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I. Introduction Suppose on a given probability space (8, F, P) there is 
a sequence (5,) of i.i.d. random variables taking values from the interval 
[-I, a). Consider a market with two investment possibilities: in bank with 
a constant nonnegative deterministic rate of return r or in stock with random 
rate of return 5, at time n, assuming furthermore that 5, are not concentrated 
on a point and co > E5, 2 r. Denote by x, the total capital (wealth) we have at 
time n and by e,  the consumption at time n. Clearly, 0 < c, < x,. The re- 
maining capital x,-c, we invest in bank or in stock. Let b, be a part of the 
remaining capital invested in bank. Then starting with an initial capital x, = x 
we have the following recursive formula: 

or, equivalently, 

With consumption c, a certain satisfaction g(e,) is associated, where g is 
a given satisfaction function. 
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The portfolio selection strategy is characterized by a sequence u = (b,, c,) 
consisting of parts bn of capital invested in bank and consumption c, at time n. 
The purpose is to maximize a so-called discounted (with discount factor 
y,  0 < y < 1) satisfaction 

m 

The problem formulated above was considered first for a finite horizon 
with g (c) = cu, 0 < u c 1 in [ti]. Then the continuous time dBusion model was 
studied in [5]. The case with transaction costs was investigated for the con- 
tinuoustime diffusion model with g (c) = cu or g (c) = In c in [2] and [3]. In this 
paper we'present a discrete time counterpart of [2] and [3]. The advantage of 
the discrete time approach is that we allow a general rate of return and still 
obtain the characterization of optimal strategies in a form of no transaction 
cone as in continuous time. 

2. The case withaat transaction costs. In this section we consider the case 
with no transaction costs. Define the value function 

w (x )  : = sup J, (u) 
u 

with supremum over all admissible control strategies u = (b,, cJ.  Let 

[0, a) H R continuous such that I l f  l l w  : = sup - 

We have 

THU)REM 1. For g~ W and y such that y ( 1  f ES,) < 1 there is a unique 
function w E W satisfying the following Bellman equation: 

(6) w(x)= SUP {g(c)+IJ sup ~(w(( t l+r)b+( l -b)( l+~,) ) (x-c)) )} .  
=[O,xI b ~ [ O . l l  

Furthermore, w coincides with the value function deJined in (4) and the optimal 
strategies (6,, 2,) are of the form 6(xn)  and c (̂xn) with 6 and 2 being selectors for 
which the suprema in (6) are achieved. 

Proof. For f E W define the operator 

(7) q f ( x ) : =  sup {g(c)+r sup ~ { f ( ( ( l + r ) b + ( l - b ) ( l + ~ l ) ) ( x - c ) ) j } -  
C€[O.xl bEI0,ll 

Since, for each x 2 0, f ( x )  < J l  f llw(x+ l), and by the assumption Ec  < m, we 
clearly have T, f~ W .  Furthermore, using the fact that E t ,  2 r we easily infer 
that T, is a contraction operator with constant y (1 + E r , )  in the space W. 
Consequently, by the Banach contraction principle there is a solution w to the 
equation (6) unique in -W: Iterating (6) we obtain 

n- 1 

w(x)  = SUPS:{ C ~ 'g t c i )+~"w(xn ) ) .  
u i = O  
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Since y"IE:w(x,)l 4 ynE:(l+x,) < yn(l+E{)"x -0 as n - 0 ,  we obtain (4). 
The remaining part of the proof follows in a standard way from the proof of 
Theorem 4.2.3 of [4]. 

For a particular form of the function g we obtain the solution to the 
equation (6) in an explicit form. 

PROPOS~ION 1. If  g(c) = c" with 0 < a <  1 and y < 1/1, where 

(8) a:= sup ~{ ( ( l+r )b+( l -b ) ( l+ t l ) )" ) ,  
bf[O, 1 I 

the function w d@ned in (4) is a solution to (6) and is of the firm 

Moreouer, optimal strategies are (&, c*,), 

where 6 is a value o f 0  < b < 1 for which the supremum in the definition o j i  is 
mhieued. 

If g(c) = In c ,  the function w defined in (4) is for x > 0 a solution to ( 6 )  for 
any 0 < y < 1 and is of the form 

where 

(12) I= sup E(ln(( l+r)b+(l -b)( l+~l) ) ) .  
b€[0.11 

Furthemore, optimal strategies are 

with 6 being this time the value of b~ [O, 11 for which the supremum in the 
definition of X is achieved. 

