedenko [16],
who proved Theorem 2 in full generality, taking (without loss of generality)
p=qg=a=1,b#0, —1. For a modern proof, see Quine [34], Theorem 1.
Our proof, in which passage to logarithms is unnecessary, borrows a little from
this, but shows that the Bernstein case is rather special and requires extended
treatment. However, such treatment is shown to have already been available, in
elegant and simple real variable terms, in Kac [17]. _

Kac’s paper precedes even Bernstein’s. From its received date, shortly after
his arrival just before World War 2 at Johns Hopkins University on a Pol-
ish-Jewish (Parnas Foundation) Fellowship to the U.S., the paper was written
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by Kac largely in Lwow (then in Poland, now L’viv, in Ukraine; Russian name:
L’vov); see Kac [18]. It is possibly due to ongoing disruptions in scientific
communications caused by the war, and partly due to its own apparent restric-
tiveness, that Kac’s paper has not received its due within the very large litera-
ture emanating from Bernstein’s Theorem. There is no mention of it in the
Russian papers, or the French sources (Fréchet [14]; Darmois [7]-[10]; Du-
gué [11], [12]) which deal with the topic in terms of characteristic functions.

Outline of proof for Theorem 2. Using our Lemma 2 (which does not
require symmetry of the X;’s) we obtain E|X,|" < co, r > 1. Then, assuming
without loss of generality EX = (), we obtain, as in Lemma 2 of Quine [34],
the equahty

(3.1) a1 (sp) ¢, (sq)—bo, (sp) 93 (sq) =

Further, since ¥, and Y, are independent, 0 = Cov(Y;, Y;) = pagi—bqo3,
where o7 = Var X, >0, and since

62 ()= -5 ()

7 = pb+aq # 0 (otherwise ¥, would be a multiple of Y,). Inverting the matrix
in (3.2) gives
X, =bY,+qY, and X, =aY,—-pY,.

Taking characteristic functions, we obtain
¢, (rs) = ¢, (pbs) ¢, (qbs) ¢, (qas) P, (—gbs),

¢, (t3) = b, (pas) ¢, (qas) ¢, (—aps) ., (pbs).

Without loss of generality, let us put p=g=a=1, so t=>b+1, where
= al/az > 0. Hence from (3.3) we get

¢1(1+D)s) = ¢, (bs) §, (s) b2 (bs) §, (—bs),

¢2((1 +b) S) = ¢, (bs) P, (5) Dy () Py (—5).

The continuity of ¢;(s) together with ¢;(0) = 1 implies the existence of ¢ > 0
such that |¢,(s) >0 for —e<s<eg, j=1,2. Hence from (3.4) we obtain
¢;(s) #0 for any s, —o0 <s< o0, j=1,2.

Returning to the general formulation, from (3.1) we infer that

d (¢9"(p)) _ 0
ds\¢¥i(sq))

(3.3)

(34)

which leads to

(35 6= Y agp), —w<t<oo.
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If we now write
Y, =(-b)X,+aX, and Y, =4qX,—(-pX,
and apply (3.5) mutatis mutandis, we obtain
¢, (t) = 572 (—ta/b)

from which and (3.5), putting y = bp/(aq), we get
(36) $2(0) = 6 (— /).
Thus, if y> > 1, we have _

- : z.. ) 242 g2 y2n —o2p?

162t = ¢5" (t/(—7)) = (1+—2§ﬂ‘2+ ) —»exp( 5 )

which is the characteristic function of 4 (0, 63). f 0 <92 <1, put 6 = 1/y in
(3.6) to obtain

§(=1/3) = ¢, ()
and proceed as for yZ > 1.
When y? = 1, the case y = —1 has already been dismissed since it corre-
sponds to 7 = pb+aq = 0. The case y = 1 corresponds to Bernstein’s formula-
tion, and (3.6) (and the analogous equation for ¢, (#)) gives

10 =¢,(—1) and  $,()) = P (1),
that is, the distributions of X, and X, are symmetric about 0, with real charac-
teristic functions ¢, () and ¢, (¢). Now, Kac [17] initially assumes that X ; and
X, are independent and symmetrically distributed about 0, and that
Y, =(cosB)X,+(inp)X, and Y,=(sinf)X,—(cosp)X,

are independent for every f, and deduces that X, and X, are identically nor-
mally distributed, as was to be, later, Bernstein’s conclusion. In fact, his proof
uses the independence assumption only at f = n/4 and f = 3n/4 to show that

X, and X, have the same (real) characteristic function ¢ which satisfies

PR =¢*(), —o0<é<om.

. Using the continuity of ¢, |¢ (¢)] < 1 and ¢ (0) = 1, and the Cauchy method used

to deal with the familiar functional equation ¢y 2x) = ¥*(x), — o0 < x < o0, Kac
deduces 0 < ¢(£) < 1, and then ¢ (&) = exp (k&?) for some k < 0.

We remark that the cases § = /4 and § = 3n/4 are not in fact different,
since both assert the independence of X, + X, and X, — X ,, and hence to treat
our special case y = 1, one may ‘tap in’ directly to Kac’s brief argument, con-
densing it a little more. =&

Another early paper (Lukacs [27]) also relates to Bernstein’s Theorem,
although it is concerned with the characterization of the normal distribution
function from the independence of the sample mean X = Z:'z , X;/n, and sam-
ple variance §*>=)"'_ (X,—X)*/(n—1), where X,, i=1,2,...,n, are inde-
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pendently and identically distributed with finite variance. This characterization
was established under more stringent moment conditions by Geary [15].
Quine [34] showed that the present Lemma 2 can be combined with Lukacs’
approach to prove the characterization with no moment assumptions what-
soever. In the case n =2, if we write as with Bernstein, Y; = X, +X, and
Y, = X,—X,, we see however that X = Y;/2 and $? = Y2/2, so that in this
case the characterization amounts to Bernstein’s Theorem under the restrictive
initial condition that X, and X, are identically distributed.
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