P r o  of. Consider successive iterates h with T, defined in (7) correspon- 
ding to the function g(c) = P and the function h = 0. Clearly, h (x )  is a non- 
decreasing sequence. Moreover, one can show that T,h(x) = xa and for 
n = 1, ... 

n 

(14) ~ n +  1 h(x )=xU(1+ (yo"l-a))l-a. 
i = O  

 heref fore, when y < 1/1, the sequence T; h (x )  converges to w (x )  of the form (9) 
and w is a solution to (6). Since for the strategy (10) we have 
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while for any other strategy u,  w (x) 2 J,(u), using the arguments of the proof 
of Theorem 4.2.3 of [4] we infer that the strategies (tin, En) given in (10) are 
optimal and w defined in (6) coincides with that in (9). 

In the case when g (c) = In c, the corresponding iterations of the operator 
T, with initial function h 0 form a sequence and 

115) Tynh(x) = a,lnx+dnX+en7 
where 

QI = 1, a ,+ ,  = l+ya,, dl = 0, dm+, = y(dn+an), 
. . .. - 

. el = 0, en+1 = ye,+ln (Y~S'"" for n = 1, ... 
(an+l)(lff+' 

Consequently, 

1-7" n- 1 n- 1 (y ailwi 
a, = - , d ,  = iyi, and e, = Y"-'-' ln 

1-Y i =  1 i =  1 ( U ~ + ~ Y + ~ .  
Therefore, letting ~t + we obtain 

1 
a,, + - 

Y d,, +- and en +- 
1 

in y +- ln(l -y), 
1 -yY (1 - yIZ' (1 - ?I2 1-Y 

from which the form (11) of the limit function w follows. By a direct sub- 
stitution one can verify that w defined in (21) is a solution to the equation (6). 
Moreover, for the strategies defined in (13), 

and for any n, E: {Cl=, yi g (c,)) < Tl; h (x), so that since 'I;" h (x) + w (x), we 
have w (x) 2 J ,  (u). Using the arguments of the proof of Theorem 4.2.3 of 143 
again, we verify that w is also the value function defined in (4). H 

Re m a r k  1. It  should be pointed out that in the case g (c) = In c the solu- 
tion w to (6) exists for any y E (0, 1) although neither the function In c nor w is in 
the class K When g (c) = em, to have a solution to the Bellman equation (6) in 
the class < y should be less than 1/l, which is a weaker assumption than that 
from Theorem 1. In both cases the optimal strategies (10) and (13) are such that 
we have to consume a fixed (independently of time) part of the capital (wealth) 
and the part of the remaining capital invested in bank also should be fixed as 
an argument of the supremum either in (8) or in (12). The fact that optimal b, is 
constant follows from the separability of (x - c) and ((I + r)  b -I- (1 - b) 5 , )  under 
the expectation sign on the right-hand side of (6), which happens when either 
w (xy) = w (x) w ( y) or w (xy) = w (x) + w ( y) for x, y 2 0. Studying the so-called 
Cauchy equation (see e.g. [I], Theorem 14.4) one can show that kx" and 
k, In(k, xy) are the only functions with the above property. Consequently, one 
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can expect that the satisfaction functions considered in Proposition 1 are the 
only ones for which optimal strategies b, are constant. 

3. The case with proportional transaction costs. Assume now that investing 
in stock an amount x  we have to pay Ix(RE(O, 1)) transaction costs so that in 
fact we have to spend (1 +A)x. Similarly, selling actions for an amount x we 
obtain only ( l - p ) x  with p ~ ( 0 ,  1 ) .  Let for x ,  y 2 0  

.. . .. - 
and . - 

(17) v:= { ( x ,  Y ) E R = :  R ( x ,  y )  3 0). 

Let the pair ( x ,  y ) ~  R2 mean the position of an investor with amounts x in 
bank and y in stock, respectively. Then we see that if ( x ,  y )€W,  the investor is 
able to repay possible debts in bank or stock, and therefore we shall call 
V a nonbankruptcy cone. Let I ,  and m, be the amounts for which we increase or 
decrease the stock position at time n. In other words, at time n we sell actions 
for rn, and receive in banking the account (1 - p ) m ,  and buy actions for the 
amount I,, paying from our banking the account (1 +1)1,. Assume we addi- 
tionally consume the amount c, at time n. Starting with an initial capital 
(x,, yo) = ( x ,  y) consisting of the amount x  on the banking account and y  in 
stock we obtain the following recursive formulae for our investment position 
(x,, y,) at time n: 

Consequently, our investment strategy u now consists of a sequence of three 
terms (I,, q,, c,). Given a satisfaction function g E nW; a discount factor y and an 
initial position ( x ,  y) we have the following analog of the discounted satisfac- 
tion functional (3): 

In what follows we shall consider only initial positions ( x ,  y) in the nonbank- 
ruptcy cone %', and our portfolio selection strategy u = (l,, m,, c,,) will be 
admissible if and only if 

(21) ~n E COY R (x,,  yn)1 and (in> mn) E J ~  (xn? Y,, cn) 

with 

(22) d ( x ,  y , c ) : =  ( ( ~ , m ) ~ [ 0 , c o ) x [ O ,  m): 
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where by suppt, we denote the support of the measure generated by the 
random variable r,. In other words, we consume at time n not more than we 
owe on the banking account after liquidation of the stock account (paying 
possible debts there) and we invest the remaining capital (x, - c,, y,J in such 
a way that for each change of the stock prices at the moment n - t  1 we shall 
stay in the nonbankruptcy cone %. 

By analogy with (4) let 

(23) W(X, y) := SUP Jxy(u) 
u 

with supremum considered over all admissible u = ( l , ,  m,, c,). 
The'Bellman equation corresponding to the cost functional (20) is now of 

the form 

We shall look for a solution to the equation (24) studying the operator 
in a certain space @ defined, respectively, as follows: 

+ y  sup ~ { f  ( ( l + r ) ( x + ( l - p ) m - ( l + l 1 1 - c ) ,  (~+CI)(Y+Z--~)))) 
(i,m)cd(x,Y,c) 

and 

where C(%) is the space of continuous bounded functions on % and 

with x- = max (0, -x). 
Denote by z,  and z, the lower and upper bounds of the support of the 

measure generated by el ,  respectively. We shall need the following auxiliary 
result that characterizes orthogonal pairs ( I ,  m), i.e. such pairs for which 
lm=O,  in the set d ( x , y ,  0). 

LEMMA 1. For (x, y ) ~ %  the set d (x ,  y ,  0) consists of the following or- 
thogonal pairs ( I ,  m): 

(i) if I =  0, y < m and y >, 0, we have 
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(ii) if 1 = 0, y < m and y < 0 we have 

only when additionally 

x 2 
- (I  + 4 ( 1 + z , ) y  

l + r  Y 

in the case when 

there are%* admissible rn; 
(iii) if I = 0, y 3 m,  we have 

(1 + r ) ~ + t 1 - ~ ) ( 1  + ~ I ) Y  , y ]  when x Q  - (1 - P ) ~ + z I ) Y  
l + r  

and 

rn E [O,  y] whenever x 2 - (1 - p ) ( l  + ~ I ) Y .  

l + r  ' 
(iv) i f m = O  and y + l < O ,  we haue 

I E  [- ( I  + r ) x + ( l  +A)( l  +z ) ' Y , - ~ ]  when x < - 1 1 + 4 ( 1 + z J ~  
( 1 + 4 ( z ~ - r I  l + r  

and 

ZE [0, - y) whenever x 3 - ( 1  + 4 ( 1  + ~ Z ) Y .  

l + r  ' 
(v) i j  m = 0 and y + I 2 0, we have 

Pro of. Notice that the following system of inequalities should be satis- 
fied : 

~((l+r)(x+(l-y)m-(1+rZ)1), ( l + z , ) ( y + ~ - m ) )  2 0, 

Letting 2 = 0 or rn = 0 in the above inequalities, by direct calculations we 
obtain the result. w 

Remark 2. Notice that after possible transactions at each moment of 
time we should be in the cone 

- I l + z ,  1 
% =  ( x ,  y)€V: y 2  x ,  and y >  

l + r  1+A l + r  1 - p  

since otherwise we leave $? with positive probability. 



242 R. V. Bobryk and t Stettner 

Given functions f,, f, E YF we have 

x sup 
I E  { ( f , - f , ) ( ~ l + r ) ( ~ + ( l - p ~ m - ( l + a ~ - ~ ) ,  ( l + t l ) ( ~ + l - m ) ) ) l  

{I.nt)-f(x,y .cl 1 +R(x, Y) 

= Y I l f l l  SUP sup Il . f , ( i ,m,c) ,  
c f lO,R(x ,~ ) l  (i.mlzd(x,y,c) 

where we implicitly have defined M,, (1,  m, c).  Using Lemma 1 we obtain 

LEMMA 2. We have 

with 

P r o  of. Since Mx, (1, m, c) is nonincreasing in c, the maximum over c is 
attained for c = 0. Furthermore, one can easily see that 

is attained for orthogonal pairs (1, m). Therefore we use Lemma 1 to obtain the 
following bounds B for SUP {z,m)Ed(x,  y,O) Mxy (1, M, 0): 

(i) when Z=O, y < m  and y 2 0 ,  then B =  l + r ;  
(ii) when 1  = 0, y < m and y < 0, then also 3 = 1 +r; 
(iii) when I = 0, y >, m, we consider four subcases: 
(a) if 

x+(l-p)m<O and x <  - (1 -P)U + ~ I ) Y  

l + r  
9 

then 

(b) if 
i 

x+(1-p)m<O and x > -  ( l -~ ) t l+z , )y  
l + r  

9 

then 
3 = 1  +Er17 
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(4  if 

~ + ( l - p ) w > O  and x d -  ( ~ - P ) ( ~ + z I ) Y  
l + r  

9 

then 

. . 

x+(1-p)mmO and x 2  - ( 1 - ~ ) ( 1 + ~ 1 ) ~  
l + r  9 

. . 

then - 
B = l+E(,; 

(iv) when m = O  and y + E < 0 ,  then E = l f r ;  
(v) when m = 0 and y + I  3 0, we have the following subcases: 
(a) if x -(I + 11) I < 0, and y < 0, then 

(b) if x-(l+rl)l< 0 and y > 0, then 

(c) if X-(l+A)l I 0  and (1-p)(l+E51) 3 (l+r)(l+L), then 

(d) if x-(l+L)I>,O,(l-p)(l+Et,)<(l+r)(l+A) and y < O ,  then 
B =  l + r ,  

(e) if x-(1+R)12O,(l-p)(l+ES,)<(l+r)(l+R) and y 2 0 ,  then 
B = l+EE,. 

Noticing that 

we obtain (29). 

Remark 3. Notice that we cannot consider 1 + R (x, y) as the weight in 
the norm ( 1  - H R ,  since then we have a probIem to evaluate in Lemma 2 the value 
(1 + r) x + ( I  -p) (1 + Et,) y + 1 when x < 0, in terms of a constant multiplied by 
l+R(x,  Y ) .  

We are now in a position to formulate one of the main results of this 
section. 

3 - PAMS 19.2 
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THE~REM 2. For g~ W and 

there is a unique solution  WE^ to the Bellman equation (24). Moreover, w is 
a value function (23) corresponding to the cost functional (20). Furthermore, given 
seiectors 

for which the suprema on the right-hand side of (24) m e  attained, the strategy 
C, = c (xn, yJ, f, = 1 (x,, y,, en), lii, = m (x,, y,, 2,) is optimal. 

Proof,  Notice first that since d ( x ,  y, c) = d (X-C, y, 01, the multi- 
valued function 

(x, Y )  -, {Cc, I ,  m): cfCO7 R j x ,  ~11, ( l ,  ~ ) E & ( x ,  Y ,  4) 
is continuous in the HausdorfT topology so that by D m )  of [4] for continuous 
bounded w the function Tw is also continuous. By (28) and (29) we see that for 
y satisfying (30) the operator is a contraction in 9. Therefore, there is 
a unique solution to (23) in the space 9. Moreover, by the definition of 9 and 
Lemma 2, 

IEX, CY" w(x-5 y,)ll G 7" llwllii Ex, C1 +R(x,, y,)l 

<ynl lwl l~Ex, [ l+R(x , - , ,y , - l ) ]L<yn~l lwl l~R(x ,y )+O a s n + c o .  

The remaining part of the proof follows from the proof of Theorem 4.2.3 
of [4]. !a 

From Lemma 2 for a particular form of the noise 5, we obtain 

COROLLARY 1. If the lower bound z ,  of the support of the measure gene- 
rated by a random variable t ,  is equal to - 1, then the assertions of Theorem 
2 are true for y < 1/(1 +Eel). Furthermore, for each admissible strategy we haue 
x, 2 0 .  

P r o  of. The first part of the corollary follows immediately from Lemma 2. 
For the second part notice only that the admissible strategy to have (x,, y,) in 
the nonbankruptcy cone 48 should not allow x, be negative. B 

Next two corollaries characterize the properties of the value function w 
defined in (23) using the Bellman equation (24). 

COROLLARY 2. Under the assumptions of Theorem 2, if ~ E W  is non- 
decreasing, the function w is also nondecreasing with respect to both variabIes 
x and y,  i.e. for h > 0 we have 

w ( x + h , y ) ~ w ( x , y )  and w ( x , y + h ) 8 w ( x Y y ) .  
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Proof. The function w can be obtained as a limit of the nondecreasing 
sequence h with h r 0. One can show inductively that T," h in nondecreasing 
with respect to both variables for each n = 1,2,  . . . Consequently, the above 
property is inherited also by w. 

COROLLARY 3. Under the assumptions of Theorem 2, if g~ W is non- 
decreasing and convex, then w is convex, i.e. given /3 E LO, 11 and (xi, y,), 
(x , ,  y,)€V, we have 

P r o  of. By. the convexity of R and the monotonicity and convexity of g, 
we infer thar h (x, y) = g (R (x, y)) with h = 0 is convex. Assuming inductively 
that T," h is convex, let I,, m,, c, and I,, m,, c ,  be the strategies for which 
suprema in q + i h ( x , ,  y,) and Tf h(x,, y,) are attained, respectively. Then 

(I+C,)((BY~+(~-B)Y~)+(~~~+(~-B)Y~)-(B~~+(~-~~)~Z))) 
3 ~ { g ( ~ ~ ) + y ~ { ~ h ( ( l + r ) ( x ~ + ( l - ~ ) ~ l - ( l + ~ ) ~ ~ - ~ i ) ~  

(1 +C1)(yl + I l  -mi))}) +( I -M {g(c,)  

+ y ~ { ~ h ( ( l + r ) ( x 2 + ( l - p ) ~ 2 - ( l + ~ ) ~ 2 - ~ 2 ) ,  (1+~1)(~2+~2-m2)))}- 

Since 
PC~+(~-P)C,E[O~ R ( B ~ l - t ( l - 8 ) ~ 2 ,  B~i+(l-P)yz)I 

and 

(/34+(l-P)12, Bm,+(l-P)m,) 

E & ( B x ~ + ( ~ - B ) x ~ ~  B Y ~ + ( ~ - P ) Y ~ ,  flcl+(1-P)c2), 

we -finally have the convexity of T' l ,  which by induction completes the 
proof. EJ 

The next corollary explains intuitively an obvious fact that orthogonal 
strategies are within the class of optimal strategies. 

COROLLARY 4. Under the assumptions of Theorem 2, if ~ E W  is non- 
decreasing, there is an optimal strategy (c, m,, Z,,) for the cost functional (20) 
which is orthogonal, i.e. t-15, = 0. 

P r o  of. Given the optimal selectors c ,  I and rn defined in Theorem 2 let 

= C (x, , Y ~ )  
and put 
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if 
I 

I ( X ~  ~ n ,  ~ ( ~ n r  ~ n ) )  2 m(x"1 Y ~ Y  c(xn, YJ) 
and 

m (xn, Yn, c h,, Y,)) 2 I(xn, Yn1 c tx,> un)). 

Clearly, the strategy (t, I T i , ) ~ d ' ( x , ,  y,, c,). By Corollary 2 and the B e b a n  
equation (24) for n = 1, 2, . . . we then obtain 

Consequently, w (x, y) < JXy (4 with ii = (t , m,, Z,), and finally w (x, y) 
= J,,(ii), i.e. the strategy ii is optimal. m 

Properties of the function w for a particular form of the satisfaction func- 
tion g are shown in the following 

PROPOSITION 2. If g (c) = ca with 0 < M < 1 and y < l/i with dd@ned in (81, 
thefunction w d@ned in (23) is lower semicontinuous and is a solution to the Bellman 
equation (24). Moreover, w is convex and for g > 0 and (x, y)~% we have 

Proof. If g (c) = ca, the sequence T: h with h = 0 is nondecreasing and 
bounded from above by the optimal value of the cost functional J, , ,  corre- 
sponding to zero transaction costs, which by Proposition 1 is finite. Conse- 
quently, the limit function w(x, y) is a solution to (24). Moreover, w is also of 
the form (23). Since ca is convex and each function T," h (x, y) is convex, by the 
arguments of the proof of Corollary 3, w is also convex. The lower semicon- 
tinuity of w follows from the continuity of h(x, y). To complete the proof 
it remains to notice that for Q > 0, n = 1, 2, . . ., and (x, y) E%? we have 
Ty"h(gx, ey) = eaTh(x ,  y). rn 

Remark 4. When y satisfies (30), since c " ~ d Y ;  w is a unique solution to 
(24) and w E K 

Since the function g (c) = In c is not in the class 71Y; this case has to be 
studied separately. 

PROPOSITION 3. If g(c) = In c, for any y E (0, 1) the function w defined in 
(23) is lower semicontinuous land is a sojution to the equation (24). Moreover, w is 
convex and for e > 0 and (x, ~ ) E V  we haue 

Proof. Notice first that the optimal value of the cost functional J,, does 
not exceed the optimal value of the cost functional J,,, (without transaction 
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costs), and therefore by Proposition 1 we infer that, for any y ~ ( 0 ,  1), 
supu Jxy (u) < w . For 

1 1 r 
h ( x ,  y) = --- In R(x, y)+-  In -, 

1-Y I - y  l + r  

the sequence h (x, y) is nondecreasing, continuous in ( x ,  y) E Gf and its limit 
function w is lower semicontinuous and is a solution to (24). Moreover, 
h(x, y)  = Jx,(u"), where the strategy li is to keep everytime the stock account 
equal to 0 and consume 

Consequently, h ( x ,  y) is the value function corresponding to the optimal 
strategy over the horizon [0, n], and then the strategy il, and therefore 
w (x, y) d supu J,(ts). For an E-optimal strategy ii = (t, m,, EJ we have 

Y" EU, ( g  (C,)] -, a,. 

Therefore lim idn,, yn  E", (ln R (x,, y,,)] 2 0, since E, < R (x , ,  y,). Conse- 
quently, 

lim inf yn li? ( h  (x,, y,)) 2 0 
n -  m 

and 
n - 1  m 

lim T h ( x ,  y) 2 liminfE",,(z g(~~+fy"h(x, ,  Y,)) 2 E",(X y ' g ( ~ ~ ) ) .  
n-r a n-rm i = O  i=O 

Therefore, w (x, y) 2 l3FY { ~ x ~ ,  y' g (a) 3 supu Jxy (u) - E ,  and finally w (x, y) 
= supuJ,(u). The convexity of w follows from the convexity of h and 

h (x, y) as in the proof of Corollary 3. Since 

letking n -+ we see that the property (33) holds. 

From the Bellrnan equation (24) and Propositions 2 and 3 we can get the 
following form of optimal strategies: 

THEOREM 3. If the value function (23) is a solution to the Bellman equation 
(24), then the cone % can be split into the foIIowing three zones: 

= sup { g ( c ) + y  sup ~(w((l+r)(x+(l-~)~-~),(l+~~)(~-~))#}~ 
EECO.R(X,Y)I ( O , ~ ) E ~ X , Y , C )  

= sup { g ( c ) + y ~  {w( ( l  +r)(x-c), (~+CI )OI ) ) ) ) }~  
CE[O,R(X,Y)I 
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called, respectively: S - selling, NT - nontransaction, 3 - buying zones. In 
particular cases when g (c) = ca with or E (0, 1 )  or g (c) = In c the zones S ,  N T  and 
3 are cones. If the zones are closed sets the optimal strategy is the following: 
when (x,, y,J E S - sell assets until we leave the zone S; when (x,, y,) E N T  - do 
nothing; and when (x,, ~ , ) E B  - buy assets until we leave 3. 

Pmof. 'Let for (x, y)€V 

(37) t ( x , y ) : =  sup { ~ ( c ) + y ~ ( w 1 ( 1 + r ) ~ x - c ) , ( 1 + t , ) ( ~ ) ) ) j .  
CE[O.R(X.YJI 

If (x, Y)ES, then 

is the optimal sale, while if (x, y) E 3, then 

is the optimal amount of assets we have to buy. By the properties (32) and (33) 
for g(c) = ca or g (c) = ln c the boundaries of the zones are lines, and therefore 
the zones are cones. I 
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